
Lecture 15. Endogeneity & Instrumental Variable Estimation 
 
 
Saw that measurement error (on right hand side) means that OLS 
will be biased (biased toward zero) 
 
Potential solution to endogeneity – instrumental variable 
estimation 

- A variable that is correlated with the problem variable but 
which does not suffer from measurement error 

 
 
Tests for endogeneity 
 
Other sources of endogeneity 
 
Problems with weak instruments 
  



Idea of Instrumental Variables attributed to 
 
Philip Wright 1861-1934 

    
 
interested in working out whether price of butter was demand or 
supply driven
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 More formally, an instrument Z for the variable of concern X 
satisfies 
 
   1) Cov(X,Z) ≠ 0    
 
correlated with the problem variable  
 

2) Cov(Z,u)  = 0  
 

but uncorrelated with the residual (so does not suffer from 
measurement error and also is not correlated with any 
unobservable factors influencing the dependent variable) 
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the IV estimate is unbiased in large samples (but may be biased in 
small samples) 

 
- technically the IV estimator is said to be consistent –   

while the OLS estimator is inconsistent IN THE PRESENCE OF 
ENDOGENEITY 
 
which makes IV a useful estimation technique to employ 
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Since r2 >0 
 
So IV estimation is less precise (efficient) than OLS estimation  
 
May sometimes want to trade off bias against efficiency
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not solved. 
 
Conversely if the correlation between the endogenous variable 
and the instrument is small there are also problems 
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So if Cov(X,Z) is small then the IV estimate can be a long way from 
the true value b1 
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So: always check extent of correlation between X and Z before 
any IV estimation (see later) 
 
In large samples you can have as many instruments as you like – 
though finding good ones is a different matter.  
 
In small samples a minimum number of instruments is better  
(bias in small samples increases with no. of instruments). 
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In the case of measurement error, could use the rank of X as an 
instrument (ie order the variable X by size and use the number of 
the order rather than the actual vale.  
 
Clearly correlated with the original value but because it is a rank 
should not be affected with measurement error  
 

- Though this assumes that the measurement error is not so large 
as to affect the (true) ordering of the X variable



egen rankx=rank(x_obs) /* stata command to create the ranking of x_observ  */ 
 
. list x_obs rankx 
     x_observ      rankx 
  1.       60          1 
  2.       80          2 
  3.      100          3 
  4.      120          4 
  5.      140          5 
  6.      200          6 
  7.      220          7 
  8.      240          8 
  9.      260          9 
 10.      280         10 
 
ranks from smallest observed x to largest 
Now do instrumental variable estimates using rankx as the instrument for x_obs 
 
ivreg y_t (x_ob=rankx) 
 
Instrumental variables (2SLS) regression 
 
      Source |       SS       df       MS              Number of obs =      10 
-------------+------------------------------           F(  1,     8) =   84.44 
       Model |  11654.5184     1  11654.5184           Prob > F      =  0.0000 
    Residual |  1125.47895     8  140.684869           R-squared     =  0.9119 
-------------+------------------------------           Adj R-squared =  0.9009 
       Total |  12779.9974     9  1419.99971           Root MSE      =  11.861 
------------------------------------------------------------------------------ 
      y_true |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    x_observ |    .460465   .0501086     9.19   0.000     .3449144    .5760156 
       _cons |   48.72095   9.307667     5.23   0.001     27.25743    70.18447 
------------------------------------------------------------------------------ 
Instrumented:  x_observ 
Instruments:   rankx 
------------------------------------------------------------------------------ 
Can see both estimated coefficients are a little closer to their true values than estimates from regression with 
measurement error (but not much)In this case the rank of X is not a very good instrumentNote that standard error in 



instrumented regression is larger than standard error in regression of y_true on x_observed as expected with IV 
estimation  
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So estimate (B) instead and test whether coefficient on v is 
significant 

y = b0 + b1X + b2
^
v  + e      (B) 

 
If it is, conclude that X and error term are indeed correlated;  
 
there is endogeneity 
 

N.B. This test is only as good as the instruments used and is only 
valid asymptotically. This may be a problem in small samples and 
so you should generally use this test only with sample sizes well 
above 100. 

 



Example: 
The data set ivdat.dta contains information on the number of GCSE passes of a sample of 16 year olds and the total 
income of the household in which they live. 
Income tends to be measured with error. Individuals tend to mis-report incomes, particularly third-party incomes and non-
labour income. The following regression may therefore be subject to measurement error in one of the right hand side 
variables, (the gender dummy variable is less subject to error). 
 
. reg nqfede inc1 female 
 
      Source |       SS       df       MS              Number of obs =     252 
-------------+------------------------------           F(  2,   249) =   14.55 
       Model |  274.029395     2  137.014698           Prob > F      =  0.0000 
    Residual |   2344.9706   249  9.41755263           R-squared     =  0.1046 
-------------+------------------------------           Adj R-squared =  0.0974 
       Total |     2619.00   251  10.4342629           Root MSE      =  3.0688 
------------------------------------------------------------------------------ 
      nqfede |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        inc1 |   .0396859   .0087786     4.52   0.000      .022396    .0569758 
      female |   1.172351    .387686     3.02   0.003     .4087896    1.935913 
       _cons |   4.929297   .4028493    12.24   0.000      4.13587    5.722723 
 
To test endogeneity first regress the suspect variable on the instrument and any exogenous variables in the original 
regression 
 
reg inc1 ranki female 
 
       Source |       SS       df       MS             Number of obs =     252 
-------------+------------------------------           F(  2,   249) =  247.94 
       Model |  81379.4112     2  40689.7056           Prob > F      =  0.0000 
    Residual |   40863.626   249  164.110948           R-squared     =  0.6657 
-------------+------------------------------           Adj R-squared =  0.6630 
       Total |  122243.037   251  487.024053           Root MSE      =  12.811 
------------------------------------------------------------------------------ 
        inc1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       ranki |   .2470712   .0110979    22.26   0.000     .2252136    .2689289 
      female |   .2342779   1.618777     0.14   0.885    -2.953962    3.422518 
       _cons |   .7722511   1.855748     0.42   0.678    -2.882712    4.427214 



------------------------------------------------------------------------------ 
 
1. save the residuals 
 
. predict uhat, resid 
 
2. include residuals as additional regressor in the original equation 
 
.  reg nqfede inc1 female uhat 
 
      Source |       SS       df       MS              Number of obs =     252 
-------------+------------------------------           F(  3,   248) =    9.94 
       Model |  281.121189     3  93.7070629           Prob > F      =  0.0000 
    Residual |  2337.87881   248  9.42693069           R-squared     =  0.1073 
-------------+------------------------------           Adj R-squared =  0.0965 
       Total |     2619.00   251  10.4342629           Root MSE      =  3.0703 
------------------------------------------------------------------------------ 
      nqfede |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        inc1 |   .0450854   .0107655     4.19   0.000     .0238819    .0662888 
      female |   1.176652   .3879107     3.03   0.003     .4126329    1.940672 
        uhat |  -.0161473   .0186169    -0.87   0.387    -.0528147    .0205201 
       _cons |   4.753386   .4512015    10.53   0.000     3.864711    5.642062 
------------------------------------------------------------------------------ 
 
Now added residual is not statistically significantly different from zero, so conclude that there is no endogeneity bias in the 
OLS estimates. Hence no need to instrument. 
 
Note you can also get this result by typing the following command after the ivreg command 
 
ivendog 
 
Tests of endogeneity of: inc1 
H0: Regressor is exogenous 
    Wu-Hausman F test:                  0.75229  F(1,248)    P-value = 0.38659 
    Durbin-Wu-Hausman chi-sq test:      0.76211  Chi-sq(1)   P-value = 0.38267 
 
the first test is simply the square of the t value on uhat in the last regression  (since t2 = F) 



 
N.B. This test is only as good as the instruments used and is only valid asymptotically. This may be a problem in small 
samples and so you should generally use this test only with sample sizes well above 100. 
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This time wages and prices are interdependent so OLS on either (1) 
or (2) will give biased estimates….. but 
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(can this be justified?) but is correlated with wages through (2).  
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This means unemployment can be used as an instrument for 
wages in (1) since 

Price = b0 + b1Wage + e        (1) 
Wage = d0 + d1Price + d2Unemployment + v    (2) 

 
a) Cov(Unemployment, e) = 0  (by assumption it doesn’t appear in (1) )  
so uncorrelated with residual, which is one requirement of an instrument 
and 
b) Cov(Unemployment, Wage) ≠ 0 so correlated with endogenous RHS 
variable, which is the other requirement of an instrument 
 
This process of using extra exogenous variables as instruments for 
endogenous RHS variables is known as identification 
 
If there are no additional exogenous variables outside the original 
equation that can be used as instruments for the endogenous RHS 
variables then the equation is said to be unidentified 
(In the example above (2) is unidentified because despite Price being 
endogenous , there are no other exogenous variables not already in (2) 
that can be used as instruments for Price). 
 


