
PH4211 Statistical Mechanics 
 
 

Problem Sheet 4 —  Answers 
 
 
1  Obtain an expression for the Helmholtz free energy for the Weiss model in zero 
external magnetic field, in terms of the magnetisation.  Plot F Mb g  for CT T> ,  

CT T=  and CT T< . 
 
The Helmholtz free energy is defined as 
 F E TS= − . 
The internal energy is given by 
 .dE B= − M∫ . 

The magnetic field, in the Weiss model, is the sum of the applied field and the local 
(mean) field 
 0B B b= + . 
We shall write the local field in terms of the critical temperature: 

 c2
0

Nkb T
M

= M . 

Integrating up the internal energy we obtain 

 
2

c
0

02
NkT ME B M

M
⎛ ⎞

= − − ⎜ ⎟
⎝ ⎠

. 

For the present we will consider the case where there is no external applied field. 
Then , and in terms of the reduced magnetisation 0 0B = 0m M M= (the order 
parameter) the internal energy is 

 2c

2
NkTE m= − . 

Now we turn to the entropy. This is most easily obtained from the definition 
 lnj j

j

S Nk p p= − ∑  

where pBjB are the probabilities of the single-particle states. It is simplest to treat spin 
one half, which is appropriate for electrons. Then there are two states to sum over: 
 ln lnS Nk p p p p↑ ↑ ↓ ↓= − +⎡ ⎤⎣ ⎦ . 

Now these probabilities are simply expressed in terms of m, the fractional 
magnetisation 

 1 1and
2 2
m mp p↑ ↓

+ −
= =  

so that the entropy becomes 

 ( ) ( ) ( ) ( )2ln 2 1 ln 1 1 ln 1
2

NkS m m m= − + + − − −⎡ ⎤⎣ ⎦m . 

We now assemble the free energy F E TS= − , to obtain 
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 ( ) ( ) ( ) ( ){ }2
c 2ln 2 1 ln 1 1 ln 1

2
NkF T m T m m m m= − + − + + − − −⎡ ⎤⎣ ⎦ . 

This is plotted for temperatures less than, equal to and greater than the critical 
temperature. 
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Landau free energy for Weiss model ferromagnet 

 
The occurrence of the ferromagnetic phase transition can be seen quite clearly from 
this figure. For temperatures above TBcB we see there is a single minimum in the Landau 
free energy at m = 0, while for temperatures below TBcB there are two minima either 
side of the origin. The symmetry changes precisely at TBcB. There the free energy has 
flattened, meaning that m  may make excursions around m = 0 with negligible cost of 
free energy – hence the large fluctuations at the critical point. 
 
 

2  Show that F Nk T T m T m= − + +RST
UVW2 6

2 4
C

Cb g "  for the Weiss model ferromagnet in 

the limit of small m. Explain the appearance of TBCB in the mP

4
P term. 

 
The free energy is given by 

 ( ) ( ) ( ) ( ){ }2
c 2 ln 2 1 ln 1 1 ln 1

2
NkF T m T m m m m= − + − + + − − −⎡ ⎤⎣ ⎦ . 

In order to expand this in powers of m we must expand the logarithms: 

 ( )
2 3 4

log 1
2 3 4

m m mm m± = ± − ± − ±… . 

By expanding and collecting terms we obtain 

 ( ) 2 4 6
C2 ln 2

2 6
Nk T TF T T T m m m⎧ ⎫= − + − + + +⎨ ⎬

⎩ ⎭
…

15
. 

In the vicinity of the critical point the first term may be approximated by 2TBCBln2; this 
is a constant and so it may be ignored. By a similar argument the T in the mP

4
P and the 

mP

6
P term should be replaced by TBCB as T is restricted to the vicinity of the critical point. 

Then we have the expression for the free energy:   
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 ( ) 2 4C
C2 6

TNkF T T m m⎧ ⎫= − + +⎨ ⎬
⎩ ⎭

…  

as required. 
 
 
3  Show that 2 2d dF ϕ > 0  below TBcB at the two roots 2 2F Fϕ = ± − 4  in the Landau 

model.  Show that 2 2d dF ϕ < 0  below TBcB and 2 2d dF ϕ > 0  above TBcB at the single 
root ϕ  =   0.  What is the physical meaning of this? 
 
The Landau free energy is 
 2 4

2 4F F Fϕ ϕ= +  
so that its second derivative is 

 
2

2
2 42

d 2 12
d

F F F ϕ
ϕ

= + . 

For the two roots 2 2F Fϕ = ± − 4  below the transition  

 2
2 42F Fϕ = −  

so that 

 

2
2

2 42
4

2

d 2 12
d 2

4 .

FF F F
F

F
ϕ

= +

= −

 

Now FB2B is negative for temperatures below the transition:  
 ( )2 CF a T T= − , 

so we see that below the transition the second derivative of F is positive for the two 
roots 2 42F Fϕ = ± − . 
 
But at the root 0ϕ =  then  

 
2

22

d 2
d

F F
ϕ

= . 

And since FB2B is negative then the second derivative is negative for the root at 0ϕ = . 
From this we conclude that below the critical temperature the roots 2 42F Fϕ = ± −  
are minima while the root at 0ϕ =  is a maximum. 
 
Above the critical temperature there is the single root at 0ϕ = . Then  

 
2

22

d 2
d

F F
ϕ

=  

but now FB2B is positive. So above the critical point the single root at 0ϕ = is a 
minimum. 
    
 
4  In the Landau theory of second order transitions calculate the behaviour of the 
order parameter below the critical point, ϕ Tb g , when the sixth order term in the free 
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energy expansion is not discarded.  What influence does this term have on the critical 
exponent β ?  Comment on this. 
 
The sixth order expression for the free energy is 
 2 4

2 4 6F F F F 6ϕ ϕ ϕ= + + . 
The equilibrium state is determined by minimising F: differentiate and set equal to 
zero 

 3 5
2 4 6

d 2 4 6
d
F F F Fϕ ϕ ϕ
ϕ

0= + + = . 

One root of this equation is φ = 0. The other roots are roots of the equation 
 2 4

2 4 62 3F F Fϕ ϕ 0+ + = . 
And these roots are 

 
2

4 4 22

6

3
3

F F F F
F

ϕ
− ± −

= 6 , 

but we must take the positive square root since φP

2
P must be positive – note that FB2B is 

negative. Then the values of φ at the roots are 

 
2

4 4 2

6

3
3

F F F F
F

ϕ
− + −

= ± 6 . 

The singular behaviour arises from the temperature dependence of FB2B, which goes 
through zero at the critical point: 
 ( )2 cF a T T= − . 

Then the (singular part of the) temperature variation of the order parameter is given 
by 

 
( )2

4 4 c

6

3
3

F F a T T F
F

ϕ
− + − −

= ± 6 . 

To find the order parameter critical exponent we must expand φ in powers of FB2B or 
T – TBcB: 

 
3 5

6 62 2 2
5 9

4 4 4

3 63
2 8 2 128 2

F FF F F
F F F

ϕ = − + − + − +… . 

(This expansion may be obtained using a symbolic algebra system such as 
Mathematica or Maple, or it may be evaluated by hand as indicated below.) The 
temperature dependence of the order parameter is then given by 

 ( ) ( ) ( )3 53 5
c c6 6

5 9
4 4 4

3 63
2 8 2 128 2

a T T a T T a T TF F
F F F

ϕ
− − −

= − + − + − +…c . 

The first term gives the leading order singularity. We see that it gives the order 
parameter critical exponent as β = ½. Observe that this leading order term is 
independent of FB6B; indeed the series is seen to be an expansion in powers of FB6B. So 
the critical exponent is unaffected by the inclusion of the FB6B term. 
 
⎡ In order to perform the power series expansion of φ by hand we write the inner 
square root as 

Answers 4-4 



 

1 2
2 2 6

4 2 6 4 2
4

2 2
2 6 2 6

4 2 4
4 4

2 2
2 6 2 6

4 3
4 4

33 1

3 91
2 8

3 9
2 8

F FF F F F
F

F F F FF
F F

F F F FF
F F

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
⎛

= − − +⎜
⎝

= − − +

…

…

 

The expression for φ is then 

 

2 3 2
2 6 2 62

3 5
4 4 4

2 62
2

4 4

3 9
2 8 16

31 .
2 4

F F F FF
F F F

F FF
F F

ϕ = ± − − − −

= ± − + +

…

…

 

In the case that FB6B is zero we have the familiar expression 

 
( )

2

4

c

4

2

2

F
F

a T T
F

ϕ = ± −

−
= ±

 

so we obtain the critical exponent β = ½ . 
 
Now incorporating the higher order terms, we have 

 2 62
2

4 4

31 .
2 4

F FF
F F

ϕ = ± − + +… , 

and since FB2B is small we can expand the second square root: 

 2 62
2

4 4

31
2 8

F FF
F F

ϕ
⎛

= ± − + +⎜
⎝

… . 

                                                                                                                                        ⎦ 
 
5  A ferroelectric has a free energy of the form 
                                             F T T P bP cP DxP Ex= − + + + +α cb g 2 4 6 2 2  
where P is the electric polarisation and x represents the strain.  Minimise the system 
with respect to x.  Under what circumstances is there a first order phase transition for 
this system? 
 
The equilibrium value of the strain is x is found by minimising F with respect to 
variations in x: 

 2 2 0F DP Ex
x

∂
= + =

∂
, 

the solution of which is  

 
2

2
DPx

E
= − . 

Then 
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2 4 2 4

2 2,
2 4

D P D PDxP Ex
E E

= − =  

and at the equilibrium strain the Landau free energy is  

 ( )
2

2 4
c 4

DF T T P b P c
E

α
⎛ ⎞

= − + − +⎜ ⎟
⎝ ⎠

6P . 

There will be a first order transition when the coefficient of PP

4
P becomes negative, that 

is when 

 
2

4
D b

E
> . 

 
 
6  Consider a one-dimensional binary alloy where the concentration of A atoms varies 
slowly in space:  x = x(z). Show that the spatial variation of x results in an additional 
term in the free energy per bond of ( 22 d da x zε ) , where a is the spacing between 
atoms and ε is the energy parameter defined in Section 4.7.3. 
  
When the system is inhomogeneous then the concentration of A atoms varies in space. 
In this case the calculation of the bond energy is a little more complicated. The 
direction from the left atom to the right atom is chosen to be along the z axis and the 
‘position’ of the bond is taken as its mid point.  
 

a

z a− /2 z a+ /2z  
 
 
The concentration is a function of position. It is assumed to vary smoothly so that a 
Taylor expansion is appropriate. 

 

2 2

l 2

2 2

r 2

1
2 2 2

1 .
2 2 2

a x a xx x
z z

a x a xx x
z z

∂ ∂⎛ ⎞= − + −⎜ ⎟∂ ∂⎝ ⎠

∂ ∂⎛ ⎞= + + +⎜ ⎟∂ ∂⎝ ⎠

…

…

 

where l and r stand for left and right. The expression for lre  is then given by  

 ( )( )
222 2 2 4 2

lr 0 2 22 1 2
2 8 8aa bb
a x a x a xe e x

z z
ε ε ε ε ε

⎛ ⎞∂ ∂⎛ ⎞= + + − + − − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
…

z
∂
∂

 

where 0e is the energy per bond in the homogeneous case.  
 
It is a fundamental assumption that the concentration x varies slowly with position; in 
other words, the spatial derivatives are small. The terms in aP

2
P are second order in 

smallness; these contain the leading order contributions from the spatial variation in x. 
The term in aP

4
P is fourth order in smallness; this may be ignored. Both terms in aP

2
P 

must be considered as these are of the same order. However it is possible to transform 
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the term in 2 2x z∂ ∂ through integration by parts, to a term in ( 2)x z∂ ∂ plus a surface 
term that may be ignored. 
 
The key point is that the expression for lre is a function of position z through the 
dependence of x upon position. Thus lre is an energy density and the total energy is 
found by integrating over the system, and since we are considering variations in the z 
direction, this means integrating over z. The contribution to the total energy from 
the 2 2x z∂ ∂ term is then 

 ( )
2

1

2

2 d
z

z

xE f z
z

∂
=

∂∫ z  

where 

 ( ) ( )( )( )
2

2 1 2
8 aa bb
af z xε ε ε= − + − z  

and zB1B and zB2B are the extremities. Now the expression for E is integrated by parts to 
give 

 ( )
2 2

1 1

d
z z

z z

x f xE f z z
z z z

∂ ∂ ∂
= −

∂ ∂ ∂∫ . 

The first term is the surface term. This will be zero if we chose the extremities to be 
away from any spatial variation in concentration. In the second term the first 
derivative may be re-expressed using the chain rule for differentiation 

 f f x
z x z

∂ ∂ ∂
=

∂ ∂ ∂
 

and then E is given by 

 
2

1

2

d
z

z

f xE z
x z

∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠∫ . 

The integrand is the energy density. We see it has been transformed into a term in 
( 2)x z∂ ∂ . Then since 

 
2

2
f a
x

ε∂
= −

∂
 

it follows that  

 
2

1

22

d
2

z

z

a xE z
z

ε ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫ , 

corresponding to an energy density of 

 
22

2
a x

z
ε ∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
. 

We add this to the original term in ( 2)x z∂ ∂ to give the result 

 
2

2
lr 0

xe e a
z

ε ∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠
. 

 

Answers 4-7 



We now relax the restriction that the variation in concentration is in the z direction. 
Then the derivative x z∂ ∂ becomes the gradient of x and the second derivative 
becomes the Laplacian, thus 
 ( )22

lr 0e e a xε= + ∇ . 

This gives the additional free energy per bond when there is a spatial variation in the 
concentration. 
 
7  Show that in the vicinity of the critical point the free energy of the binary alloy may 
be written as 

 ( )( ) ( ) ( )2 4 61 1 1
m 0 c c c2 2 2

2 162
3 15

F F Nk T T x T x T x⎧ ⎫= + − − + − + − +⎨ ⎬
⎩ ⎭

…  

Discuss the Landau truncation of this expression; in particular, explain at what term 
the series may/should be terminated.  
 
We shall write the free energy (of mixing) for the binary alloy as 
 [ ]{ }m c( ) 2 (1 ) ln (1 ) ln(1 )F x Nk x x T T x x x x= − + + − − . 

This is rather like the expression for the magnet treated in Problem 2. Now we must 
expand the logarithms about the point x = ½. 

 
( ) ( )

( ) ( ) ( )

21 1
2 2

21 1
2 2

log log 2 2 2

log 1 log 2 2 2

x x x

x x x

= − + − − − +

− = − − − − − +

…

…
 

 This gives the expansion for the free energy as 

 ( )( ) ( ) ( )2 4 61 1 1
m c c 2 2 2

1 4 32ln 2 2
2 3 15

F Nk T T T T x T x T x⎧ ⎫= + + − − + − + − +⎨ ⎬
⎩ ⎭

…  

Except in the T – TBcB term, we may replace T by the constant TBcB as we are considering 
the behaviour only in the vicinity of the critical point. Then  

 ( )( ) ( ) ( )2 4 61 1 1
m c c c c c2 2 2

1 4 32ln 2 2
2 3 15

F Nk T T T T x T x T x⎧ ⎫= + + − − + − + − +⎨ ⎬
⎩ ⎭

… . 

We now identify the constant FB0B as 

 0 c c
1 ln 2
2

F Nk T T⎧ ⎫= +⎨ ⎬
⎩ ⎭

 

and this enables us to write the free energy in the vicinity of the critical point as 

 ( )( ) ( ) ( )2 4 61 1 1
m 0 c c c2 2 2

2 162
3 15

F F Nk T T x T x T x⎧ ⎫= + − − + − + − +⎨ ⎬
⎩ ⎭

… . 

Observe that the coefficient of the fourth order term is positive. This means that the 
transition is second order (for the critical concentration) and the series may be 
truncated at this term. That is, because the coefficient of the fourth order term is 
positive, we do not need any higher order terms.   
 
8  Plot some isotherms of the Clausius equation of state ( )p V Nb NkT− = . How do 
they differ from those of an ideal gas? Does this equation of state exhibit a critical 
point? Explain your reasoning. 
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9  The scaling expression for the reduced free energy is given in Section 4.1.9 by 

 ( ) 2, Bf T B A t Y D
t

α−

∆

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

. 

Show that the heat capacity is given by 

 ( )2

2

d ,
~

d
f t B

C
t

 

and hence identify α as the heat capacity critical exponent. 
 
10  Using the scaling expression for the reduced free energy in the previous section, 
show that the magnetisation is given by 

 ( )d ,
~

d
f t B

M
B

 

and hence show that the order parameter exponent β is given by 
 2β α= − − ∆ . 
Show that the magnetic susceptibility is given by 

 ( )2

2

d ,
~

d
f t B

B
χ  

and hence show that the susceptibility exponent g is given by 
 2 2γ α= − − ∆ . 
 
 
 
11  Show that the Landau free energy has the scaling form of Problem 4.9 above, with 
α = 0. 
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