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Abstract:

General equilibrium models generically are determinate and have a finite number of
equilibria.  But, with linear activities and some inelastically supplied factors of
production,  the economies that arise endogenously as perfect-foresight equilibria
proceed through time can robustly be indeterminate.  During the initial period of an
intertemporal model, the perfect-foresight equilibria typically are well-behaved, but
they can generate later-period endowments for agents such that the equilibria that
validate perfect-foresight expectations lie amid a continuum of other equilibria.
Since later-period equilibria are not continuous functions of endowments and other
parameters, agents (even if small relative to the market) have an incentive to
manipulate market prices; the assumption that agents are price takers therefore breaks
down.  Sequential indeterminacy is related to Sraffa’s indeterminacy results in that
(1) smooth “neoclassical” technologies eliminate indeterminacy, and (2) the
dimension of sequential indeterminacy matches the dimension of indeterminacy in
Sraffa’s model.  Despite the link to Sraffa, long-run equilibria, where relative prices
are constant through time, are generically determinate.
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1.  Introduction

Factor pricing was once one of the most contentious subjects in economics.  From the late

19th through the mid 20th century, champions and critics of marginal productivity argued

forcefully about the nature of technology and whether the infinite array of the factor substitution

possibilities implied by the differentiable, “neoclassical” production function is realistic. 

Although the neoclassical production function remains the most common model of production,

arguments about the nature of technology seem puzzling today: Arrow-Debreu general

equilibrium theory does not impose differentiability assumptions on production functions or

production sets.  Premodern theorists thus seem to have been debating an irrelevancy.

I argue that earlier worries about factor substitution were well-justified.  In the absence of

sufficient substitutability, factor demand can be inelastic.  If factor supply is also inelastic,

equilibrium factor prices will not be determinate.  Indeterminacy is not just a technical nuisance;

it undermines the price-taking assumption of competitive equilibrium theory.  In the

indeterminacy under study, arbitrarily small reductions in factor supplies can discontinuously

increase a factor’s price, and consequently factor owners will not take prices to be parametric.

Standing opposed to the possibility of indeterminacy, the regularity literature of general

equilibrium theory shows that competitive equilibria generically are determinate; that is, for

almost every configuration of parameters, general equilibrium models have only locally unique

equilibria.  Since this result holds for models of production with limited or even no possibilities

for factor substitution and when factors are inelastically supplied, the regularity literature

implicitly contends that factor price indeterminacy is not an important problem.

I show, however, that in intertemporal models in which agents trade at multiple dates

(instead of once-and-for-all at the beginning of economic time), it can occur robustly that the

equilibrium behavior of agents endogenously generates the parameters at which indeterminacy

occurs.  At the start of an intertemporal model, the perfect-foresight equilibria generically are
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determinate, but those equilibria can generate endowments for agents such that in later periods

the equilibrium that validates the perfect-foresight expectations is contained within a continuum

of other equilibria.  This is the sequential indeterminacy problem.  Although at each period t the

equilibria of the economy that begins at t would generically be determinate if we could perturb

endowments at t and later, economies are driven over time to precisely the measure-zero set of

endowments that cause trouble.

I begin by reviewing the standard determinacy theorems of the regularity literature, both

in general and in a two-factor example, and then show how an intertemporal equilibrium can be

decomposed into an equilibrium with sequential trading.  For simplicity, our sequential trading

equilibria involve trading at just two dates.  The decomposition of each intertemporal

equilibrium defines a set of economies that operate during the second time period.  It can turn out

that almost all of these economies have indeterminate equilibria.  Technologies with limited

factor-substitution possibilities, such as linear activities, are indispensable to sequential

indeterminacy; as we will see, the perfect-foresight equilibria of models with differentiable

neoclassical technologies typically are determinate during their later periods of operation.  The

importance of the differentiability of technology hints at a link to Sraffa’s famous indeterminacy

claims.  The connection turns out to be tight, except for one important proviso: sequential

indeterminacy will not arise in the favored Sraffian environment of long-run equilibria.

2.  Determinacy in general equilibrium theory

Despite the considerable attention theorists paid to determinacy prior to World War II,

postwar general equilibrium theory initially ignored the subject.  But after 1970, when Gerard

Debreu published his path-breaking article on the number of equilibria in exchange economies,

the modern literature developed rapidly.  For models with a finite horizon (and as long as assets

are real, not financial), the regularity literature has yielded remarkably sharp conclusions. 



1  Mas-Colell and Kehoe’s work was preceded by Fuchs (1974) and Smale (1974), which
analyzed decreasing-returns-to-scale technologies.  Mas-Colell (1985) provides a definitive
overview of the regularity literature.
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Typical, or generic, models have a finite number of equilibria.  And these equilibria have

appealing comparative statics properties: equilibrium prices and allocations change smoothly as a

function of the parameters of the model.  Consequently, in large economies, agents can have only

a small effect on equilibrium prices and therefore have little incentive to manipulate markets. 

For example, as the number of agents becomes large, the effect on equilibrium prices of an agent

withholding a portion of his or her endowment from the market becomes small.  In the limit,

agents take prices to be parametric and act competitively (Roberts (1980)).  The study of

determinacy thus not only resolved a technical issue – whether the number of equilibria is finite

or infinite – but also shored up the foundational story of when markets operate competitively.

For production economies, Mas-Colell (1975) and Kehoe (1980, 1982) established

generic determinacy results for constant-returns-to-scale technologies and for the linear activity

analysis model in particular.1  From the perspective of the history of production theory, the Mas-

Colell-Kehoe results are remarkable.  The original popularity of the differentiable production

function, after all, was due to the fact that it ensures that factor demand is elastic with respect to

price; hence, even if factor supply is inelastic, factor price indeterminacy will not occur.  But

although differentiability secured this important theoretical goal, it was also attacked by many as

empirically unrealistic (see Mandler (1999a) for a more detailed history).  The modern regularity

literature, in contrast, seems to show that earlier assertions of indeterminacy had been incorrect:

determinacy is generic with virtually any description of technology and whether or not factors are

inelastically supplied.  The decades-long debate between the “fixed coefficients” and

“differentiable production function” camps thus appears to have been pointless.

A model in the spirit of Mas-Colell and Kehoe will serve as our reference point.  We



2  “Differentiably increasing” and “differentiably strictly concave” mean that, for all xk �
, Duk(xk) >> 0 and D2 uk(x k) is negative definite.R L

��
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assume there are L goods that provide agents with utility and M goods that agents supply

inelastically.  The L goods may be either pure consumption goods or factors, such as labor time,

whose demand varies as a function of prices, while the M goods are pure factors of production. 

We suppose there are N activities, a1, ..., aN, each a j �  indicating the quantities of the L +R L�M

M goods necessary to run activity j at the unit level, and summarized by the L + M by N

technology matrix A = [a1  aN].  The ith row-j th column element of A, aij, is the quantity of�

good i used (if aij < 0) or produced (if aij > 0) by activity j.  Letting y �  indicate the vector ofR N
�

activity or usage levels, aggregate production equals Ay.  The production set that arises from this

technology is Y = {� � : � y �  s.t. � � A y}.  We make the standard assumption thatR L�M R N
�

production of positive amounts of all goods is impossible: Y intersects the positive orthant only at

{0}.

We assume there are a finite number of agents.  A typical agent k is described by (1) a

twice continuously differentiable utility function uk:  � R that is differentiably increasing andR L
�

differentiably strictly concave and where no indifference surface through any xk �  intersectsR L
��

any coordinate axis, and (2) an endowment ( , ) �  of goods and factors.2  Thesee k
c e k

f R L�M
��

assumptions can be weakened considerably.  In particular, agents could be endowed only with

natural resources, and not with producible goods as well.

Let ( p, w) � �{0} denote the prices of goods and factors.  Each agent k’s budget setR L�M
�

is then {x k � : p �x k � w � + p � }.  Maximizing uk subject to this budget set generates theR L
�

e k
f e k

c

excess demand function z k(p, w), and, summing, the aggregate excess demand  z(p, w) =

z k(p, w).  The excess demand for the M pure factors is simply �ef = � .  The aggregate�k �k e k
f

excess demand function for the L + M goods taken together is therefore (z(p, w), �ef ).  Let ef (i)

denote the aggregate endowment of factor i.
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An equilibrium is a (p, w, y) such that (z(p, w), �ef ) � Ay and (p, w)�A � 0.  Using

Walras’ law, it is easy to confirm that if any of the market-clearing inequalities is strict, then the

corresponding price equals zero, and that if any of the no-positive-profits inequalities is strict,

then the corresponding coordinate of y equals 0.  Under our assumptions, an equilibrium exists.

The regularity literature takes the view that properties of a model that obtain only at

exceptional, “nongeneric” combinations of parameters can be dismissed as unlikely.  This

principle should not be applied naively, but, if modified so as to not rule out seemingly unlikely

parameters configurations that in fact arise endogenously, the underlying precept is sound. 

Indeed, in order to show that a property arises systematically in the later periods of an

intertemporal model, one must ensure that it arises for a nonnegligible set of intertemporal

economies.  So, whether from the regularity literature’s vantage point or from a sequential point

of view, an explicit space of economies or parameters is indispensable.

We now specify our parameter space and define a “regular” economy.  Roughly speaking,

the key feature of a regular economy is that each vector of equilibrium relative prices and activity

levels is locally unique and varies differentiably as function of the economy’s parameters.  The

pertinent equilibrium variables of a regular economy can in fact be viewed as the solution of a

simple system of equations: the market-clearing conditions for all the goods not in excess supply

(less one, due to Walras’ law) and the zero-profit conditions of activities that make exactly zero

profits.  Regular economies, moreover, comprise a generic subset of the space of economies. 

The exact concepts needed to define regularity are a little involved; the reader may wish to

proceed to the example discussed in the next section.

The parameter space will be the cross product of the open set of endowments that meet

the assumptions imposed above and an open set of technology matrices to be defined

momentarily.  Since technology matrices and endowments can each be identified with finite-

dimensional vectors of real numbers, the concepts of openness, density, and full-measure sets



3  For the Sequential Indeterminacy Theorem of section 6, we will need to supplement the
basic parameter space with a space of utility functions.  Given a utility uk for agent k that meets
the assumptions stated above, let uk + � f  be an admissible utility for k, where f is any quadratic
function on  and where � is a scalar in an open set small enough that uk + � f satisfies the sameR L

�

assumptions when restricted to the set of feasible consumption vectors that deliver at least as
much utility for k as .  Since quadratic functions can be parameterized by a finite set of reale k

c
numbers, our space of economies can still be seen as an open set of finite-dimensional vectors of
real numbers.
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will have their familiar Euclidean meanings.  We must take a little care with technology matrices. 

If each entry in a L + M by N technology matrix is a free parameter, then almost every technology

matrix will specify that each good is either an input or an output in each activity.  This would be

absurd in any model, and physically impossible once we distinguish goods by the date at which

they appear.  Therefore, given an arbitrary, fixed technology matrix A meeting our assumptions,

let A� be admissible if, for all i and j, sgn(aij�) = sgn(aij).  Our parameter space for technology

matrices will be the set of admissible matrices.  A generic set is a subset of our space of

economies that is open and whose complement has measure zero.3

To analyze equilibria (locally) as the solution of a system of equations rather than

inequalities, consider the subset of the conditions (z(p, w), �ef ) � Ay and (p, w)�A � 0 that

“bind” at some equilibrium (p, w, y : the market-clearing conditions where demand exactly)t

equals supply and the no-positive-profits conditions for those activities that both exactly break

even and utilize or produce at least one good not in excess supply.  All of the market-clearing

conditions for consumption goods are included in this subset, but some factors may be in excess

supply and some (unused) activities may make strictly negative profits or utilize/produce only

factors in excess supply.  For ( p, w, y) near (p, w, y ,  the excluded factors will continue to be)t

in excess supply and the excluded activities continue either to make strictly negative profits or to

utilize/produce only factors in excess supply.  Consequently, in a neighborhood of (p, w, y , we)t

may ignore these excluded equilibrium conditions: they are automatically satisfied.  In addition,
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we may use Walras’ law, which implies that if all but one of the economy’s market-clearing

equalities is satisfied then so is the remaining one, to eliminate one of the equalities in

(z(p, w), �ef ) � Ay.  We choose to omit the first consumption good.  Finally, given the

homogeneity of z(p, w) and (p, w)�A, we may set the price of one of the consumption goods –

say the first – equal to 1 without restricting the set of equilibrium allocations.

To specify our new system of equations and unknowns explicitly, we define  by settingp̄

the first coordinate of p equal to 1,  and  by omitting the coordinates of w and ef thatw̄ ēf

correspond to the factors in excess supply,  by omitting the first coordinate of the rangez̄ ( p̄, w̄ )

of z,  by omitting the rows of A that correspond to the factors in excess supply and the columnsĀ

that correspond to the negative-profit activities or activities that utilize/produce only factors in

excess supply,  by omitting the same activity level variables, and, finally,  by omitting theȳ Ã

row of  that corresponds to the first consumption good.Ā

Keep in mind that these definitions are assembled relative to a particular equilibrium:

depending on which factors are in excess supply and which activities break even, a different set

of equilibrium conditions will bind.  We will now typically use equilibrium to refer to a

.  To say that  is an equilibrium means simply that there exists an equilibrium( p̄, w̄, ȳ ) ( p̄, w̄, ȳ )

in our previous sense where the prices omitted from ( , ) are set to 0 and all money-losingp̄ w̄

activities omitted from  have usage levels equal to 0.ȳ

Given an equilibrium , equilibria near  are characterized by the( p̄, w̄, ȳ ) ( p̄, w̄, ȳ )

equations  and  = 0.  These equations contain as many equations as( z̄ ( p̄, w̄ ),�ēf ) � Ã ȳ ( p̄, w̄ )� Ā

there are variables in .  The basic requirement of regularity is that this system of( p̄, w̄, ȳ )

equations has “full rank,” which will imply the local uniqueness of .  To this end,( p̄, w̄, ȳ )

define  = .  An equilibrium is regular if (1) DF,F ( p̄, w̄, ȳ ) ( z̄ ( p̄, w̄ ),�ēf ) � Ã ȳ ), ( p̄, w̄ )� Ā

evaluated at , is nonsingular (i.e., has rank equal to L � 1 plus the number of factors in( p̄, w̄, ȳ )

 plus the number of activities in ), (2) each activity j whose zero-profit condition is exactlyw̄ ȳ



4  The usage levels for any activities that utilize or produce only goods that are in excess
supply will be indeterminate.  This fact leads to no corresponding indeterminacy of relative
prices or agents’ welfare, however.
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satisfied has y( j ) > 0, and (3) each factor i not in excess supply has w(i) > 0.

If an equilibrium is regular, equilibrium prices and quantities are locally a differentiable

function of our parameterized set of economies.  To see this, consider an economy (e*, A* ) with a

regular equilibrium  and adjoin the parameter space to the domain of F.  The( p̄ �, w̄ �, ȳ �)

implicit function theorem implies there is a continuously differentiable function of the

parameters in a neighborhood of (e*, A* ) that identifies the unique  in a neighborhood of( p̄, w̄, ȳ )

 that satisfies  = 0.  In a small enough neighborhood, these ( p̄ �, w̄ �, ȳ �) F( p̄, w̄, ȳ ) ( p̄, w̄, ȳ )

must indeed be equilibria: (i) by holding fixed the usage levels of any activity that

utilizes/produces only factors in excess supply at , any market-clearing condition( p̄ �, w̄ �, ȳ �)

omitted from the range of F must still be satisfied, (ii) any activity’s profit level that is omitted

from the range of F and that makes negative profits at  will continue to make( p̄ �, w̄ �, ȳ �)

negative profits, (iii) any activity that utilizes/produces only factors in excess supply at

 will plainly continue to break even, and (iv) given (2) and (3),  will be( p̄ �, w̄ �, ȳ �) ( p̄, w̄, ȳ )

nonnegative.  Since  = 0 has a locally unique solution for the parameters (e*, A*), anyF( p̄, w̄, ȳ )

regular equilibrium is locally isolated.4

An economy is defined to be regular if all of its equilibria are regular.  Under our

assumptions, it can additionally be shown that a regular economy has a finite number of

equilibria.

Generic Determinacy Theorem (Mas-Colell/Kehoe).  The regular economies form a generic set.

We have taken care to include in the model goods that do not give agents utility.  The
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above theorem therefore establishes generic determinacy in the important case where technology

is described by linear activities and factors are inelastically supplied.

3.  Regularity and determinacy in a two-factor example

To see an example of how different parameter configurations can generate regular

economies or the troublesome cases that cause indeterminacy, let there be one consumption good

and two factors (L = 1, M = 2), suppose that each activity produces only the consumption good,

and normalize the activities so that the unit level of each activity produces one unit of that good. 

Label the pure factors so that they have commodity indices 1 and 2.  Setting the price of the

single consumption good equal to 1, and using Walras’ law to ignore the market-clearing

condition for the consumption good, equilibria are characterized by:

(3.1) �  aij y j � ef (i), i = 1, 2,�j

(3.2) 1 + w(1)a1j + w(2) a2 j � 0, j = 1, ..., N.

Due to the sign convention, each aij in (3.1) and (3.2) is negative.

For generic technology matrices, at most two activities are used in equilibrium and all

unused activities will satisfy (3.2) with strict inequality.  When exactly two activities are in use,

the corresponding two equalities in (3.2) determine unique values for w(1) and w(2), and for

generic technologies both of these numbers will be strictly positive in equilibrium.  Thus, in this

regular case, neither factor can be in excess supply.  The usage levels of the two activities are

determined by (3.1), both of which are equalities.  At equilibria where only one activity is in use,

on the other hand, there is only one equality in (3.2) to determine both w(1) and w(2).  If one of

the factors is in excess supply, its price must equal zero and regularity and determinacy still

obtain.  But if both factor market-clearing conditions are satisfied with equality (and thus neither

factor price is constrained to equal 0), and if, as with regular equilibria, the inequalities in (3.2)

for the unused activities are strict, the equilibrium is indeterminate.  A continuum of values for
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w(1) and w(2) will obey the one equality in (3.2) while still satisfying the strict inequalities in

(3.2).  And since no prices appear in (3.1), any of these (w(1), w(2)) can serve as equilibrium

factor prices.

Summing up, indeterminacy occurs if neither factor is in excess supply and just one

activity is in use, while prices are determinate (for generic activity analysis matrices) if two

activities are in use or if one of the factors is in excess supply.

The Generic Determinacy Theorem therefore implies that equilibria with just one activity

in use but with two fully employed factors occur only at a zero-measure set of economies.  This

fact is easy to confirm directly.  With neither factor in excess supply, (3.1) contains exactly two

equalities.  But since only one activity is in use, only one of the components of y, say yj, is

nonzero.  Except for a zero-measure set of the endowment vectors ef , therefore, there exists no

value for yj that satisfies the two equalities in (3.1).  Hence, generically, indeterminacy does not

occur.  The regular, determinate equilibria, in contrast, arise robustly and vary differentiably as a

function of ef .  For example, when two activities are in use, (3.1) contains two equalities and

there are two nonzero activity levels; for generic activity analysis matrices, the equalities in (3.1)

in this case have a unique solution for every ef .

Figure 1 graphs the set of possible endowment points.  The Figure supposes that there are

two activities, each represented by the ray of factor combinations that the activity can fully

employ.  The interiors of the three cones of endowments lead to determinacy: in the interior of

the two outside cones, one activity is in use and one of the two factors is in excess supply, while

in the interior of the inner cone, two activities are in use and both factors are fully employed. 

Only at the lower-dimensional set of endowments that lie on the two rays, where only one

activity is in use and both factors are fully utilized, does indeterminacy occur.

[Insert Figure 1]

Two representative isoquants, which links points on the activity rays that produce the
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same quantity of the consumption good, are also pictured.  Along the activity rays, where

indeterminacy occurs, a continuum of price lines support the isoquant; marginal products for the

factors consequently are not well-defined.  In the cone interiors, in contrast, only a single price

line supports the isoquant and marginal products are defined.  The relationship between

determinacy and marginal productivity generalizes: with arbitrary numbers of activities and

factors and a single consumption good, marginal products are well-defined at the same generic

set of factor endowments at which equilibria are locally unique.  Thus, generically at least,

marginal productivity theory does not require that differentiable production functions are posited

as a primitive; linear activities can serve as their foundation.

4.  Determinacy vs. sequential determinacy

The standard Arrow-Debreu model supposes that agents meet once and contract for

delivery of goods at all moments of economic time.  The determinacy that the regularity literature

establishes, therefore, is the determinacy of equilibria for these sorts of markets.  The standard

literature simply does not address whether the economies that endogenously emerge through time

have determinate or indeterminate equilibria.

As an intertemporal economy proceeds through time, the endowments of agents, and

other parameters, endogenously evolve.  The endowments that generate indeterminacy in one of

the economy’s later time periods, even though they form a measure-zero subset of the

endowment space of that period, might therefore arise systematically.  This outcome is more than

an abstract possibility; optimizing agents accumulate capital goods only in specific

configurations.  We will see that in equilibrium the production of capital goods can generate

precisely the endowments that lead to indeterminacy.
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5.  Decomposing an intertemporal equilibrium into a sequence of markets

The simplest way to model an economy proceeding through time is to define the

intertemporal equilibria, where agents trade at only one date, and then reinterpret those equilibria

as occurring via trading at a sequence of dates.  See Radner (1972) for a general theory of such

reinterpretations or “decompositions.”  To generate sequential indeterminacy, it will suffice to

consider models with trading at just two periods.  But each date might represent a multi-period

composite, with the two dates forming a partition of a larger underlying set of time periods.

We begin by rewriting the model of section 2 as a two-period intertemporal model.  In the

second period, there are L2 consumption goods, M2 pure factors, and N2 activities that commence

within the period.  There are N1 activities that commence within the first period, and L1 first-

period goods.  The first-period goods could be a mixture of consumption goods and pure factors,

but to minimize notation we assume they are all consumption goods.  The intertemporal activity

analysis matrix has the form

A �

A11 0

0 A22

A31 A32

.

L1

L2

M2

The second subscript of each Aij indicates the period during which the activity commences.  The

0 submatrices in A indicate that we are assuming, again for notational simplicity, that activities in

each period do not directly produce or utilize consumption goods that belong to the other period.

Each agent k of the intertemporal model is described by a utility function ,u k (x k
1 , x k

2 )

where ( , ) is k’s first- and second-period consumption and by endowments ( , , ) ofx k
1 x k

2 e k
c1

e k
c2

e k
f2

first-period goods, second period consumption goods, and second-period factors.

The primitives of the intertemporal model – the utility functions, the endowment vectors,

and the technology matrix – are merely two-period versions of the primitives of the model of

section 2, and we assume that the current primitives obey the assumptions imposed there.  An
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intertemporal equilibrium, which is a ( p1, p 2, w2, y1, y2), therefore always exists, and the

Generic Determinacy Theorem applies.  Throughout the remainder of this paper, we consider

only regular two-period economies.  This restriction ensures both that second-period parameters

are determined endogenously and that those parameters are not unlikely from the perspective of

the overall two-period model.

We now reinterpret the intertemporal equilibria as equilibria with sequential trading and

perfect foresight.  In order that the two time periods are properly linked, agents must be able to

purchase or sell assets in period 1 for delivery during period 2.  We assume that the assets in the

model consist of those second-period pure factors that are outputs of some first-period activity

and that there are M
.
 > 0 such factors.  These goods will be indexed as the first M

.
 of the

second-period factors.  Let � k represent agent k’s purchases of assets; � k will be an element of

 but the last M2�M
.
 coordinates of � k are constrained to equal 0.  Similarly, q �  willR

M2 R
M2

have the prices of the assets as its first M
.
 coordinates and will equal 0 elsewhere.  Let p1 denote

the prices of the first-period goods, p2 the prices of the second-period consumption goods, and

w2 the prices of the second-period factors.

Each agent k maximizes  subject to the budget constraintsu k (x k
1 , x k

2 )

p1 �  + q �� k � p1 �  and  p2 �  � w2 � (�
k + ) + p2 � .x k

1 e k
c1

x k
2 e k

f2
e k

c2

In order for agents to be willing to hold all M
.
 assets, the first M

.
 coordinates of w2 must be

proportional to the same coordinates of q: hence in equilibrium there must exist a R > 0 such that,

for i = 1, ..., M
.
, Rq(i) = w2(i).  Using this substitution, agent k’s budget constraints reduce to

p1 �  + p2 �  � p1 �  + w2 � + p2 � .x k
1

1
R

x k
2 e k

c1

1
R

e k
f2

1
R

e k
c2

Utility maximization subject to this constraint generates the excess demand functions

( p1, p2,w2, R) and ( p1, p2, w2, R) for the first and second period consumption, and,z k
1 z k

2



5  Since there are two budget constraints for each agent in the sequential model, an
uninteresting nominal multiplicity of equilibria appears that is absent from the intertemporal
model: given sequential-trading-equilibrium prices ( p1, p2, w2, R) and a scalar � > 0,
( p1, �p2, �w2, �R) are also sequential-trading-equilibrium prices.  The multiplicity only involves
a rescaling of second-period prices, however, and so allocations of goods do not change.
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summing, the aggregate excess demand functions z1( p1, p2, w2, R) and z2( p1, p2, w2, R).

Letting y1 and y2 denote the activity levels for the two periods and defining = ,ef2
�k e k

f2

the market clearing requirements appear as

z1( p1, p2, w2, R) � A11 y1,

(5.1) �A32 y2 � A31 y1 + ,ef2

z2( p1, p2, w2, R) � A22 y2,

while the zero-profit conditions take the form

(5.2) p1�A11 + w2�A31 � 0 and p2�A22 + w2�A32 � 0.
1
R

A sequential trading equilibrium is a ( p1, p 2, w2, R, y1, y2) that satisfies (5.1) and (5.2). 

It is immediate that ( p1, p 2, w2, R, y1, y2) is a sequential trading equilibrium if and only if

( p1, (1	R)p 2, (1	R)w2, y1, y2) is an intertemporal equilibrium.  Indeed, the only difference

between the models is that in the sequential model agents make asset choices and face two

budget constraints.  But since each agent’s reduced-form budget constraint replicates the budget

constraint of the intertemporal model, the two equilibrium concepts coincide.5

In defining a sequential trading equilibrium, we did not need to specify the � k.  But to

model second-period behavior, we must do so.  At the beginning of the second period, each agent

k owns the endowments  of second-period consumption goods and  + � k of factors.  Usinge k
c2

e k
f2

the sequential-trading-equilibrium values of p2 and w2, agent k’s budget constraints imply that � k

must satisfy
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(5.3) p2 � ( p1, p2, w2, R) = w2 � (�
k + ).z k

2 e k
f2

And in the aggregate, total portfolio holdings of the produced factors must equal total production

of factors:

(5.4) �
k = A31 y1.�k

Unfortunately, unless there is either a single agent or a single produced factor, (5.3) and (5.4) do

not determine a single set of values for the � k.  Typically, therefore, a sequential trading

equilibrium will generate a multi-dimensional set of second-period economies, each of which can

be identified with one set of values for the � k.  The set of second-period economies that

correspond to a sequential trading equilibrium can therefore be viewed as a finite-dimensional

Euclidean space.

Once we stipulate the � k, all of the primitives of a standard Arrow-Debreu economy are

specified.  The technology matrix is given by the second-period activities of the original

intertemporal economy’s technology matrix, endowments are as defined above, and each k

maximizes the utility function  subject to p2 �  � p2 �  + w2 � (�
k + ), whereu k (x k

1 , x k
2 ) x k

2 e k
c2

e k
f2

= ( p1, p2, w2, R) +  is now an exogenous variable determined by the first period of thex k
1 z k

1 e k
c1

sequential trading equilibrium.  We will say that an intertemporal equilibrium induces this

second-period economy.

Letting z2( p2, w2) denote the aggregate excess demand function for the second-period

economy (a function that is different from the z2 used to model the intertemporal economy), a

second-period equilibrium is a ( p2, w2, y2) that satisfies z2( p2, w2) � A22 y2, �A32 y2 � A31 y1 +

, and p2�A22 + w2�A32 � 0, where y1 is fixed at its sequential-trading-equilibrium value.ef2

6.  Sequential indeterminacy

Given a sequential trading equilibrium ( p1, p 2, w2, R, y1, y2), it is easy to confirm that

( p 2, w2, y2) is an equilibrium, which we call the continuation equilibrium, of any of the induced
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second-period economies.  At the continuation equilibrium, the expectations of second-period

prices anticipated in the sequential trading equilibrium are fulfilled.  But are continuation

equilibria determinate?  When, for each intertemporal economy in some nonempty open set,

there exists an equilibrium where the continuation equilibrium of almost all of the induced

second-period economies lies amid a continuum of second-period equilibria, we say that

sequential indeterminacy occurs.

Analogously to the original intertemporal model, we use bars to indicate that factors in

excess supply and activities that earn negative profits (or that utilize or produce only factors in

excess supply) at the continuation equilibrium have been omitted from w2, , y1, y2, A22, A31,ef2

and A32, that the first coordinate of p2 has been set to one, and that the first coordinate of z2 has

been omitted.  (As in section 2, Walras’ law allows us to ignore one market-clearing condition,

which we choose to be the first of the second-period consumption goods.)  The matrix  omitsÃ22

the row of  that corresponds to the first of the second-period consumption goods.  Finally letĀ22

 indicate the number of factors where demand exactly equals supply at the continuationM̄2

equilibrium and  denote the number of activities in use at the continuation equilibrium. N̄2

Equilibria are then locally characterized by the equations:

(6.1)  = ,z̄2( p̄2, w̄2 ) Ã22 ȳ2

(6.2) �  =  + ,Ā32 ȳ2 Ā31 ȳ1 ēf2

(6.3)  = 0.p̄2� Ā22 � w̄2� Ā32

Conditions (6.1) to (6.3) consist of L2�1 + +  equations in the same number of unknowns –M̄2 N̄2

the variables, , , and .p̄2 w̄2 ȳ2

Recall from the example of section 3 that indeterminacy occurs at equilibria where a

single activity fully employs two inelastically supplied factors.  The example generalizes to cases

where m positively priced (and hence fully employed) factors are used by n < m activities. 

Mimicking the argument from the example, suppose we fix the pertinent n coordinates of  atȳ2
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their continuation equilibrium values.  Independently of the value of the other L2�1 +  +M̄2

�n endogenous variables, the market-clearing conditions for the m factors will remainN̄2

satisfied.  The remaining equalities therefore constitute a system of L2�1 + + �mM̄2 N̄2

equations in L2�1 +  + �n variables: the difference between the number of variables andM̄2 N̄2

equations is m � n > 0.  This excess of variables over equilibrium conditions suggests that the

system is indeterminate.  To reach this conclusion formally, via the implicit function theorem, a

rank condition must be satisfied.  (That is, the derivatives of the remaining equalities with respect

to the remaining endogenous variables must be a matrix of rank L2�1 + + �m.)M̄2 N̄2

Of course, for almost every value of the right hand side of (6.2), there will be no set of m

fully employed factors that are used by n < m activities: the m equalities in (6.2) that correspond

to the factors in question would have fewer than m endogenous variables (the n relevant

coordinates of y2).  But consider again the intertemporal equilibrium that generates the second-

period economy.  From this perspective, (6.2) is also an equilibrium condition, but the additional

variable  is endogenous.  In the intertemporal equilibrium, therefore, the same m equalitiesȳ1

may well have m or more endogenous variables.  Hence, these m equalities can robustly have a

solution.  In short, from the vantage point of the intertemporal equilibrium, the m second-period

factors can be used by or produced by at least m activities in the two time periods taken together,

and hence the intertemporal equilibrium can be regular, but, from the vantage point of the

second-period equilibrium, the factors may well be used by fewer than m second-period

activities, and hence the continuation equilibrium can be indeterminate.

Summarizing the discussion so far, we conclude that if a regular intertemporal

equilibrium has a set of m positively priced second-period factors used by fewer than m second-

period activities and if the rank condition mentioned above is satisfied, then a robust case of

sequential indeterminacy occurs.  Curiously, the regularity of the intertemporal equilibrium is key

to establishing robustness: it implies that the same factors continue to be fully employed and



18

have positive prices and the same activities continue to be in use as the parameters of the overall

two-period model change slightly.

To see a simple example of how second-period indeterminacy arises, suppose there is one

consumption good per period and two factors in the second period.  The first-period consumption

good may either be consumed directly or used as the sole input in an intertemporal activity that

produces the first of the second-period factors.  The two second-period factors are then used as

inputs in a single activity that produces the second-period consumption good.  If, at some

intertemporal equilibrium, both of the second-period factors are fully employed, (6.2) takes the

form

�  =  + A32(1) y2 A31(1) y1 ef2
(1)

�  = ,A32(2) y2 ef2
(2)

where A32(i), A31(1), and (i) denote, respectively, the quantity of factor i used by the second-ef2

period activity, the quantity of factor 1 produced by the intertemporal activity, and the aggregate

endowment of factor i.  Independently of , these two equations always have a solution ( y1, y2)ef2

(and can robustly have a positive solution) if  and  are nonzero.  But during theA32 (2) A31(1)

second period, when y1 is fixed, the two fully employed factors are used by only a single activity. 

We are thus in the indeterminate case discussed in section 3.  The isoquants in the second period

are L-shaped; when both second-period factors are fully employed, the second-period factor

endowments – ( , ) – lie exactly at an isoquant vertex, analogously to theA31(1) y1� ef2
(1) ef2

(2)

fact that the indeterminacy endowments in Figure 1 lie on along the activity rays.  Just as in that

case, the marginal products of second-period factors are not well defined.

If there are multiple activities in the second period, the production possibilities frontier

(PPF) – the boundary of the set of feasible aggregate first- and second-period consumptions –

appears as in Figure 2.  The segments in the PPF with a strictly negative slope (excluding the

kinks) occur when two second-period activities are in use (except possibly in the rightmost
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negatively sloped segment, where it could be that one activity is in use and the nonproduced

factor is in excess supply): as each additional unit of first-period consumption is sacrificed, the

mixture of second-period activity levels will shift slightly towards whichever activity uses the

produced input more intensively (or more of the nonproduced factor is drawn into production). 

The kinks between the negatively sloped segments occur at the switch points when only one

second-period activity is in use and thus correspond to second-period indeterminacy.

[Insert Figure 2]

If the model contains only a single agent (or many agents with identical homothetic

preferences), the intertemporal equilibrium can be represented by adding indifference curves

between first- and second-period consumption to Figure 2.  Equilibrium is determined by a

tangency between an indifference curve and the PPF.  Evidently, tangencies can occur robustly at

the kinks in Figure 2; if an equilibrium at a kink is regular, small changes in the two-period

economy’s parameters do not shift the equilibrium to one of the flat segments of PPF. 

Tangencies at the flat segments are equally robust.  Thus, both sequential indeterminacy and

regularity are normal events.

Sequential indeterminacy is easy to analyze when there is only one second-period

consumption good (as in the above example): indeterminacy then necessarily occurs if some set

of m fully employed factors is used by fewer than m activities.  Due to the Walras’ law omission

of the market-clearing condition for the consumption good, (6.1) consists of no equations in this

case.  With multiple second-period consumption goods, we must use the implicit function

theorem to establish indeterminacy.  In exceptional cases, the rank condition mentioned earlier

may not be satisfied and a formal proof of indeterminacy will not go through.  Fortunately, the

rank condition is satisfied for almost every induced second-period economy.  Define an

intertemporal equilibrium to be potentially degenerate if there is a set of m positively priced

second-period factors used by fewer than m activities.  A slight variant of the following theorem
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is proved in Mandler (1995).

Sequential Indeterminacy Theorem.  There is a generic set of economies such that (1) if an

intertemporal equilibrium is potentially degenerate then the continuation equilibrium of almost

every induced second-period economy is indeterminate, and (2) if an intertemporal equilibrium is

not potentially degenerate then the continuation equilibrium of almost every induced second-

period economy is regular.

Thus, generically, all that matters for second-period determinacy is whether or not the

number of second-period activities using each set of positively priced second-period factors is at

least as large as the number of factors in that set.

7.  The significance of sequential indeterminacy

By itself, the number of equilibria is a relatively narrow concern.  The disturbing

implication of sequential indeterminacy is that the second-period equilibria need not vary

continuously as a function of the second-period parameters.  Consider the case again when there

are two factors, one activity, and one consumption good in the second period, and suppose the

continuation equilibrium prices (w(1), w(2)) are strictly positive.  If any quantity of factor i is

withdrawn from the market, the other factor will be in excess supply, sending its price to 0, and

raising w(i) to 1	a1j.  Consequently, no matter how small agents are as a proportion of the

market, it is their interest to manipulate their factor supplies.  If there is more than one second-

period activity, the jump in factor prices need not be as large, but the discontinuity will remain,

and agents will still have an incentive to manipulate market prices.

Price-taking behavior consequently becomes implausible, and some noncompetitive

mechanism must pin down factor incomes.  As an example, suppose factor incomes in the second
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period are set by Nash bargaining among factor owners.  Investors in capital goods would then

anticipate that their returns will deviate from competitive levels and thus would supply

suboptimal quantities of capital goods.  The institutional response to sequential indeterminacy

can thus induce a hold-up problem.

Even if factor markets in the second period do operate competitively when the

equilibrium is indeterminate, it is difficult to see how a perfect-foresight equilibrium would

proceed through time: there is no mechanism to lead second-period markets to equilibrate at the

continuation equilibrium prices.  The continuation equilibrium is just one element of a

continuum of equilibria; only the expectations that agents formed during the first period, and not

any feature of markets narrowly construed, distinguish the continuation equilibrium from the rest. 

Moreover, since agents will foresee this difficulty in the first period, they will not anticipate any

price vector with certainty; even in the first period, therefore, behavior will differ from

competitive equilibrium predictions.

Intertemporal models with linear activities thus cannot operate via anonymous

competitive markets.  In order to replicate the competitive outcome, factor owners would have to

sign long-term contracts that commit them to trade factors at prearranged prices.  Although it is

by no means unusual, nowadays, for factor markets to be modeled as long-term contracts, most

analyses attribute the need for contracts to information asymmetries or to bilateral monopoly. 

The present account ascribes contracts to the very nature of technology and markets.

8.  What drives sequential indeterminacy?

Three features of an intertemporal economy are crucial for sequential indeterminacy. 

First, technology must be modeled as a discrete set of activities, not as a continuum of

techniques.  Second, a long-run or steady-state equilibrium concept must not be in place.  Third,

at least some factors must be inelastically supplied.



22

We discuss the first two points in sections 9 and 11 below.  As for inelastic factor supply,

it should already be clear that our indeterminacy arguments hinge on factor supply being

unresponsive to price changes.  Observe though that we could allow factor supply to be locally,

but not globally, inelastic.  As long as price changes in the neighborhood of a continuation

equilibrium do not induce a factor supply response, our earlier sequential indeterminacy

arguments apply unaltered.

9.  Choice of technique and the neoclassical production function

The neoclassical production function, differentiable at all points in its domain, implies

that factors always have well-defined marginal products.  Even the smallest change in factor

prices then induces a change in factor demand, and consequently robust cases of sequential

indeterminacy cannot occur.

Consider a constant-returns-to-scale production set Y = {x  � : g (x) � 0} that gives theR n

aggregate production possibilities available for some set of n technologically related goods.  The

elements of Y use the standard sign convention for outputs and inputs, and we assume that g is

convex and differentiable and that Dg(x) >> 0 for all x.  In equilibrium, producers will choose

aggregate quantities x so as to maximize � x subject to g (x) � 0, where  = (1, p(2), ..., p(n)) isp̄ p̄

a normalized price vector.  Define  to be normalized equilibrium prices for x if x solves thisp̄

maximization problem at prices .  At a full competitive equilibrium, analogous profit-p̄

maximization conditions must be satisfied for other technologically related sets of goods and

markets must clear.

Suppose, in the manner of our earlier indeterminacy arguments, that we fix x and that

both  and  are normalized equilibrium prices for x.  The Kuhn-Tucker theorem implies thatp̄ p̄ �

there exist � > 0 and �� > 0 such that  = �Dg (x) and  = ��Dg (x).  Hence, (1	�)  =p̄ p̄ � p̄

(1	�� ) .  Since (1) = (1), � = �� and  =  .  Thus, there can be only one vector ofp̄ � p̄ p̄ � p̄ p̄ �
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normalized equilibrium prices for any set of aggregate quantities.

This reasoning does not show that competitive equilibria with differentiable technologies

are locally unique – not even if Y were the aggregate production set for the economy as a whole. 

Local uniqueness of a competitive equilibrium with prices  and aggregate quantities x requiresp̄

in addition that there are no other competitive equilibria with prices  and quantities x� 
 x thatp̄ �

are arbitrarily close to ( , x).  The standard regularity literature assures us that this propertyp̄

holds generically.  To be convincing, however, a generic local uniqueness theorem must be set in

an intertemporal framework and should not rely on arbitrary endowment perturbations.  See

Mandler (1997) for a proof of sequential determinacy – the determinacy of both the intertemporal

equilibria and the second-period equilibria they endogenously generate – when technology is

differentiable.

10.  Sraffa and sequential indeterminacy6

Several parallels between sequential indeterminacy and Sraffa’s indeterminacy argument

in Production of Commodities by Means of Commodities have already surfaced.  First, sequential

indeterminacy occurs under linear activities but not with differentiable “marginal productivity”

technologies.  Second, Sraffa fixes the aggregate quantities produced and finds multiple

equilibrium prices for those quantities.  Our indeterminacy arguments follow the same method:

we fix a subset of quantities and show that a continuum of price vectors support those quantities. 

Third, in line with Sraffa’s emphasis on the production of commodities by means of

commodities, it is only in dynamic models that indeterminacy arises systematically.

Sequential indeterminacy also sheds light on some of Sraffa’s more elusive remarks. 

Sraffa was critical of theories that treat the economy as a “one-way avenue that leads from
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‘factors of production’ to �consumption goods.’”  From the vantage point of sequential

indeterminacy, the difficulty with “one-way” theories is not that they assume that final output is

limited by society’s factor resources, but that they let endowments be arbitrary rather than

determined by ongoing investment decisions.  Taking endowments to be in an arbitrary or

generic set ensures that marginal products are well-defined even when technology is described by

linear activities.  (Recall from Figure 1 that marginal products are defined at and only at the

generic endowment points at which factor prices are determinate.)  Given that the endowments at

which marginal products are ill-defined arise systematically in a sequential setting, Sraffa’s

suspicion of the device of an arbitrary starting point to economic activity accurately points to a

serious difficulty in the foundations of marginal productivity theory.

But there are also clear differences between Sraffa’s position and sequential

indeterminacy.  Our emphasis on inelastic factor supply has no parallel in Sraffa or the

subsequent literature.  More significantly, we will see sequential indeterminacy does not arise

when equilibria are long-run.

Consider the following variant of Sraffa’s model.  Suppose n material inputs and labor

produce the same n material goods, with the outputs appearing one period after the inputs are

applied.  Each commodity j is produced by one linear activity, represented by an n-vector a j =

(a1j, ..., anj ) � 0 of material input requirements and a scalar � j � 0 of labor required.  Capital

invested in each activity earns the same rate of profit r.  Assuming as Sraffa does that labor is

purchased when output is sold, profit rate equalization implies, for each produced good j, that

p( j ) = (1 + r)( p(1)a1j + ... + p(n) anj) + w � j,

where p( j ) is the price of good j, and w is the wage.  Letting A = [a1 � an], � = (�1, ..., �n), and

normalizing by defining  = (1, p(2), ..., p(n)), we can rewrite the above equations asp̄

(10.1)  = (1 + r)A�  + w �.p̄ p̄

Since (10.1) constitutes n equations in the n +1 unknowns ( , w, r), the equations have onep̄



7  We require that the model obeys Walras’ law: for all ( , , w, r ),p̄ 1 p̄ 2

�x( , , w, r ) = (1 + r) � e + we
5
.p̄ 2 p̄ 1 p̄ 2 p̄ 1
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degree of freedom.  Hence, one variable can be varied exogenously while still allowing (10.1) to

be satisfied.  Sraffa lets r be this exogenous variable and concludes that competition leaves the

interest or profit rate indeterminate.

Neoclassical critics, most thoroughly Hahn (1982), have faulted Sraffa’s model on two

main counts.  First, Sraffa omits any mention of demand and supply.  Possibly, therefore, some

of the price vectors that solve (10.1) might be inconsistent with market-clearing.  Second, input

and output prices are constrained to be equal in Sraffa’s model: (10.1) uses the same  on bothp̄

left and right hand sides.  According to the critics, a proper equilibrium model should allow

prices to change through time.  Indeed, except at particular combinations of endowments and

preferences, equilibria will not exist if prices across time periods are required to be equal.

The literature on Sraffa presumes that once these two flaws are rectified Sraffa’s model

necessarily becomes determinate.  Our earlier indeterminacy results suggest, however, that

determinacy is not guaranteed.  Notice that the two objections to Sraffa work in opposite

directions.  Including market-clearing equations diminishes the potential for indeterminacy, but

distinguishing prices by date adds new price variables and makes indeterminacy more likely. 

These two corrections turn out to offset each other exactly.

To meet the neoclassical objections, we distinguish between input prices and outputp̄ 1

prices , and posit an aggregate demand function for the n outputs x( , , w, r ).  Wep̄ 2 p̄ 1 p̄ 2

assume that the n material inputs are inelastically supplied at the level e >> 0 and that labor is

inelastically supplied at the level e
5
 > 0.7  An equilibrium is a ( , , w, r, y) such thatp̄ 1 p̄ 2

(10.2) x( , , w, r ) � y,p̄ 1 p̄ 2

(10.3)  � (1 + r)A�  + w �,p̄ 2 p̄ 1

(10.4) Ay � e,
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(10.5) � � y � e
5
.

We suppose that conditions (10.2) to (10.5) hold with equality.

We now apply the indeterminacy arguments of section 6.  At an equilibrium

( , , w, r, y) where each price, activity level, and (1+r) is strictly positive, the total numberp̄ 1 p̄ 2

of factors with positive prices (n + 1) will be larger than the number of activities in use (n). 

Assuming the appropriate rank condition is satisfied, the arguments of section 6 imply that the

equilibrium must be indeterminate.  It is just as easy to reason directly.  If we fix y at an

equilibrium value, (10.4) and (10.5) remain satisfied at all values of ( , , w, r ).  Thep̄ 1 p̄ 2

remaining equations consist of the n �1 independent equations in (10.2) – we lose an equation

due to Walras’ law – and the n equations in (10.3).  With y fixed, the endogenous variables

consist of only the 2n prices ( , , w, r ).  With one more unknown that equation,p̄ 1 p̄ 2

indeterminacy typically obtains.

Interestingly, the dimension of sequential indeterminacy tracks the dimension of

indeterminacy in Sraffa’s theory.  Suppose, in the second-period model of section 6, that each

factor is fully employed and has a positive price and that the indeterminacy-inducing set of

factors is the economy’s entire set of second-period factors.  The dimension of indeterminacy

then equals M2, the total number of second-period factors, minus , the number of activities inN̄2

use.  Hence, multi-dimensional indeterminacy – indeterminacy of dimension greater than 1 –

occurs when M2 �1 > .  In Sraffa’s model of joint production, where activities can produceN̄2

more than one output, the number of activities in use can fall below n even while all n goods are

produced.  Sraffa recognized that in this case the dimension of indeterminacy can expand beyond

the single dimension claimed for (10.1).  In Sraffa’s words, multidimensional indeterminacy

obtains when there are “more [goods] prices to be ascertained than there are processes” in use. 

Since the number of goods prices, n, equals the total number of factor prices (the material inputs

plus labor) minus 1, Sraffa’s condition for multidimensional indeterminacy is the same as ours. 



8  We have modeled equilibria as steady state.  But if the endowment of labor, e
5
, were to

grow at some fixed rate through time (or if each input requirement were to diminish at the same
fixed rate), the model could with minor notational adjustments describe a growing economy
instead.
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Curiously, although he recognized the possibility of multidimensional indeterminacy, Sraffa

assumed it away by supposing that the number of activities in use always equals the number of

goods.  Also, Sraffa failed to report that indeterminacy can disappear when the number of

activities in use is greater than n.

We have departed markedly from Sraffa in not making the “long-run” assumption that

relative prices remain constant through time.  If relative prices are to remain constant, the

economy must be placed in an infinite-horizon setting.  However, while sequential indeterminacy

can easily arise in an infinite-horizon model, the long-run equilibria where relative prices are

required to be constant are determinate.  We sketch a simple model of the long run to establish

this point.  More details can be found in Mandler (1999b).  The key additional ingredient is a

steady state demand function, x ( p̄, w, r), which we let originate from overlapping generations of

agents.  The n goods are partitioned into a set of consumption goods and pure factors, and the

subscripts c and f respectively denote the rows of the input requirement matrix and the entries of

y that correspond to these goods.  Assuming for simplicity that all equilibrium conditions hold

with equality, a long-run equilibrium is a ( p̄, w, r, y) such that

x ( p̄, w, r) + Ac y = yc

Af y = yf

� � y = e
5

p̄ = (1 + r) A� p̄ + w �.

Since none of the market-clearing equations are redundant in a long-run OLG setting, we have

2n+1 independent equations in the 2n+1 variables ( p̄, w, r, y).8

One might suspect that sequential indeterminacy could arise in this model, since, with no
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restrictions on A, some subset of m material pure factors and labor may well be used by fewer

than m activities.  Moreover, the endowment of material inputs in any given period, yf, is an

endogenous variable; hence, it can robustly occur that the market-clearing conditions for these m

factors are satisfied with equality.  Nevertheless, we have the following result from Mandler

(1999b), which extends Kehoe and Levine’s (1985) analysis of exchange economies to models of

production.

Long-run Determinacy Theorem.  There is a generic set of labor endowments, technology

parameters, and demand functions such that each long-run equilibrium is locally unique.

The reason for the determinacy of the long-run model is not hard to grasp.  Although in

any given period, some set of m factors may be used by fewer than m activities, each factor’s

price as an input is constrained to equal the price of the same good currently in production. 

These additional equilibrium conditions are enough to ensure generic determinacy.  More general

models with more nonproduced pure factors in addition to labor are also generically determinate.

In sum, our results support neither side of the debate over Sraffa.  If relative prices can

vary through time, Sraffa had the right building blocks of a coherent indeterminacy argument. 

He identified the close link between linear activities and indeterminacy and rightly emphasized

the significance of not imposing an arbitrary starting point for economic activity.  But in a long-

run setting of constant relative prices, the neoclassical case for determinacy is convincing.  Each

side to the Sraffa debate thus backs an equilibrium concept inconsistent with its determinacy

claims.
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11.  Concluding remarks: indeterminacy and long-run equilibria

The indeterminacy associated with inelastic factor supply and linear activities was well

recognized in pre-World War II economic theory.  Hicks (1932) and Robertson (1931), for

example, acknowledged that factor prices in the short run may be indeterminate.  They

recognized that highly specialized forms of labor and capital might not allow any leeway for

factor substitution, and hence factor demand might not respond to price changes.  Although they

did not dismiss the short-run problem, Hicks and Robertson argued that equilibria would at least

be determinate in the long-run.  That is, even if deviations in factor prices from their long-run

equilibrium values do not immediately disturb any equilibrium condition, persistent deviations

will ultimately be incompatible with market clearing.

Hicks and Robertson, and most other prewar economists, analyzed factor markets in

terms of aggregate basic factors, land, labor, and capital.  Intermediate inputs and ultimately final

output as well were viewed as reducible to the quantities of basic factors needed to produce them,

and competitive equilibria were understood in terms of the demand for and the supply of basic

factors.  A set of basic factor prices determines cost-minimizing prices for final output; given

these output prices, consumers choose their final output demands and thus indirectly determine

the demand for basic factor inputs.  Full long-run equilibrium occurs where basic factor demand,

calculated in this way, equals basic factor supply.

Hicks and Robertson argued that if the economy begins at a position of long-run

equilibrium then a permanent shift in basic factor prices will eventually change the demand for

basic factors.  Even if given stocks of intermediate inputs must be used in fixed proportions,

opportunities for factor substitution emerge as new intermediate inputs become available.  For

instance, if the wage were to fall permanently, labor-intensive intermediate inputs will eventually

become cheaper and will therefore be adopted in more production processes, ultimately raising

labor demand.  In addition, a fall in the wage will lower the price of labor-intensive final outputs,
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raising demand for these outputs and thus again raising labor demand.  See Mandler (1999a) for

an explicit model.

This long-run case for determinacy is considerably more convincing than direct factor

substitution arguments.  Since the birth of marginal productivity theory in the 1890’s, a steady

stream of economists has balked at applying factor substitution to specialized intermediate

inputs.  Explaining the elasticity of factor demand as a consequence of the switch to distinct

intermediate inputs is vastly more plausible.  Of course, as Hicks or Robertson acknowledged, at

any given point in time, current-period prices of basic factors and intermediate inputs may still

exhibit indeterminacy; only sustained changes in factor prices are likely to induce disequilibrium

changes in factor demand.

Our determinacy and indeterminacy theorems bear out the prewar understanding of factor

pricing.  The determinacy of equilibria in the Hicks-Robertson sense finds formal expression in

the Long-run Determinacy Theorem of section 10.  And Hicks’s and Robertson’s claim that

factor prices may nevertheless be indeterminate in the short-run is nothing more than an assertion

of sequential indeterminacy.  The only difference is that Hicks and Robertson did not dwell on

changes in factor prices that persist for only a brief period of time; they shrugged off short-run

indeterminacy and focused on the long run.  But in both the Hicks-Robertson description of the

short run and in the formal theory of sequential indeterminacy, the equilibrium that validates

perfect-foresight expectations (long-term expectations in Hicks-Robertson) is surrounded by

other equilibria.

The prewar approach to factor demand appears suspicious today in its cavalier

aggregation of factors.  In fact, the analytical difficulties that vex factor aggregation seem to have

led Sraffa to believe that without aggregation, long-run models would be indeterminate. 

Certainly, Sraffa’s most telling criticisms of neoclassical theory pertain to its aggregation claims. 

But as the Long-run Determinacy Theorem indicates, an indeterminacy indictment of the
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neoclassical theory of long-run equilibria cannot be sustained.  Hicks and Robertson happened to

reason in terms of aggregated basic factors, but the Long-run Determinacy Theorem (and its

extensions) show that their analysis can be cleansed of any aggregation assumptions.  Indeed,

even the Hicks-Robertson confidence in long-run opportunities for factor substitution is

unnecessary; the Long-run Determinacy Theorem relies only on the fact that long-run

consumption prices (and hence consumption demand) change in response to shifts in long-run

factor prices.  Again, see Mandler (1999a) for details.

The determinacy of long-run equilibria hardly leaves factor price theory in satisfactory

shape.  As we mentioned, long-run equilibria suffer from the same sequential indeterminacy

problems as do standard intertemporal equilibria; the only difference is that the equilibria near a

long-run equilibrium do not have constant relative prices and therefore are not themselves long-

run.  And, just as with non-steady-state intertemporal equilibria, no pure market mechanism can

force markets to equilibrate in each period at the long-run equilibrium prices and agents will have

strong incentive to manipulate factor markets.  Long-run equilibria thus also require an

accompanying theory of factor markets contracts and contract enforcement.
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