
Exercise 4 -Answers

1. Given 50 observations split evenly into 2 periods, you decide to estimate
Yi  a1  b1Xi  ui1 in period 1
and
Yi  a2  b2Xi  ui2 in period 2
Show how all four parameters could be obtained from a single OLS regression.
Suppose that RSS1  .6875 and RSS2  2.4727 and that the RSS from the

pooled regression is 6.5565.
Test the hypothesis of no structural change at the 5% and 1% level.
Proof

Above is the unrestricted form of the model (intercepts and the slopes vary in
two periods)

In (partitioned) matrix form

y
y1

. . .
y2


X1 0
0 X2

a1

b1

a2

b2


u1

u2
 X  u 1

ie stack the data from the second period below that of the observations from the

1st period
in a way that allows the coefficients to differ between the periods

y

y1

y2

:
yN1

. .
yN11

yN12

:
yN1N2



1 X1 0 0
1 X2 0 0
: : : :
1 XN1 0 0
0 0 1 XN11

0 0 1
: : :
0 0 1 XN1N2

a1

b1

a2

b2


u1

u2

OLS on (1) gives
^


^
a1
^

b1
^

a2
^

b2

 X ′X−1X ′y
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Using rules on inverse of partitioned matrices (the inverses of the elements on a
diagonal partitioned matrix are just the inverses of the elements themselves)

^


X1
′ X1−1 0
0 X2

′ X2−1
X1
′ y

X2
′ y


X1

′ X1−1X1
′ y

X2
′ X2−1X2

′ y
which is identical to those obtained by running OLS separately on the two

sub-samples
Compare this with estimates from the restricted model based on

y
y1

y2


i1 X1

i2 X2

a
b


u1

u2
 X  u

and use F RSSrestricted−RSSunrestricted/q
RSSunrestricted/N−k  6.5565−0.68752.4727/2

0.68752.4727/50−4 ~F2,50 − 4

(remember there are 4 parameters in the unrestricted model so k4)

hence
^
F 24.72

and from Tables F .052,46  3.2
^
F Fcritical so reject null (or no structural change)

2. Given data combined over 2 periods, consider the pooled regression of y
on a constant and a dummy variable to denote that the observation belongs to the
second period

Yt  b0  b1Dt  ut 1
Show that the OLS estimates of b0 and b1 give, respectively, the mean

value of y in period 1 and the difference in mean values between period 2 and
period 1.

(Hint: partition the data and use OLS matrix algebra).

Let period 1  1,2... N1 observations period 2 N11. N12, ... N
N2 observations

Let i1 be an N1x1 vector of ones and i2 be an N2x1 vector of ones

Then (1) can be written in partitioned matrix form as
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y1

y2


i1 0
i2 i2

b0

b1


u1

u2
 y  X  u

and so
^
X ′X−1X ′y

where X’X 
i1
′ i2

′

0 i2
′

i1 0
i2 i2


i1
′ i1  i2

′ i2 i2
′ i2

i2
′ i2 i2

′ i2

Since ij is an Njx1 vector then i1
′ i1  N1 and i2

′ i2  1 1 . . 1

1
1
:
1

 N2

and so X’X 
N1  N2 N2

N2 N2

Similarly X’y 
i1
′ i2

′

0 i2
′

y1

y2


i1
′ y1  i2

′ y2

i2
′ y2

Using the fact that
_
yj 

∑ j
yj

Nj
and that ij

′yj  ∑ j yj

then X’y 
N1

_
y1 N2

_
y2

N2
_
y2

Hence
^



N1  N2 N2

N2 N2

−1
N1

_
y1 N2

_
y2

N2
_
y2

 1
N1N2

N2 −N2

−N2 N

−1
N1

_
y1 N2

_
y2

N2
_
y2


1

N1
N1

_
y1 N2

_
y2 − 1

N1
N2

_
y2

− 1
N1
N1

_
y1 N2

_
y2  1

N1
N

_
y2


_
y1

_
y2 −

_
y1
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so the coefficient on the intercept in a model with no other covariates apart from
the dummy variable gives the mean value of the dependent variable in period 1 and
the coefficient on the dummy variable gives the difference in the mean value of the
dependent variable between period 2 and period 1

Note that if additional covariates are added to the model so that

y  X11 X22  u 2

where now the data are stacked such that X1 
i1 0
i2 i2

and X2 
X2

1

X2
2

then partitioned regression tells us that the OLS on (2) gives

X1
′ X1 X1

′ X2

X2
′ X1 X2

′ X2

^
1
^
2


X1
′ y

X2
′ y

The 1st row tells us that
^
1  X1

′ X1−1X1
′ y − X1

′ X1−1X1
′ X2

^
2 3

(see lecture notes)

where
^
1 

^
b0
^
b1

contains the coefficients on the intercept and on the time dummy

Now the term X1
′ X1−1X1

′ X2 is a k1xk2 matrix of OLS estimates from regressions
of each of the

k2 variables in X2 on the set of k1 variables in X1

Eg if X2 contains just 1 variable then

^
 X1

′ X1−1X1
′ X2 

X2
1

X2
2


i1 0
i2 i2

^
1
^
2


^
1 

_
X2

1 and
^
2 

_
X2

2 −
_

X2
1
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so that (3) gives the adjusted OLS coefficients on the intercept and on the time
dummy in a multiple regression as

^
b0
^
b1


_
y1 −

^
2

_
X2

1


_
y2 −

_
y1 −

^
2 

_
X2

2 −
_

X2
1

ie this time the correction factor equals the mean (or the difference in the mean)

of the dependent variable minus the mean (or difference in mean) of the additional
explanatory variables multiplied by its own OLS regression coefficient ie the
coefficients are now net of the difference in the means of the other variables

3. Given
LnQ  -3.87661/.4106LnL0.4162LnK

1929-67 R2  0.9937 s  0.03755
LnQ  -4.05761.6167LnL0.2197LnK

1929-48 R2  0.9759 s  0.04573
LnQ  -1.95640.8336LnL0.6631LnK

1949-67 R2  0.9904 s  0.02185

To test for equality of ceofficients across the two sub-periods use the chow test

F RSSrestricted−RSSunrestricted/q
RSSunrestricted/N−k

where RSSrestricted  srestricted
2 ∗ N − kresttict  0.037552 ∗ 39 − 3  0.0508

and RSSunrestrict  RSS29−48  RSS49−67

 (0.04573)2 ∗ 20 − 3  0.02185219 − 3
 0.0355  0.0076
 0.0431

and so
^
F 0.0508−0.0431/3

0.0431/39−2∗3 ~F3,33
 1.96

From Tables the 5% critical value for F[3,33]  2.89

so
^
FFcritical
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and hence accept the null hypothesis (that the coefficients are the same in both
periods)

4. To test for differences between the two sub-samples again use the Chow test

This time can find unrestricted RSS using the fact that
^
u
′ ^

u y ′y −
^

′

X ′y  y ′y − y ′XX ′X−1X ′y
From information in the question

^
u1
′ ^

u1 30- 10 20
20 20
20 25

−1
10
20

 30 - 10 20
25/100 −20/100
−20/100 20/100

10
20

 30 - 10 20
−3/2

2
 5

Similarly
^
u2
′ ^

u2 24 - 8 20
10 10
10 20

−1
8
20

 3.2

To find the restricted RSS need to find X’X for the combined (pooled) regression

Since X
X1

. .
X2

ie a partitioned matrix with period 1 observations stacked above those from

period 2

then X’X  X1
′ X2

′
X1

X2
 X1

′ X1  X2
′ X2


20 20
20 25


10 10
10 20


30 30
30 45
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Similarly X’y  X1
′ y1  X2

′ y2 
10
20


8
20


18
40

and y’y  y1
′ y1  y2

′ y2  54

So the restricted RSS  54 - 18 40
30 30
30 45

−1
18
40

 10.93

and hence F RSSrestricted−RSSunrestricted/q
RSSunrestricted/N−k  10.93−53.2/2

53.2/30−22  4.33

From tables the 5% critical value for F[2,26]  3.37

so
^
FFcritical

and hence reject the null hypothesis (that the coefficients are the same in both
periods)

5. You are asked to correct a simple consumption function equation for
quarterly seasonal variation. Write down what the matrix of independent variables
looks like for the corrected model. Now given

Ct  6688  1322D2 -217D3  183D4  .638*Income R2  .525
(1711) (683) (602) (654) (.155) N  100

where the numbers in brackets are standard errors. On the basis of this
regression you decide to test the hypothesis that only second quarter consumption
differs from the rest, (why?). The result is that now

To seasonally adjust (quarterly) data inroduce a dummy variable for each

quarter
D1  1 if the observation appears in quarter i

 0 otherwise

To avoid the dummy variable trap include one less dummy variable than the
total number of quarters

X 
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1 0 0 0 X1

1 1 0 0 X2

: 0 1 0
0 0 1

1 0 0 0
1 1 0 0
: 0 1 0
1 : : :
1 0 0 1 XN

 const D2 D3 D4 X and  

0

D2

D3

D4

x

From the regerssion output above can see that the 3rd and 4th quarter dummy

variables are statistically insignificant
This suggests that a more restricted model which drops these variables may be

acceptable.

H0: D3D40

To test this formally use
F RSSrestricted−RSSunrestricted/q

RSSunrestricted/N−k  Runrestricted
2 −R2

restricted/q
1−Runrestricted

2 /N−k
 0.525−0.515/2

1−0.525/100−5 ~F2,95

(using R2  1 − RSS/TSS 

Hence
^
F 4.21

From tables the 5% critical value for F[2,95]  3.10

so
^
FFcritical

and hence reject the null hypothesis (that the 3rd and 4th quarter dummy
variables have no explanatory value)

6. Given y  X11  X22  v 1
and y  X11  u 2

then the Frisch-Waugh theorem tells us that the OLS estimate of 1 can be
obtained from the alternative regression

MX2y  MX2X11   3

where MX2  I − X2X2
′ X2−1X2 is the idempotent "residual maker" matrix
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and MX2y are the residuals from a regression of y on X2 alone
and MX2X1 are the residuals from a regression of X1 on X2 alone

OLS on (3) gives
~
1  X1

′ MX2
′ MX2X1−1X1

′ MX2
′ MX2y

 X1
′ MX2X1−1X1

′ MX2y
sub. in true y from (2)

 X1
′ MX2X1−1X1

′ MX2X11  u
~
1  1  X1

′ MX2X1−1X1
′ MX2u

Taking expectations E(
~
1 E1  X1

′ MX2X1−1X1
′ MX2u

 1  EX1
′ MX2X1−1X1

′ MX2u
 1

So estimates on relevant variables from a model that includes irrelevant

variables are unbiased

Now consider the estimates on the irrelevant variables.
Again the Frisch-Waugh theorem tells us that the OLS estimate of 2 can be

obtained from the alternative regression
MX1y  MX1X22   4

where now MX1  I − X1X1
′ X1−1X1

so
~
2  X2

′ MX1
′ MX1X2−1X2

′ MX1
′ MX1y

 X2
′ MX1X2−1X2

′ MX1y

sub. in for true y from (2)
~
2  X2

′ MX1X2−1X2
′ MX1X11  u

 0 X2
′ MX1X2−1X2

′ MX1u
(since MX1X1  0

taking expectations E
~
2  EX2

′ MX1X2−1X2
′ MX1u  0

so expected values of irrelevant variables (assuming model (2) is correct) are
zero
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7.
Given

True: y  X11 X22  u 1

Estimate: y  X11  v 2

then OLS estimate of the residual variance based on (2) gives
s2 

^
v
′ ^

v
N−k1

(k1 

no. of parameters

where
^
v y − X1

^
1  I − X1X1

′ X1−1X1
′ y

 M1y
and M1 is an idempotent matrix M1

′ M1  M1

sub. in for true y from (1)
^
vM1X11  X22  u M1X22  M1u sinceM1X1  0

∴
^
v
′ ^

v M1X22  M1u ′M1X22  M1u  2
′ X2

′ M1X22  u′M1X22  2
′ X2

′ M1u  u′M

and E(
^
v
′ ^

v  E2
′ X2

′ M1X22  u′M1X22  2
′ X2

′ M1u  u′M1u
 E2

′ X2
′ M1X22  Eu′M1X22   E2

′ X2
′ M1u  Eu′M1u

middle two terms are zero since E(u)0
∴E(

^
v
′ ^

v  2
′ X2

′ M1X22  Eu′M1u

Now u’M1u is a scalar

and can use the fact that u’u  tr(u’u)tr(uu’) when u’u is a scalar
where the trace is the sum of the diagonal elements  sum of the characteristic

roots  rank of idempotent matrix
∴E(u′M1u  Etru′M1u  EtrM1 u′

(law of cyclic permutations; see eg Greene appendix A)

 tr[M1Euu′
tr(M12IN
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Now tr(M1  tr IN − X1X1
′ X1−1X1

′  tr IN − X1
′ X1X1

′ X1−1

 trIN − Ik1 
N-k1

Hence E(
^
v
′ ^

v  2
′ X2

′ M1X22  2N − k1
 2N − k1

ie OLS estimate of residual variance no longer unbiased. It is biased upward by
an amount equal to the increase in the RSS when X2 is excluded from the model

8. Given the formula for omitted variable bias

^
i

omit


^
i

true
 X1

′ X1
−1X1

′ X2
^
2

where X1  age X2  tenure

Hence bias in OLS estimate of age in omitted variable model A depends on

a)
^
2 

^
tenure  LnW

Tenure  %ΔHourlyWage100
UnitΔTenure

so

^
tenure ∗ UnitΔTenure ∗ 100  %ΔHourlyWage

in this case
^
2  0.017 

A unit (1 year) increase in job tenure raises wages by 1.7%
this would tend to raise the OLS estimate on age in the omitted variable model

A relative to that in the true model B

b) The covariance between X1 and X2 ≡OLS coefficient from regression of X2

on X1

This information is not given in the question, but can work out its effect since

^
i

omit
−

^
i

true

^
2

 X1
′ X1

−1X1
′ X2  .0085−.0032

.017  0.311
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which is just the coefficient from a regression of tenure (X2 on X1age

This is confirmed by the regression
reg tenure age

Source SS df MS Number of obs 
6225

F( 1, 6223) 
1520.11

Model 81512.3518 1 81512.3518 Prob  F 
0.0000

Residual 333694.698 6223 53.6228022 R-squared 
0.1963

Adj R-squared 
0.1962

Total 415207.05 6224 66.7106443 Root MSE 
7.3228

tenure Coef. Std. Err. t Pt [95% Conf.
Interval]

age .3093224 .0079337 38.99 0.000 .2937697
.3248751

_cons -3.197329 .3189538 -10.02 0.000 -3.822588
-2.572069

and because the correlation between age and job tenure is positive (older
workers tend to stay i in jobs longer)

the influence of this component on the bias is also upward
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