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The chance of getting a first can be seen to depend positively on the number of 
seminars in this linear probability model
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Equation (2) can be estimated by OLS.  
 
When do this it is called a linear probability model and can interpret the 
coefficients in a similar way as with other OLS models 
 
(linear because if fits a straight line and probability because it implicitly  models 
the probability of an event occurring)  
 
So  for example the coefficient  β1 = dDi/dX1  
 
now gives the impact of a unit change in the value of X1 on the chances of 
belonging to the category coded D=1 (eg of winning) - hence the name linear 
probability model 
 

  



Example: Using the dataset marks.dta can work out the chances of getting a first depend on class attendance and gender using a 
linear probability model 
 
gen first=mark>=70    
/* first set up a dummy variable that will become the dependent variable */ 
tab first 
      first |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |         79       66.95       66.95 
          1 |         39       33.05      100.00 
------------+----------------------------------- 
      Total |        118      100.00 
 
So 39 students got a first out of 118. If we summarise this variable then the mean value of this (or any) binary variable is the proportion 
of the sample with that characteristic 
ci first 
    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval] 
-------------+--------------------------------------------------------------- 
       first |        118    .3305085    .0434881        .2443825    .4166345 
 
So in this case 33% of the course got a first class mark   (.33 ≡  33%) 
To see what determines this look at the OLS regression output 
 
reg first num_sems female 
 
      Source |       SS       df       MS              Number of obs =     118 
-------------+------------------------------           F(  2,   115) =   12.03 
       Model |  4.51869886     2  2.25934943           Prob > F      =  0.0000 
    Residual |  21.5914706   115  .187751919           R-squared     =  0.1731 
-------------+------------------------------           Adj R-squared =  0.1587 
       Total |  26.1101695   117  .223163842           Root MSE      =   .4333 
------------------------------------------------------------------------------ 
       first |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    num_sems |   .0342389   .0096717     3.54   0.001     .0150811    .0533967 
      female |   .2144069   .0837238     2.56   0.012     .0485662    .3802475 
       _cons |  -.1796094   .1244661    -1.44   0.152    -.4261528     .066934 

This says that the chances of getting a first rise by 3.4 percentage points for every extra class attended 
and that, on average, women are 21 percentage points more likely to get a first, even after allowing for the number of classes attended. 
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However, can show that OLS estimates when the dependent variable is binary  
 
1. will suffer from heteroskedasticity, so that the t-statistics are biased 
 
2. as graph shows may not constrain the predicted values to lie between 0 and 1  
(which need if going to predict behaviour accurately) 
 

  



Using the example above 
predict phat 
(option xb assumed; fitted values) 
 
. su phat 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        phat |       118    .3305085    .1965232  -.1796094   .6510978 
 
Can see that there are some negative predictions which is odd for a variable that is binary. Note that not many of the predicted values 
are zero (and none are 1). This is not unusual since the model is actually predicting the probability of belonging to one of the two 
categories. 
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a logit function is bounded by 0 and 1 and looks something like this – As 
the value of the logit function F(XB) rises the probability asymptotes to 
one. As the vale of F(XB) falls the probability asymptotes to zero
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The idea is to find the values of the coefficients β0 , β1 etc that make this 
probability as close to the values in the dataset as possible.  
 
The technique is called maximum likelihood estimation 

  



Example: Using the marks.dta data set above the logit and probit equivalents of the OLS linear probability estimates above are, 
respectively 
 
logit first num_sems female 
 
Iteration 0:   log likelihood = -74.875501 
Iteration 1:   log likelihood = -63.834471 
Iteration 2:   log likelihood = -62.907479 
Iteration 3:   log likelihood = -62.868479 
Iteration 4:   log likelihood = -62.868381 
 
Logistic regression                               Number of obs   =        118 
                                                  LR chi2(2)      =      24.01 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -62.868381                       Pseudo R2       =     0.1604 
------------------------------------------------------------------------------ 
       first |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    num_sems |   .2397919   .0747599     3.21   0.001     .0932652    .3863185 
      female |   1.054987   .4337783     2.43   0.015     .2047975    1.905177 
       _cons |  -4.357462   1.084287    -4.02   0.000    -6.482626   -2.232298 
------------------------------------------------------------------------------ 
 
probit first num_sems female 
 
Iteration 0:   log likelihood = -74.875501 
Iteration 1:   log likelihood = -63.637368 
Iteration 2:   log likelihood = -63.127944 
Iteration 3:   log likelihood = -63.122191 
Iteration 4:   log likelihood =  -63.12219 
 
Probit regression                                 Number of obs   =        118 
                                                  LR chi2(2)      =      23.51 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -63.12219                       Pseudo R2       =     0.1570 
------------------------------------------------------------------------------ 
       first |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    num_sems |   .1329781   .0397433     3.35   0.001     .0550827    .2108736 
      female |   .6198004   .2607587     2.38   0.017     .1087228    1.130878 
       _cons |   -2.44597   .5545824    -4.41   0.000    -3.532932   -1.359009 

  



Note that the predicted values from the logit and probit regressions will lie 
between 0 and 1 
 
predict phat_probit 
(option p assumed; Pr(first)) 
 
su phat_probit phat_logit 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
 phat_probit |       118    .3330643    .1980187   .0072231   .7147911 
  phat_logit |       118    .3305085           0   .3305085   .3305085 
 
while the means are the same the predictions are not identical for the two estimation techniques

  



The standard errors and t values on these variables should be free of the bias 
inherent in OLS – though they could still be subject to other types of 
heteroskedasticity so it is a good idea to use the “, robust” adjustment even with 
logit and probit estimators 

  



logit first num_sems female, robust 
 
Iteration 0:   log pseudolikelihood = -74.875501 
Iteration 1:   log pseudolikelihood = -63.834471 
Iteration 2:   log pseudolikelihood = -62.907479 
Iteration 3:   log pseudolikelihood = -62.868479 
Iteration 4:   log pseudolikelihood = -62.868381 
 
Logistic regression                               Number of obs   =        118 
                                                  Wald chi2(2)    =      14.65 
                                                  Prob > chi2     =     0.0007 
Log pseudolikelihood = -62.868381                 Pseudo R2       =     0.1604 
------------------------------------------------------------------------------ 
             |               Robust 
       first |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    num_sems |   .2397919   .0770628     3.11   0.002     .0887516    .3908322 
      female |   1.054987   .4304162     2.45   0.014     .2113872    1.898588 
       _cons |  -4.357462   1.154993    -3.77   0.000    -6.621206   -2.093718 

 
(in this example it make little difference) 
 

  



In both cases the estimated coefficients look very different from those of the OLS 
linear probability estimates.  
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(in truth since Prob(Di=1) varies with the values of the X variables, this marginal 
effect is typically evaluated with all the X variables set to their mean values)

  



In the case of probit model this marginal effect is given by 
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(where f is the differential of the probit function – again typically evaluated at the 
mean of each X variable) 
 
 
 
 

  



and in the case of probit model this is given by 
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(where f is the differential of the probit function above– again typically evaluated 
at the mean of each X variable) 
 
 
In both cases the interpretation of these marginal effects is the impact that a unit 
change in the variable Xi has on the probability of belonging to the treatment 
group (just like OLS coefficients) 

  



To obtain marginal effects in Stata run either the logit or probit command then simply type 
 
logit first num_sems female 
mfx 
 
Marginal effects after logit 
      y  = Pr(first) (predict) 
         =  .27708689 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
num_sems |   .0480326      .01343    3.58   0.000   .021713  .074352   12.4576 
  female*|   .2192534      .09097    2.41   0.016   .040952  .397554   .389831 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 
 
 
probit first num_sems female 
mfx 
 
Marginal effects after probit 
      y  = Pr(first) (predict) 
         =  .29192788 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
num_sems |   .0456601      .01301    3.51   0.000   .020157  .071163   12.4576 
  female*|   .2177256      .09231    2.36   0.018   .036807  .398645   .389831 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 
 
(or with probit you can also type 
 
dprobit first num_sems female 
 
Iteration 0:   log likelihood = -74.875501 
Iteration 1:   log likelihood = -63.637368 
Iteration 2:   log likelihood = -63.127944 
Iteration 3:   log likelihood = -63.122191 
Iteration 4:   log likelihood =  -63.12219 
 

  



Probit regression, reporting marginal effects           Number of obs =    118 
                                                        LR chi2(2)    =  23.51 
                                                        Prob > chi2   = 0.0000 
Log likelihood =  -63.12219                             Pseudo R2     = 0.1570 
 
------------------------------------------------------------------------------ 
   first |      dF/dx   Std. Err.      z    P>|z|     x-bar  [    95% C.I.   ] 
---------+-------------------------------------------------------------------- 
num_sems |   .0456601   .0130119     3.35   0.001   12.4576   .020157  .071163 
  female*|   .2177256   .0923073     2.38   0.017   .389831   .036807  .398645 
---------+-------------------------------------------------------------------- 
  obs. P |   .3305085 
 pred. P |   .2919279  (at x-bar) 
------------------------------------------------------------------------------ 
(*) dF/dx is for discrete change of dummy variable from 0 to 1 
    z and P>|z| correspond to the test of the underlying coefficient being 0 
 
These estimates are similar to those of OLS  (as they should be since OLS, logit and probit are unbiased) 
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Can show that 
   LR = 2 [Log Lmax – Log L0 ] ~ χ2

(k-1)
 
where k is the number of right hand side variables including the constant 
 
If the estimate chi-squared value exceeds the critical value then reject the null 
that the model as no explanatory power 
(this value is given in the top right hand corner of the logit/probit output in Stata) 
 

  



Can also use the LR test to test restrictions on subsets of the coefficients in a 
similar way to the F test 
 
   LR = 2 [Log Lmax

unrestrict – Log Lmax
restrict ] ~ χ2

(l)
 
(where l is the number of restricted variables) 

  



A maximum likelihood equivalent of the R2 is the pseudo-R2
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Pseudo R2 = 1 – (Log Lmax/Log L0) 
 

  



A maximum likelihood equivalent of the R2 is the pseudo-R2

 
Pseudo R2 = 1 – (Log Lmax/Log L0) 
 
This value lies between 0 and 1 and the closer to one the better the fit of the 
model 
 
(again this value is given in the top right hand corner of the logit/probit output in 
Stata) 

  



It is also a good idea to try and look at the “% of correct predictions” in the model 
– ie how many are predicted to have a value 1 and how many predicted to have 
a value 0 
 
Can do this by assigning a rule  
 

Predict = 1 if   5.
^
>=p

Predict = 0 if   5.
^
<p

 

where  is the individual predicted probability taken from the logit or probit model 
^
p

  



g predict=1 if phat>=.5 
replace predict=0 if phat<.5 
 
tab predict first, row 
           |         first 
   predict |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |        69         22 |        91  
           |     75.82      24.18 |    100.00  
-----------+----------------------+---------- 
         1 |        10         17 |        27  
           |     37.04      62.96 |    100.00  
-----------+----------------------+---------- 
     Total |        79         39 |       118  
           |     66.95      33.05 |    100.00 
 
So in this case the model predicts 63% of firsts correctly and 75% of non-firsts correct. Compare this with a random guess which would 
get 50% of each category correct 

 

  


