A Quick Proof of the Order-Extension Principle

Szpilrajn [2] proved that any partial order can be extended to a linear order. The standard proof (e.g., Fishburn [1]) relies on Zorn’s lemma and can be difficult to grasp. A more straightforward and quicker proof lets the well-ordering theorem assume the technical place of Zorn’s lemma. The axiom of choice is still invoked, but in a different way.

Theorem. Suppose \(\preceq \) is a partial order on a set \(X \). Then \(\preceq \) can be extended to a linear order on \(X \).

Proof. Let \(\preceq \) be a well ordering of \(X \). Let \(S \) be the set of functions from \(X \) to \(\{0, 1\} \), and let \(\leq_{\text{lex}} \) be the lexicographic order on \(S \). In other words, for \(f, g \in S \), \(f \leq_{\text{lex}} g \) if and only if either \(f = g \) or \(f(z) \leq g(z) \), where \(z \) is the \(\preceq \)-least element of \(\{ w \in X : f(w) \neq g(w) \} \). It is well known (and easy to verify) that \(\leq_{\text{lex}} \) is a linear order on \(S \).

For each \(x \in X \) let \(f_x \in S \) be defined by

\[
f_x(y) = \begin{cases}
0, & \text{if } x \preceq y, \\
1, & \text{otherwise}.
\end{cases}
\]

Suppose that \(f_x = f_y \) for some \(x, y \in X \). Then, since \(f_x(y) = 0 \), \(f_y(y) = 0 \) and so \(x \preceq y \), and a similar argument shows that \(y \preceq x \). By the antisymmetry of \(\preceq \), \(x = y \). Thus, if \(x \neq y \) then \(f_x \neq f_y \). It follows that if we define a relation \(\preceq' \) on \(X \) by \(x \preceq' y \) if and only if \(f_x \leq_{\text{lex}} f_y \), then \(\preceq' \) is a linear order on \(X \).

We claim now that \(\preceq' \) extends \(\preceq \). To prove this, suppose that \(x \preceq y \) for some \(x, y \in X \). Then by the transitivity of \(\preceq \), for all \(z \in X \), if \(y \preceq z \) then \(x \preceq z \); in other words, if \(f_y(z) = 0 \) then \(f_x(z) = 0 \). It follows that for all \(z \in X \), \(f_x(z) \leq f_y(z) \), so \(f_x \leq_{\text{lex}} f_y \) and therefore \(x \preceq' y \).

The final paragraph of the proof shows that the map that takes \(x \) to \(f_x \) embeds the order \((X, \preceq)\) into \(S \) endowed with the product order: \(x \preceq y \iff \) (for all \(z \in X \), \(f_x(z) \leq f_y(z) \)). This conclusion is independent of the rest of the proof. The role of the well-ordering theorem is only to furnish a convenient linear order on \(S \), namely \(\leq_{\text{lex}} \), that extends the product order. Given the identification of each \(x \in X \) with \(f_x \), the corresponding extension \(\preceq' \) of \(\preceq \) is also linear. But any linear extension of the product order on \(S \) would do equally well. The product order also does not have to be defined on or extended to a linear order on the entirety of \(S \); only the \(f \in S \) such that \(f = f_x \) for some \(x \in X \) are relevant.

REFERENCES

—Submitted by Michael Mandler, Royal Holloway College, University of London

doi.org/10.1080/00029890.2020.1801081
MSC: Primary 06A06, Secondary 06A05; 03E25