1. Stata command to obtain scatter diagram plotting the pairs of observations of Y (job tenure) and X (years of education)

(remember Y variable always goes on vertical axis by convention)

twoway (scatter tenure yearsed)

```
. reg tenure yearsed

Source |       SS       df       MS              Number of obs =       5
-------------+------------------------------           F(  1,     3) =    4.48
Model |     27.5625     1     27.5625           Prob > F      =  0.1245
Residual |     18.4375     3  6.14583333           R-squared     =  0.5992
-------------+------------------------------           Adj R-squared =  0.4656
Total |          46     4        11.5           Root MSE      =  2.4791

------------------------------------------------------------------------------
tenure |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
yearsed |     1.3125   .6197698     2.12   0.124    -.6598841    3.284884
  _cons |   -11.0625   8.132929    -1.36   0.267    -36.94511    14.82011
------------------------------------------------------------------------------
```

The implied direction of causality in a regression is always from X (in this case years of education) to Y (in this case years of job tenure)

To obtain the residuals after a regression command in Stata type

```
predict uhat, resid
```
(this creates a new variable called uhat with the residuals for each observation)

the command
predict yhat

creates a new variable called yhat with the predicted values for each observation

Can see this if type
list tenure yhat uhat

<table>
<thead>
<tr>
<th>tenure</th>
<th>yhat</th>
<th>uhat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.375</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>7.3125</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4.6875</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>9.9375</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4.6875</td>
</tr>
</tbody>
</table>

To graph the residuals for each y value

twoway (scatter uhat tenure, yline(0))

note how the residuals are scattered around zero (as they should be)
To graph the fitted line against the actual values

```
twoway (scatter tenure yearsed) (line yhat yearsed)
```

2.

\[
\text{Cov}(\hat{Y}, e) = \text{Cov}([b_1 + b_2 X], e) = \text{Cov}(b_1, e) + \text{Cov}(b_2 X, e) \\
= 0 + b_2 \text{Cov}(X, e) = b_2 \text{Cov}(X, [Y - b_1 - b_2 X]) \\
= b_2 \left[\text{Cov}(X, Y) - \text{Cov}(X, b_1) - \text{Cov}(X, b_2 X) \right] \\
= b_2 \left[\text{Cov}(X, Y) - b_1 \text{Cov}(X, X) \right] \\
= b_2 \left[\text{Cov}(X, Y) - \frac{\text{Cov}(X, Y)}{\text{Var}(X)} \text{Var}(X) \right] = 0
\]

3. u psl

```
. reg emp gdp if country<24
```

```
            Source |       SS       df       MS                  Number of obs =      23
----------+------------------------------               F(  1,    21) =   33.72
Model |  14.8681911     1  14.8681911               Prob > F      =  0.0000
Residual |  9.26053015    21  .440977626               R-squared     =  0.6162
----------+------------------------------               Adj R-squared =  0.5979
Total |  24.1287212    22  1.09676006               Root MSE      =  .66406

------------------------------------------------------------------------------
        empl |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
gdp |   .4951757   .0852783      5.807   0.000       .3178298    .6725217
_cons |  -.6091608   .2784317     -2.188   0.040      -1.188191   -.0301304
------------------------------------------------------------------------------
```
So a 1% point rise in the gdp rate is associated with a .495% point rise in employment growth.
The constant suggests that if gdp growth were zero, then employment growth would be -.609 % points each year.

(Should also sketch fitted regression line. Can do this manually or in Stata)

Now adding in the U.S. and Japan gives

```
. reg emp gdp
```

```
Source |       SS       df       MS                  Number of obs =      25
---------+------------------------------               F(  1,    23) =   33.10
Model |  14.5753023     1  14.5753023               Prob > F      =  0.0000
Residual |  10.1266731    23  .440290135               R-squared     =  0.5900
---------+------------------------------               Adj R-squared =  0.5722
Total |  24.7019754    24  1.02924898               Root MSE      =  .66354

------------------------------------------------------------------------------
empl |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
gdp |    .489737   .0851184      5.754   0.000       .3136561    .6658179
    _cons |  -.5458912   .2740387     -1.992   0.058      -1.112784    .0210011
------------------------------------------------------------------------------
```

Comparing the estimates of the slope coefficients, can see the new slope is .489
Which indicates that the effect of a unit change in GDP on employment growth is marginally smaller, (.49 v. .495) given the extra data, as is the estimated slope coefficient, (-.55 v. -.61), so annual employment growth is now .55 percentage points a year at zero gdp.

Should not that R
\[2\]
now falls as a result of extra data, (from .62 to .59)
Why?

Using formula and information in Table should be able to show that ratio of Explained sum of squares to total sum of squares has fallen, (14.868/24.128 in equation 1 v. 14.575/24.702 in equation 2)
More information means, in this case, more variation in the dependent variable, but less in the explanatory variable. In other words the extra variation in employment growth provided by the 2 new countries can’t be explained by the extra information in the gdp behaviour of the 2 countries.

Students might also note that the standard errors on both coefficients are largely unchanged, but that the t statistics fall, more so for the constant (See next problem set for more on t-stats)

Rescaling both variables, should not make any difference to slope estimates, but will change the value of the constant (proportionately)

```
. replace emp=emp/100
(25 real changes made)

. replace gdp=gdp/100
(25 real changes made)
```

```
. reg emp gdp
```

```
Source |       SS       df       MS                  Number of obs =      25
---------+------------------------------               F(  1,    23) =   33.10
Model |   .00145753     1   .00145753               Prob > F      =  0.0000
Residual |  .001012667    23  .000044029               R-squared     =  0.5900
```
Rescaling dependent variable only will change both slope and intercept estimates (proportionately by the amount of rescaling, in this case 1/100)

. replace gdp=gdp*100
(25 real changes made)

. reg emp gdp

Source | SS df MS Number of obs = 25
---------+------------------------------ F(1, 23) = 33.10
Model | .00145753 1 .00145753 Prob > F = 0.0000
Residual | .001012667 23 .000044029 R-squared = 0.5900
---------+------------------------------ Adj R-squared = 0.5722
Total | .002470197 24 .000102925 Root MSE = .00664

--
empl | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
gdp | .0048974 .0008512 5.754 0.000 .0031366 .0066582
_cons | -.0054589 .0027404 -1.992 0.058 -.0111278 .00021
--

Note. Should now be able to show effects of rescaling only the explanatory variable.

Result of reverse regression is

. reg gdp empl

Source | SS df MS Number of obs = 25
---------+------------------------------ F(1, 23) = 33.10
Model | 35.8572977 1 35.8572977 Prob > F = 0.0000
Residual | 24.913042 23 1.08317574 R-squared = 0.5900
---------+------------------------------ Adj R-squared = 0.5722
Total | 60.7703396 24 2.53209748 Root MSE = 1.0408

--
gdp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
empl | 1.204822 .2094033 5.754 0.000 .7716383 1.638006
_cons | 1.81246 .2716574 6.672 0.000 1.250494 2.374426
--

which suggests an alternative slope estimate of 1/1.204822 = .829
which is a long way from .49 estimated above

4. Interpret the meaning of the OLS estimates of the constant and the slope in the following prediction equations.
\[\hat{Wage} = 5 + 1.2 \times \text{Age} \]
(where wage is measured in £ an hour and age is measured in years)

so OLS estimate of slope = \(\frac{dWage}{dAge} = 1.2 \)
and 1 more year increases wages by £1.20 an hour

OLS estimate of constant suggests that if age were zero than wages would be £5 an hour
(sometimes the will make sense, other times, like here, the intercept will have no real world
interpretation)

\[\hat{Consumption} = 3,000 + 0.82 \times \text{Income} \]
(where annual consumption and income levels are measured in £000)

so OLS estimate of slope = \(\frac{dConsumption}{dIncome} = 0.82 \)
and £1000 increase in income raises annual consumption by 0.82*£1000 ie £820 a year

The OLS estimate of the constant suggests that if income were ever zero then consumption would
be £3000 a year (perhaps people use savings in order to consume if income is zero)

\[\hat{GDP} = -5,000 + 1000 \times \text{Population} \]
(where GDP is measured in $ and population is measured in millions)

so OLS estimate of slope = \(\frac{dGDP}{dPopulation} = 1000 \)
and 1 million more people increases GDP by $1000

and estimate of constant suggests GDP would be -$5000 if population were ever zero

\[\hat{Weight} = -210 + 0.51 \times \text{Height} \]
(where weight is measured in kilograms and height in centimetres)

so OLS estimate of slope = \(\frac{dWeight}{dHeight} = 0.51 \)
and 1 additional centimeter of height increases weight by 0.51 kilograms

and the constant gives a notional weight of –210 Kg at height zero

5. a) True b) True c) True d) False e) False f) False

6. Use \(\hat{\beta} = \frac{\text{Cov}(X,Y)}{\text{Var}(X)} \)

Rescaling the variables is the same as multiplying the variable by a constant value.
If height is measured in centimeters rather than meters then the new right hand side X variable
becomes =100X
Using rules on variance and covariance (see problem set 1)
\(\text{Cov}(ax,Y) = a\text{Cov}(X,Y) \)
\(\text{Var}(ax) = a^2\text{Var}(X) \)
So the new estimated coefficient (when height is measured in centimeters),

\[\hat{\beta} = \frac{\text{Cov}(aX,Y)}{\text{Var}(aX)} = \frac{a \text{Cov}(X,Y)}{a^2 \text{Var}(X)} = \frac{\text{Cov}(X,Y)}{a \text{Var}(X)} \]

\[= \frac{\beta}{100} = 0.006 \]

ie if the right hand side variable is multiplied by a then the OLS estimate of the slope is multiplied by 1/a (and the constant is unchanged) – Check this using the consumption function data on the P drive. This makes sense the relationship between the variables is unchanged only the units of measurement are different. Now \(\frac{d\text{Weight}}{d\text{Height}}\) measures the effect of a 1\text{cm} increase in height on weight in kilograms, rather than the effect of a 1\text{m} increase in height