
PH4211 Statistical Mechanics 
 
 

Problem Sheet 3 —  Answers 
 
1  Show that the Joule-Kelvin coefficient is zero for an ideal gas. 
  
The Joule-Kelvin coefficient is given by 
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For an ideal gas we have pV = NkT, so upon differentiating: 
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And since pV = NkT, the bracket is zero.  Thus the Joule-Kelvin coefficient is zero. 
 
 
2  Derive the second virial coefficient expression for the Joule-Kelvin coefficient 
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and find the inversion temperature for the square well potential gas. 
 
In the limit of small BB2B(T) we have the equivalent expression for the virial expansion 
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So differentiating the expression for V gives 
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We substitute this into the expression for µBJB to give 
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Now for an ideal gas the thermal capacity at constant volume is given by 

 5
2pc N= k  

and we adopt this as an acceptable approximation in this weakly interacting case.  We 
then obtain the result 
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The second virial coefficient for the square well gas is given by 
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To find the inversion temperature we require to solve the equation  
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for T.  Now using the square-well expression for B will result in an insoluble 
equation.  A numerical solution can be found if R is specified, or an approximate 
solution may be found.  We shall look for a solution for the inversion temperature in 
the (realistic) limiting case where there is a long-range, but weak interaction.  In other 
words we are considering the case where R is large and ε is small.  When R is very 
much greater than unity then B may be approximated by 
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and if ε is small then we may expand the exponential so that 
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This expansion is valid for temperatures T much greater than ε/k. This will be justified 
a posteriori. 
 
This expression for BB2B(T) is actually equivalent to that obtained for the van der Waals 
gas; the general behaviour is 
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We can then quote the result (derived in the next Problem) 
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This satisfies the requirement on the expansion of the exponential, that kT >> ε  since 
R is assumed to be large. 
 
 

3  For the van der Waals gas show that T a
bkB = and T a

bkI =
2 . 

 
We obtained the second virial coefficient for the van der Waals gas to be 

 ( )2
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kT
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The Boyle temperature is that for which BB2B(T) = 0.  So solving the above expression 
for zero gives 
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The inversion temperature is that for which  
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Now differentiating BB2B(T) gives 
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so that we now require to solve 
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4  Show that for a van der Waals fluid the critical parameters are given by 
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microscopic interaction (Lennard-Jones) parameters ε and σ. 
 
The van der Waals equation of state is  
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and this can be rearranged to give 
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Then differentiating this gives 
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Solve the simultaneous equations to give TBcB and VBcB : c c8 27 , 3kT a b V Nb= =  and then 
substitute in to get 2

c 27p a b= . 
 
In the mean field discussion the repulsive and the attractive parts of the inter-particle 
interaction were treated separately. Within the spirit of this let us consider how the 
two parameters of the van der Waals equation might be related to the two parameters 
of the Lennard-Jones inter-particle interaction potential. The repulsion is strong; 
particles are correlated when they are very close together. We accounted for this by 
saying that there is zero probability of two particles being closer together than σ. 
Then, as in the hard core discussion of Section 3.2.1, the region of co-ordinate space 
is excluded, and the form of the potential in the excluded region (U(r) very large) 
does not enter the discussion. Thus just as in the discussion of the hard core model, 
the excluded volume will be  
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one half of the total hard core volume. 
 
The attractive part of the potential is weak. Here there is very little correlation 
between the positions of the particles; we therefore treat their distribution as 
approximately uniform. The mean interaction for a single pair of particles 1E is then 
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Now there are N(N – 1)/2 pairs, each interacting through U(r), so neglecting the 1, the 
total mean energy per particle is 
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In the van der Waals equation it is the derivative of this quantity we require. Thus we 
find 
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These results give the correct assumed N and V dependence of the parameters used in 
the previous section. So finally we identify the van der Waals parameters a and b as 
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5  Show that, for a van der Waals fluid, the combination of critical parameters 
pBcBVBcB/NkTBcB takes the universal value 3/8.   
 
The critical parameters for the van der Waals equation are given by 
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Then pBcBVBcB/NkTBc B is given by 
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6 Show that for the Dieterici fluid the critical parameters are given by 
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The Dieterici equation of state is  
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Na
kTVNkTep

V Nb

−

=
−

. 

Then differentiating this gives 
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For the critical point, these must be set equal to zero and the equations solved to give 
TBcB and VBcB. Solution of the equations thus gives 
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and we then substitute these into the equation of state to give: 
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Using these values for the critical parameters we than find pBcBVBcB/NkTBc B is given by 
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7  Show that the partition function for an interacting gas may be expressed as         
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where ZBidB is the partition function for a non-interacting gas. In terms of this 
expression explain why the partition function of a hard sphere gas might be 
approximated by 
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The partition function for an interacting gas is given by 
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This may be factorised, separating the p and q integrations: 
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But the ideal gas partition function is 
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so that Z may then be written as  
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If the interaction energy U(qBiB, qBjB) were zero, then the integral would become VP

N
P as 

one is simply integrating (unity) over the 3N dimensional space. Now for the hard 
sphere interaction the integrand is unity so long as the particles do not approach closer 
than the dimension σ. But if the particles did approach closer then the interaction 
energy would be infinite and the integrand would be zero. So when the q integrals are 
performed over all space the effect of this interaction appears simply to remove the 
hard core volume. And in this way the integral would be so that the 
partition function would then be 

( NV Nb−
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8  Show that the approximate partition function for the hard sphere gas in the previous 
question leads to the equation of state ( )p V Nb NkT− = . This is sometimes called 
the Clausius equation of state. Give a physical interpretation of this equation. 
 
Show that the first few virial coefficients are given by ( ) ( ) 2

2 3,B T b B T b= = , 

( ) 3
4B T b= , etc. These virial coefficients are independent of temperature. Discuss 

whether this is a fundamental property of the hard sphere gas, or whether it is simply 
a consequence of the approximated partition function. 
 
To find the equation of state we must differentiate kTlnZ with respect to volume. Now 
the logarithm of approximate partition is 
 ( )idln ln ln lnZ Z N V Nb N V= + − − . 

For the ideal gas partition function we have 
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which may be written as 
 idln ln  terms independent of Z N V V= + . 
Then  
 ( )ln ln  terms independent of Z N V Nb V= − +  

as the NlnV terms cancel. We then have for the pressure 
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so that   
 ( )p V Nb NkT− =  

as required. 
 
The physical interpretation of this is as an the equation of state for an ideal gas, but 
with a reduced volume available, because of the finite volume of the (otherwise non-
interacting) particles. 
 
In order to find the virial coefficients we must expand p/kT in powers of N/V. Now  

 p N
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=
−
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(Observe that the right hand side is independent of temperature, so we know that the 
virial coefficients will be temperature-independent before we start.) 
 
We write p/kT as  
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and this is then expanded as 
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From this we identify directly 
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The argument about excluded volume in obtaining the partition function for the hard 
sphere gas is an approximation. In reality imposing the boundary condition 

i jq q σ− >  for all i and j is more complex. However, by examining the structure of 
the configuration integral 
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we note that the exponent is independent of temperature since U/kT is either zero or 
infinite. Thus QBNB is independent of temperature and from this it follows that the virial 
coefficients will be temperature-independent. In other words, the virial coefficients 
for the hard sphere gas will be temperature-independent, irrespective of any 
approximations made. 
 
⎡A full calculation of the virial coefficients of the hard sphere gas gives 
 ( ) ( ) ( )2 35

2 3 48, , 0.29B T b B T b B T b= = =  

where 32b πσ= 3 . So the precise values of the virial coefficients are not quite those 
predicted from the approximated Claussius equation of state.                                       ⎦ 
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9  For a general interatomic interaction potential U(r) we may define an effective hard 
core dimension d  by U(d)  =  kT. What is the significance of this definition? Show 
that for the Lennard-Jones potential of Section 3.2.4, d is given by 
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Plot this to demonstrate that d is a very slowly varying function of temperature. 
 
If you have access to a symbolic mathematics system such as Mathematica or Maple, 
show that at low temperatures 
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So how high must the temperature be so that d differs appreciably from its zero 
temperature value?  
 
How does d vary for the hard core and the square well potentials of Sections 3.2.2 and 
3.2.3? 
 
With d defined by U(d)  =  kT, this corresponds to the distance of closest approach of 
particles with kinetic energy kT.  So from equipartition, this is essentially the mean 
distance of closest approach of particles of a gas at the temperature T.  
 
For the Lennard-Jones potential, d then satisfies 
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This may be solved for d by setting ( 6)x dσ= . Then x satisfies 

 2 4 0x x kT ε− − = , 
which has solution 
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We must keep the positive square root since this gives a positive value for x. Then we 
find that  
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as required. This is plotted below. 
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The figure shows that d varies quite slowly, particularly at high temperatures. 
 
Series expansion of  d gives 
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so that T must be many times greater than ε/k for d  to differ appreciably from its zero 
temperature value of σ. 
 
For both the hard core and the square well potentials the effective hard core 
dimension d is a constant, equal to the actual the hard core dimension σ, independent 
of temperature.  
 
 
10  The one dimensional analogue of the hard sphere gas is an assembly of rods 
constrained to move along a line (the Tonks model). For such a gas of N rods of 
length l confined to a line of length L, evaluate the configuration integral QBNB. Show 
that in the thermodynamic limit the equation of state is 

( )f L Nl NkT− =  
where f is the force, the one dimensional analogue of pressure. 
 
Comment on the similarities and the differences from the hard sphere equation of 
state mentioned in Problem 3.8 (Clausius equation) and the van der Waals equation of 
state. 
 
In one dimension the configuration integral is given by 
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This may be simplified through the change of variables XBiB = xBiB – xBi–1B. This gives 
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with an appropriate choice of boundary conditions (cyclic boundary conditions). But 
in this form the integrals over the different variables are independent; the exponential, 
and thus the integral, can be factorised. And since the integral over each X will be the 
same, we obtain  
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When X > l we have U = 0 so that the exponential is unity. And when X < l then U is 
infinite so that the exponential is zero. So in this case the excluded volume argument 
holds true and   
 ( ) dU X kTe X L− Nl= −∫  

so that 
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The partition function for the ideal one-dimensional gas is 
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Then using the calculated configuration integral the partition function is 
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The logarithm of Z is 
 ( )ln ln  terms independent of Z N L Nl= − + L . 

The force in the one dimensional gas is given by 
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and thus we find 
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or 
 ( )f L Nl NkT− = . 

 
This is the 1d analogue of the Clausius equation of state for the hard sphere gas in 3d. 
However this is an exact equation of state; the Clausius equation is an approximation. 
The van der Waals equation is similar. But in that case the long-distance attractive 
interactions also are taken into account by modifying the pressure.     
 
 
11  Compare the square well and the van der Waals expressions for the second virial 
coefficient. Show that they become equivalent when the range of the square well 
potential tends to infinity while its depth tends to zero.  
 
The square well second virial coefficient is given by 
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while that for the van der Waals equation is 
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When ε is small the exponential of the square well second virial coefficient can be 
expanded: 
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at the same time the range of the well become large so that the 1 may be neglected in 
comparison with the RP
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In the limit that ε → 0, R → ∞, while RP

3
Pσ remains finite this then becomes 
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And this has the form of the square well second virial coefficient, where 

 3 32 2,
3 3

b a 3Rπσ πσ= = ε . 

Thus we have shown that the second virial coefficient of van der Waals equation of 
state is equivalent to that arising from the square well interaction in the limit of a 
long-range but weak attraction. 
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