A Quick Proof of the Order-Extension Principle

Szpilrajn [2] proved that any partial order can be extended to a linear order. The standard proof (e.g., Fishburn [1]) relies on Zorn's lemma and can be difficult to grasp. A more straightforward and quicker proof lets the well-ordering theorem assume the technical place of Zorn's lemma. The axiom of choice is still invoked, but in a different way.

Theorem. Suppose \preccurlyeq is a partial order on a set X. Then \preccurlyeq can be extended to a linear order on X.

Proof. Let \trianglelefteq be a well ordering of *X*. Let *S* be the set of functions from *X* to $\{0, 1\}$, and let \leq_{lex} be the lexicographic order on *S*. In other words, for $f, g \in S$, $f \leq_{\text{lex}} g$ if and only if either f = g or $f(z) \leq g(z)$, where *z* is the \trianglelefteq -least element of $\{w \in X : f(w) \neq g(w)\}$. It is well known (and easy to verify) that \leq_{lex} is a linear order on *S*.

For each $x \in X$ let $f_x \in S$ be defined by

$$f_x(y) = \begin{cases} 0, & \text{if } x \preccurlyeq y, \\ 1, & \text{otherwise.} \end{cases}$$

Suppose that $f_x = f_y$ for some $x, y \in X$. Then, since $f_y(y) = 0$, $f_x(y) = 0$ and so $x \leq y$, and a similar argument shows that $y \leq x$. By the antisymmetry of \leq , x = y. Thus, if $x \neq y$ then $f_x \neq f_y$. It follows that if we define a relation \leq' on Xby $x \leq' y$ if and only if $f_x \leq_{\text{lex}} f_y$, then \leq' is a linear order on X.

We claim now that \preccurlyeq' extends \preccurlyeq . To prove this, suppose that $x \preccurlyeq y$ for some $x, y \in X$. Then by the transitivity of \preccurlyeq , for all $z \in X$, if $y \preccurlyeq z$ then $x \preccurlyeq z$; in other words, if $f_y(z) = 0$ then $f_x(z) = 0$. It follows that for all $z \in X$, $f_x(z) \le f_y(z)$, so $f_x \le \log f_y$ and therefore $x \preccurlyeq' y$.

The final paragraph of the proof shows that the map that takes x to f_x embeds the order (X, \preccurlyeq) into S endowed with the product order: $x \preccurlyeq y \Leftrightarrow$ (for all $z \in X$, $f_x(z) \le f_y(z)$). This conclusion is independent of the rest of the proof. The role of the well-ordering theorem is only to furnish a convenient linear order on S, namely \le_{lex} , that extends the product order. Given the identification of each x in Xwith f_x , the corresponding extension \preccurlyeq' of \preccurlyeq is also linear. But any linear extension of the product order on S would do equally well. The product order also does not have to be defined on or extended to a linear order on the entirety of S; only the $f \in S$ such that $f = f_x$ for some $x \in X$ are relevant.

REFERENCES

- [1] Fishburn, P. (1970). Utility Theory for Decision Making. New York: Wiley.
- [2] Szpilrajn, E. (1930). Sur l'extension de l'ordre partiel. Fundam. Math. 16: 386–389. doi.org/ 10.4064/fm-16-1-386-389

-Submitted by Michael Mandler, Royal Holloway College, University of London

doi.org/10.1080/00029890.2020.1801081 MSC: Primary 06A06, Secondary 06A05; 03E25