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are useful ways to check whether the OLS estimates are compatible 
with our (economic) priors about how the world works 
 
 



But they are not the only tests that we can use to judge the 
performance of the model and our economic priors 
 
In what follows look at a set if different tests  (F tests) that can be used to 
test different sorts of hypotheses  and apply them to the issues of 
forecasting and parameter stability
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Can show (don’t need to learn proof) that can use the value 
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to test whether the R2 is statistically significantly different from zero – 
allowing for the random variation that use of a sample entails 
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The F statistic  
 
(named after Ronald Fisher  1890-1962 – the same person who 
developed the t test and the same person who wrote a book 
attributing the decline of the British empire  to the failure of its upper 
classes to breed) 
 

          
 
 
is the ratio of 2 chi-squared distributions divided by their respective 
degrees of freedom 



 
 
The F statistic  
 
has its own set of degrees of freedom 
 
 F[k-1, N-k] 
 
 



 
The F statistic  
 
has its own set of degrees of freedom 
 
 F[k-1, N-k] 
 
k-1 said to be the numerator 
N-k said to be the denominator (for obvious reasons) 
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Now, unlike the t distribution, the F distribution because it is effectively 
the t distribution “squared”) is bounded from below at zero. 
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then can be 1-α% confident that result is unlikely to have arisen by 
chance (the ESS is high wrt the RSS) 
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which is an equivalent way of doing the test 
 

and still the rule is reject the null hypothesis if 
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The F test in this example is 51.48 
The p value is less than 0.05 which is a quick way of realising that this F 
value is statistically significant from zero  
Which means the chances of this R2 arising by chance are small (<5%) 
Which means the model has some explanatory power



Forecasting Using OLS 
 
One of the many uses of regression analysis is that can use the 
coefficient estimates to make predictions about the behaviour of 
economic agents (individuals, time periods) that may not be included 
in the original data 
 
 



Bank of England forecast of level of inflation (CPI) & GDP growth in 
November 2007 
 

November 2007 CPI Fan Chart  November 2007 GDP Fan Chart  
 

   
   
 
 
Source Bank of England Inflation report 
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and can do this for any X value even if the X value did not belong to 
the original data set 
 
So it is good practice when estimating equations to leave out some 
observations (eg end few time periods or a random sub-sample of a 
cross-section)  



 
If the model is a good one it should predict well out-of-sample. 
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and if we use OLS to generate the estimates to make the forecasts then 
can show that the forecast error will on average be zero and have the 
smallest variance of any other (linear unbiased) technique. 
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and since Gauss-Markov assumption is that for any observation the expected value of 
the true residual is zero, E(u0)=0 
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and since Gauss-Markov assumption is that for any observation the expected value of 
the true residual is zero, E(u0)=0 
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The variance of each individual forecast error is given by 
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where N is the number of in-sample observations,  
 

s2 is the residual variance = RSS/N-k 
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where N is the number of in-sample observations,  
 

s2 is the residual variance = RSS/N-k 
 
So precision of forecast is increased by 
 
a) the closer is the out of sample observation Xo to mean value of in-sample X’s 
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where N is the number of in-sample observations,  
 

s2 is the residual variance = RSS/N-k 
 
So precision of forecast is increased by 
 
a) the closer is the out of sample observation Xo to mean value of in-sample X’s 
b) the larger the sample size 
(not expect a good forecast if only have little information) 
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where N is the number of in-sample observations,  
 

s2 is the residual variance = RSS/N-k 
 
So precision of forecast is increased by 
 
a) the closer is the out of sample observation Xo to mean value of in-sample X’s 
b) Larger sample size 
(not expect a good forecast if only have little information) 
c)  Larger variance of in-sample X’s 
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where N is the number of in-sample observations,  
 

s2 is the residual variance = RSS/N-k 
 
So precision of forecast is increased by 
 
a) the closer is the out of sample observation Xo to mean value of in-sample X’s 
c) Larger sample size 
(not expect a good forecast if only have little information) 
c)  Larger variance of in-sample X’s 
(wider variance means more likely already encountered a big range of possible X 
values to make a forecast with) 
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where N is the number of in-sample observations,  
 

s2 is the residual variance = RSS/N-k 
 
So precision of forecast is increased by 
 
a) the closer is the out of sample observation Xo to mean value of in-sample X’s 
b) Larger sample size 
(not expect a good forecast if only have little information) 
 
c)  Larger variance of in-sample X’s 
(wider variance means more likely already encountered a big range of possible X 
values to make a forecast with) 
 
d)  Better fitting model (implies smaller RSS and smaller s2. The better the model is at 
predicting in-sample, the more accurate will be the prediction out-of-sample)
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Since this follows a t distribution we know that 95% of observations will lie in the region 
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and rearranging terms gives 
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then we can be 95% confident that the true value will lie within this range 
 
If it does not then the model does not forecast very well 
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Source Bank of England Inflation report 
 



Example 
 reg cons income if year<90 /* use 1st 35 obs and save last 10 for forecasts*/ 
 
  Source |       SS       df       MS                  Number of obs =      35 
---------+------------------------------               F(  1,    33) = 3190.74 
   Model |  1.5750e+11     1  1.5750e+11               Prob > F      =  0.0000 
Residual |  1.6289e+09    33  49361749.6               R-squared     =  0.9898 
---------+------------------------------               Adj R-squared =  0.9895 
   Total |  1.5913e+11    34  4.6803e+09               Root MSE      =  7025.8 
 
------------------------------------------------------------------------------ 
    cons |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  income |   .9467359   .0167604     56.487   0.000       .9126367    .9808351 
   _cons |   6366.214   4704.141      1.353   0.185      -3204.433    15936.86 
 
predict chat  /* gets fitted (predicted) values from regression */ 
 
predict forcse, stdf /* gets standard error around forecast value */ 
 
/* graph actual and fitted values, draw line through OLS predictions */ 
 
two (scatter cons income) (line chat income if year<90, xline(426000)) 
 
 



twoway (scatter cons income) (line chat income, xline(426000))   
 

 

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00

200000 300000 400000 500000 600000
income

cons Fitted values

 
 
 
Vertical line denotes boundary between in and out of sample observations 



/* now calculate confidence intervals using cons = )(*
^

2/

^
uSEtcons kN−

∂±  
 g minconf= chat - (2.04*forcse) 
 g maxconf= chat + (2.04*forcse) 
 
/* graph predicted consumption values and confidence intervals */ 
twoway (scatter cons income if year>89) (line chat income if year>89, lstyle(dot))  (line maxconf income if year>89)    
> (line minconf income if year>89) 
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So for most of the out of sample observations the actual value lies outside the 
95% confidence interval. Hence the predictions of this particular model are not 
that good. 



Chow Test of Forecast Stability 
If a model forecasts well out of sample then we would expect all the 
out-of-sample residuals to be close to zero.  
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It can be shown that the joint test of all the out-of-sample-residuals 
being close to zero is given by: 
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where  No is the number of out-of-sample observations 
        N is the number of in-sample observations 
    k  is the number of RHS coefficients 
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where  No is the number of out-of-sample observations 
        N is the number of in-sample observations 
    k  is the number of RHS coefficients 
 
Intuitively if the model fits well the RSS from the combined regression 
should be close to that from the in-sample regression.  
 
A “large” difference suggest the RSS are different and so model does 
not forecast well) 



 
 
Given a null hypothesis that the model is stable out of sample (predicts 
well) then if 

    ],[
^

kNNFF ocritical −> α  
reject null of model stability out-of-sample



 
Example: 
Estimate of consumption function model including out-of-sample observations is 
 
reg cons income if year<90 
 
      Source |       SS       df       MS              Number of obs =      35 
-------------+------------------------------           F(  1,    33) = 3190.74 
       Model |  1.5750e+11     1  1.5750e+11           Prob > F      =  0.0000 
    Residual |  1.6289e+09    33  49361749.6           R-squared     =  0.9898 
-------------+------------------------------           Adj R-squared =  0.9895 
       Total |  1.5913e+11    34  4.6803e+09           Root MSE      =  7025.8 
------------------------------------------------------------------------------ 
        cons |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      income |   .9467359   .0167604    56.49   0.000     .9126367    .9808351 
       _cons |   6366.214   4704.141     1.35   0.185    -3204.433    15936.86 
------------------------------------------------------------------------------ 
 
. reg cons income 
 
      Source |       SS       df       MS              Number of obs =      45 
-------------+------------------------------           F(  1,    43) = 5969.79 
       Model |  4.7072e+11     1  4.7072e+11           Prob > F      =  0.0000 
    Residual |  3.3905e+09    43  78849774.6           R-squared     =  0.9928 
-------------+------------------------------           Adj R-squared =  0.9927 
       Total |  4.7411e+11    44  1.0775e+10           Root MSE      =  8879.7 
------------------------------------------------------------------------------ 
        cons |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      income |   .9172948   .0118722    77.26   0.000     .8933523    .9412372 
       _cons |   13496.16   4025.456     3.35   0.002      5378.05    21614.26 
------------------------------------------------------------------------------ 

   



Comparing RSS from this with that above can calculate the F value 
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di  ((3.3905-1.6289)/10)/(1.6289/(35-2)) 
 
 

F= ]235,10[~
235/6289.1

10/6289.13905.3
−

−
− F  

   
     = 3.57 ~ F[10,33] 
 
 From tables Fcritical.05[10,33] = 2.10 
 
So criticalFF >

^  and therefore reject null that model predicts well out of 
sample. 
 
 


