Econometrics is
Econometrics is

The estimation of relationships suggested by economic theory
Econometrics is

The estimation of relationships suggested by economic theory

The application of mathematical statistics to the analysis of economic data
Keynes General Theory:

“Men are disposed as a rule and on average to increase their consumption as their income increases but not as much as the increase in their income”
Keynes General Theory:

“Men are disposed as a rule and on average to increase their consumption as their income increases but not as much as the increase in their income”

→ marginal propensity to consume < 1
Keynes General Theory:

“Men are disposed as a rule and on average to increase their consumption as their income increases but not as much as the increase in their income”

→ marginal propensity to consume < 1
Keynes General Theory:

“Men are disposed as a rule and on average to increase their consumption as their income increases but not as much as the increase in their income”

→ marginal propensity to consume < 1

and a deterministic mathematical model

- in this case a straight line given by

\[C = b_0 + b_1 Y \] \hspace{1cm} (1)

and

\[\frac{dC}{dY} = b_1 < 1 \]

\((b_0 \text{ and } b_1 \text{ said to be } parameters \text{ or } coefficients \text{ of the equation})\)
Keynes General Theory:

“Men are disposed as a rule and on average to increase their consumption as their income increases but not as much as the increase in their income”

→ marginal propensity to consume < 1

and a **deterministic** mathematical model
- in this case a straight line given by
 \[C = b_0 + b_1Y \]
 (1)
 and
 \[\frac{dC}{dY} = b_1 < 1 \]

(b₀ and b₁ said to be parameters or **coefficients** of the equation)

So theory often gives an idea about the value of the parameter of interest – but does not provide a definitive answer
In reality relationships between economic variables are not exact. Given data on consumption and income for a sample of individuals/time periods we would not expect all the observations to lie on the straight line implied by the theory in (1), because:
In reality relationships between economic variables are not exact. Given data on consumption and income for a sample of individuals/time periods we would not expect all the observations to lie on the straight line implied by the theory in (1), because:

- factors other than income affect consumption;
- agents with the same income have different tastes. (the more disaggregated the data the more individual heterogeneity between units of observations (regions, firms, individuals) increases.)
In reality relationships between economic variables are not exact. Given data on consumption and income for a sample of individuals/time periods we would not expect all the observations to lie on the straight line implied by the theory in (1), because:

- factors other than income affect consumption;
- agents with the same income have different tastes. (the more disaggregated the data the more individual heterogeneity between units of observations (regions, firms, individuals) increases
To allow for this **stochastic** variation, modify the deterministic model to include a random error (disturbance) term, u, to capture all factors which affect consumption but are not taken into account explicitly by the model.

$$ C = b_0 + b_1 Y $$
To allow for this **stochastic** variation, modify the deterministic model to include a random error (disturbance) term, u, to capture all factors which affect consumption but are not taken into account explicitly by the model.

$$C = b_0 + b_1 Y$$

$$C = b_0 + b_1 Y + u$$
To allow for this **stochastic** variation, modify the deterministic model to include a random error (disturbance) term, \(u \), to capture all factors which affect consumption but are not taken into account explicitly by the model.

\[
C = b_0 + b_1 Y \\
C = b_0 + b_1 Y + u
\]

This means that the model has statistical properties and now becomes a probabilistic rather than an exact (deterministic) description of the world and therefore requires a degree of evidence to accept or overturn it.
To allow for this \textit{stochastic} variation, modify the deterministic model to include a random error (disturbance) term, \(u \), to capture all factors which affect consumption but are not taken into account explicitly by the model.

\[
C = b_0 + b_1 Y \\
C = b_0 + b_1 Y + u
\]

This means that the model has statistical properties and now becomes a probabilistic rather than an exact (deterministic) description of the world and therefore requires a degree of evidence to accept or overturn it.

How much evidence is a matter of debate, but the role of econometrics is to try to assemble that evidence, to obtain estimates of the parameters of an economic model in order to try and validate or reject it at an \textit{acceptable degree of probability}.
Formal mathematical economic modelling - such as (1) - is sometimes the start for econometric analysis, but often the theoretical underpinnings are much less formal.
Consider, as an example, the study of the determinants of earnings. Governments (and individuals) are interested in knowing what the returns (private and social) are from investments in education. It is therefore reasonable to try and find out quantify the returns using data and econometric tools.

While formal economic theory (in this case human capital theory: Becker 1963) might specify a precise (quadratic) relationship between pay and education.

\[W = b_0 + b_1 \text{years of education} + b_1 \text{years of education}^2 + u \]
Consider, as an example, the study of the determinants of earnings. Governments (and individuals) are interested in knowing what the returns (private and social) are from investments in education. It is therefore reasonable to try and find out quantify the returns using data and econometric tools.

While formal economic theory (in this case human capital theory: Becker 1963) might specify a precise (quadratic) relationship between pay and education.

\[W = b_0 + b_1 \text{years of education} + b_1 \text{years of education}^2 + u \]

Equally common sense and economic intuition might say that we would expect earnings and productivity to increase with the level of education.
Consider, as an example, the study of the determinants of earnings. Governments (and individuals) are interested in knowing what the returns (private and social) are from investments in education. It is therefore reasonable to try and find out quantify the returns using data and econometric tools.

While formal economic theory (in this case human capital theory: Becker 1963) might specify a precise (quadratic) relationship between pay and education.

\[W = b_0 + b_1 \text{years of education} + b_1 \text{years of education}^2 + u \]

Equally common sense and economic intuition might say that we would expect earnings and productivity to increase with the level of education.

Often models based on explicit theory imply precise (structural) relationships between variables whereas models that rely on economic intuition are less encumbered by theoretical restrictions.
Above all any relationship to be estimated must be causal ie
Above all any relationship to be estimated must be **causal** ie

a) the direction of influence runs from the variable(s) on the right hand side of the equation to the variable on the left hand side
Above all any relationship to be estimated must be **causal** ie

a) the direction of influence runs from the variable(s) on the right hand side of the equation to the variable on the left hand side
b) the estimated impact is due to that variable alone and not from any unintended association with other variables not in the equation (confounding).

This is a fundamental issue in econometrics and much of the course is focussed on the techniques that help deal with this.
Above all any relationship to be estimated must be **causal** ie

a) the direction of influence runs from the variable(s) on the right hand side of the equation to the variable on the left hand side

b) the estimated impact is due to that variable alone and not from any unintended association with other variables not in the equation (confounding).

This is a fundamental issue in econometrics and much of the course is focussed on the techniques that help deal with this.

(In many cases econometrics tries to establish causality by holding other factors fixed but there are cases when other important factors are not observed so a different approach is needed).
The first step in any applied work is to find a suitable data set with which to amass information needed to test a hypothesis.

Most economic data come from non-experimental sources – social science researchers can rarely choose the level of a treatment, observe its outcome and compare the results with a control group. The problems associated with collecting and analysing non-experimental data underlie much of what econometrics is about.

(Computer exercises to help with this)
The first step in any applied work is to find a suitable data set with which to amass information needed to test a hypothesis.

Most economic data come from non-experimental sources – social science researchers can rarely choose the level of a treatment, observe its outcome and compare the results with a control group. The problems associated with collecting and analysing non-experimental data underlie much of what econometrics is about.

(Computer exercises to help with this)

Using the example above this means finding a single data source that has information on both individual pay and education levels.
The first step in any applied work is to find a suitable data set with which to amass information needed to test a hypothesis.

Most economic data come from non-experimental sources – social science researchers can rarely choose the level of a treatment, observe its outcome and compare the results with a control group. The problems associated with collecting and analysing non-experimental data underlie much of what econometrics is about.

(Computer exercises to help with this)

Using the example above this means finding a single data source that has information on both individual pay and education levels.

The next step – before doing any estimation - is to ensure that the data look sensible

(Eg. what units are the variables measured in, do the mean, minimum, maximum values of the variables look to be representative of the population under study).
The first step in any applied work is to find a suitable data set with which to amass information needed to test a hypothesis.

Most economic data come from non-experimental sources – social science researchers can rarely choose the level of a treatment, observe its outcome and compare the results with a control group. The problems associated with collecting and analysing non-experimental data underlie much of what econometrics is about.

(Computer exercises to help with this)

Using the example above this means finding a single data source that has information on both individual pay and education levels.

The next step – before doing any estimation - is to ensure that the data look sensible

(Eg. what units are the variables measured in, do the mean, minimum, maximum values of the variables look to be representative of the population under study).

“garbage in, garbage out”
The data set below is taken from the UK Labour Force Survey – a survey of around 60,000 households undertaken by the government every quarter and freely available to researchers. The LFS contains information on the pay and education (among other things)

A regression of hourly pay on years of education gives

```
reg hourpay yrsed

Source |       SS       df       MS              Number of obs =   13424
        -------------+------------------------------           F(  1, 13422) =   14.63
Model |  2090.54471     1  2090.54471           Prob > F      =  0.0001
Residual |  1917430.34 13422  142.857275           R-squared     =  0.0011
        -------------+------------------------------           Adj R-squared =  0.0010
Total |  1919520.89 13423  143.002376           Root MSE      =  11.952

------------------------------------------------------------------------------
hourpay |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------------------------------------------------------------------
yrsed  |  -.0291423   .0076181    -3.83   0.000   -.0440748   -.0142098
_cons  |   12.79206   .1497493    85.42   0.000    12.49853    13.08559
------------------------------------------------------------------------------
```

Your intuition should tell you that this estimated coefficient looks very odd (negative much too small, implies 1 extra year of earnings is worth -3 pence an hour)
Inspection of the underlying data reveals that

\[
\begin{array}{l}
\text{Variable} | \text{Obs} | \text{Mean} | \text{Std. Dev.} | \text{Min} | \text{Max} \\
\hline
\text{age} | 13424 | 40.41783 | 12.15848 | 16 | 64 \\
\text{edage} | 13424 | 20.24888 | 13.54194 | -8 | 97 \\
\text{hourpay} | 13424 | 12.37681 | 11.95836 | 3 | 607.26 \\
\text{sex} | 13424 | 1.524732 | .4994066 | 1 | 2 \\
\text{yrsed} | 13424 | 14.24888 | 13.54194 | -14 | 91 \\
\end{array}
\]

In this case the maximum (and mean) of years of education (yrsed) looks strange

- this is because in this dataset the age left education variable has missing value codes of 96 and 97 and -8 if respondents don’t answer the question.

(so the years of education variable, yrsed =ageleft education – 6 is affected)

Removing all observations with these codes gives

\[
\begin{array}{l}
\text{Variable} | \text{Obs} | \text{Mean} | \text{Std. Dev.} | \text{Min} | \text{Max} \\
\hline
\text{age} | 13011 | 41.0538 | 11.73547 | 16 | 64 \\
\text{edage} | 13011 | 20.24888 | 13.54194 | -8 | 97 \\
\text{hourpay} | 13011 | 12.37681 | 11.95836 | 3 | 607.26 \\
\text{sex} | 13011 | 1.524732 | .4994066 | 1 | 2 \\
\text{yrsed} | 13011 | 11.97925 | 2.863167 | 4 | 38 \\
\end{array}
\]

which looks more sensible.
As does the regression

```
reg hourpay yrsed if edage>0 & edage<90

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 13011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>136113.541</td>
<td>1</td>
<td>136113.541</td>
<td>P( 1, 13009) = 1006.18</td>
</tr>
<tr>
<td>Residual</td>
<td>1759833.61</td>
<td>13009</td>
<td>135.278162</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1895947.15</td>
<td>13010</td>
<td>145.729989</td>
<td>R-squared = 0.0718</td>
</tr>
</tbody>
</table>

Root MSE = 11.631

------------------------------------------------------------------------------
hourpay | Coef.    Std. Err.  t    P>|t|  [95% Conf. Interval]
-----------|-----------|----------|-----|-----|---------------------|
  yrsed    | 1.129706  .0356146  31.72  0.000  1.059896  1.199516 |
     _cons | -.9600234  .4386525  -2.19  0.029 -1.819846  -.1002003 |
```

which implies each extra year of education is worth an additional £1.13 an hour on pay
We also need to account for other potential influences on pay so that we don’t make spurious correlations. Education generally increases with age. Also older workers tend to get paid more than younger workers.

The raw correlation coefficients make this clear.

```
corr if edage>0 & edage<90
(obs=13011)
```

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>edage</th>
<th>hourpay</th>
<th>sex</th>
<th>yrsed</th>
<th>lhw</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>edage</td>
<td>-0.1947</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hourpay</td>
<td>0.0750</td>
<td>0.2679</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td>-0.0059</td>
<td>0.0054</td>
<td>-0.1271</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yrsed</td>
<td>-0.1947</td>
<td>1.0000</td>
<td>0.2679</td>
<td>0.0054</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>lhw</td>
<td>0.1346</td>
<td>0.3846</td>
<td>0.7364</td>
<td>-0.1950</td>
<td>0.3846</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

If didn’t also account for the affect of age on pay, might mistakenly attribute its affect to education. Ordinary least squares (OLS), is a very common method of both separating out all the myriad influences on pay and establishing a ceteris paribus – other things equal – relationship. This is effectively the means by which a causal relationship between the dependent variable and a right hand side (independent) variable of interest is established
The basic regression is
\[\text{reg hourpay yrsed if edage>0 & edage<90} \]

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 13011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>136113.541</td>
<td>1</td>
<td>136113.541</td>
<td>F(1, 13009) = 1006.18</td>
</tr>
<tr>
<td>Residual</td>
<td>1759833.61</td>
<td>13009</td>
<td>135.278162</td>
<td>R-squared = 0.0718</td>
</tr>
<tr>
<td>Total</td>
<td>1895947.15</td>
<td>13010</td>
<td>145.729989</td>
<td>Adj R-squared = 0.0717</td>
</tr>
</tbody>
</table>

| hourpay | Coef. | Std. Err. | t | P>|t| [95% Conf. Interval] |
|-----------|---------|-----------|------|-------|-------------------------|
| yrsed | 1.129706 | 0.0356146 | 31.72| 0.000 | 1.059896 - 1.199516 |
| _cons | -0.9600234 | 0.4386525 | -2.19| 0.029 | -1.819846 - 0.102003 |

Now, if control variables are added to the regression such that
\[\text{reg hourpay yrsed age sex if edage>0 & edage<90} \]

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 13011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>199012.993</td>
<td>3</td>
<td>66337.6642</td>
<td>F(3, 13007) = 508.48</td>
</tr>
<tr>
<td>Residual</td>
<td>1696934.16</td>
<td>13007</td>
<td>130.463148</td>
<td>R-squared = 0.1050</td>
</tr>
<tr>
<td>Total</td>
<td>1895947.15</td>
<td>13010</td>
<td>145.729989</td>
<td>Adj R-squared = 0.1048</td>
</tr>
</tbody>
</table>

| hourpay | Coef. | Std. Err. | t | P>|t| [95% Conf. Interval] |
|-----------|---------|-----------|------|-------|-------------------------|
| yrsed | 1.240628 | 0.0356579 | 34.79| 0.000 | 1.170733 - 1.310522 |
| age | 0.1353509 | 0.0086997 | 15.56 | 0.000 | 0.1182983 - 0.1524035 |
| sex | -3.090853 | 0.2004807 | -15.42| 0.000 | -3.483824 - 2.697881 |
| _cons | -3.139451 | 0.6874401 | -4.57| 0.000 | -4.486934 - 1.791968 |
Controlling for other factors changes the estimated effect of education.

Also the interpretation of the years of education effect is that it is now a partial differential

\[
\frac{\delta \text{Pay}}{\delta \text{yrsed}} = b_{\text{yrsed}}
\]

holding age and gender fixed in this case.

Different control variables can give different conclusions about the size and significance of the causal relationship under investigation as can different functional form of the estimated model.
Why this is so

Which variables to include as controls

How to interpret the statistical significance of the results (and the regression output from the statistical package used to produce these results),

How to assess the statistical accuracy of the estimated relationship and test this against alternatives,

What to do about unobserveable control variables

and assessing the appropriateness of the causality assumption

form the main subject matter of this course

In many ways we will explore in more detail many of the issues that were glossed over in your undergraduate econometrics courses while at the same time helping to turn you into applied economists capable of reading applied economics papers and of doing your own applied econometric studies