
PH4211 Statistical Mechanics 
 
 

Problem Sheet 2 —  Answers 
 
1  In Section 2.1 we saw that the density of free-particle states for a three dimensional 
volume V was shown to be 

 ( ) ( )3 2 1 2
2 3

1 2
4

Vg mε ε
π

=
=

. 

This followed from counting the number of states in the octant of radius 
 2 2 2

x y zR n n n= + + . 
By similar arguments show that in two dimensions, by counting the number of states 
in the quadrant of radius 
 2 2

x yR n n= + , 
the density of states is given by 

 ( ) 22
mAg ε
π

=
=

 

where A is the area. Note in two dimensions the density of states is independent of 
energy. 
 
And similarly, show that in one dimension the density of states is 

 ( )
1 2

1 2

2
L mg ε ε

π
−⎛ ⎞= ⎜ ⎟

⎝ ⎠=
. 

 
In the two-dimensional case the energy states may be specified (similar to Eq. 2.2) by 

 ( )
2 2

2 2

2 x yn n
mA

πε = +
= , 

where A is the area. This may be written as   

 
2 2

2

2
R

mA
πε =
=  

where 2 2
x y

2R n n= + . 
 
Now the number of states of energy up to ε, denoted by N(ε), is given by the number 
of points in the quadrant up to ε(R).  (A quadrant is used since nBxB and nByB are restricted 
to being positive).  And the number of points in the quadrant is approximately equal 
to the area of the quadrant:  

 ( ) 21
4

N Rε π= . 

But since 
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, 

we then obtain 
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Recall that the density of states g(ε) is defined by saying that the number of states 
with energy between ε and ε  + dε  is g(ε).  In other words 
 ( ) ( ) ( )d dg N Nε ε ε ε= + − ε  

or, simply 

 ( ) ( )d
d

N
g

ε
ε

ε
= . 

So differentiating N(ε) we obtain, in two dimensions 

 ( ) 22
mAg ε
π

=
=

 

which is the required expression for the density of states. And indeed we observe this 
is a constant, independent of energy. 
 
 
In the one-dimensional case the energy states are specified (similar to Eq. 2.2) by 

 
2 2

2
22 xn

mL
πε =
= , 

where L is the length. This may be written as   

 
2 2

2
22

R
mL

πε =
=  

where here 2 2
xR n= . 

 
Now the number of states of energy up to ε, denoted by N(ε), is given by the number 
of points in the positive line up to ε(R).  (The positive line is used since nBxB is restricted 
to being positive).  And the number of points in the line is approximately equal to the 
length of the line:  
 ( )N Rε = . 

But since 
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π
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we then obtain 
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Recall that the density of states g(ε) is defined by saying that the number of states 
with energy between ε and ε  + dε  is g(ε).  In other words 
 ( ) ( ) ( )d dg N Nε ε ε ε= + − ε  

or, simply 
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 ( ) ( )d
d

N
g

ε
ε

ε
= . 

So differentiating N(ε) we obtain, in one dimension 

 ( )
1 2

1 2

2
L mg ε ε

π
−⎛ ⎞= ⎜ ⎟

⎝ ⎠=
 

which is the required expression for the density of states. 
 
 
2  In Sections 2.3.1 and 2.3.2 the ideal gas partition function was calculated quantum-
mechanically and classically. Although the calculations were quite different, they both 
resulted in (different) Gaussian integrals. By writing the Gaussian integral of the 
classical case as 

 ( )2 2 2

d d d x y zx y z e
∞ ∞ ∞

− + +

−∞ −∞ −∞
∫ ∫ ∫  

and transforming to spherical polar coordinates, you can perform the integration over 
θ and ϕ trivially. Show that the remaining integral can be reduced to that of the 
quantum case.  
 
If we transform to spherical polar coordinates: 

 

sin cos
sin sin
cos

x r
y r
z r

θ ϕ
θ ϕ
θ

=
=
=  

then the volume element is given by 
 2d d d d sin d d dv x y z r rθ θ ϕ= = . 
So the Gaussian integral is given by  

 ( )2 2 2 2
2

2

0 0 0

d d d d sin d dx y z rI x y z e r e
π π

ϕ θ θ
∞ ∞ ∞ ∞

− + + −

−∞ −∞ −∞

= =∫ ∫ ∫ ∫ ∫ ∫ r . 

We can evaluate the θ and φ integrals, to give 

 
22

0

4 drI r e rπ
∞

−= ∫ . 

Now change variables to 2x r=  so that 1 2d d 2r x x= . Then the integral beomes 

 1 2

0

2 dxI x e xπ
∞

−= ∫  

and this is the integral that appeared in the quantum calculation of the partition 
function. 
 
 
3  The Sakur-Tetrode equation, discussed in Section 2.3.3,  

0
3ln ln ln
2

S Nk V Nk N Nk T Nks= − + +  

is often interpreted as indicating different contributions to the entropy: the volume 
contribution is in the first term, the number contribution in the second term and the 
temperature contribution in the third term. Show that such an identification is 
fallacious, by demonstrating that the various contributions depend on the choice of 
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units adopted – even though the total sum is independent. Discuss the origin of the 
fallacy. 
 
The entropy of the ideal gas is given by 

 
3 2

5 2
2ln

2
mkT VS Nk e

Nπ
⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦=

. 

The argument of the logarithm is dimensionless. This may be checked explicitly, but 
note that in terms of the thermal de Broglie wavelength Λ,  

 5 2
3ln VS Nk e
N

⎡ ⎤= ⎢ ⎥Λ⎣ ⎦
 

so the argument is a volume divided by a volume – dimensionless. 
 
By analogy with the Sakur-Tetrode equation, we may write the entropy as 

 3 5ln ln ln
2

S Nk V Nk N Nk Nk= − − Λ + . 

Now imagine that we decide to measure length in centimetres instead of meters. Then 
the numerical value of the argument in  lnV  will increase by a factor of 10P

6
P. So the 

calculated value of lnV will increase by 6ln10 = 13.82…. So the size of the ‘volume 
contribution’ to the entropy will change if the unit of volume is changed. 
 
Of course the total entropy does not change. Clearly if the length unit is changed in 
this way then the thermal de Broglie wavelength term will also change – and in just 
such a way to cancel the change from the V term. Thus it makes no sense to identify 
NklnV as the volume contribution to the entropy. 
 
Another way of looking at this matter is to recognise that for any function that 
contains different powers of its arguments (recall the power series for the logarithm), 
the argument of the function should be dimensionless. If not, the analysis of 
dimensions becomes senseless. Thus we conclude that it is acceptable to write S as    

 3

5ln ln
2

VS Nk Nk N Nk= − +
Λ

, 

but any further decomposition gives non-unique apportionments of the different 
contributions. 
 
 
4  Show that the Fermi energy for a two-dimensional gas of Fermions is 

 
2

F
2 N

m A
πε
α

=
=  

where A is the area of the system. 
 
At zero temperature, where the Fermi distribution becomes a step function, the 
number of particles in the system may be expressed as 

 ( )
F

0

dN g
ε

α ε ε= ∫  

and since in 2d the density of states is  
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mAg ε
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=
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independent of energy, N is given by 

 F22
mAN α ε

π
=

=
 

so that 

 
2

F
2 N

m A
πε
α

=
= , 

as required. 
 
 
5  Show that the chemical potential of a two-dimensional gas of fermions may be 
expressed analytically as 
 { }Fln 1kTkT eεµ = −  

 
At finite temperatures the number of particles is given by 

 ( )2
0

d
2 1kT

mAN
e ε µ

α ε
π

∞

−
=

+∫=
 

and since  

 
2

F
2 N

m A
πε
α

=
=  

the integral for N may be expressed 

 ( )F
0

d
1kTe ε µ

εε
∞

−
=

+∫ . 

We shall change variables to ( )x kTε µ= − so that 

 F
d

1x
kT

xkT
eµ

ε
∞

−

=
+∫ . 

The integral may be evaluated (using Mathematica, for example) as 

 { }d ln 1
1

kT
x

kT

x e
e kT

µ

µ

µ∞
−

−

= + +
+∫  

however this may be simplified by writing the argument of the logarithm differently 

 

{ } ( ){ }
{ }

{ }

ln 1 ln 1

ln ln 1

ln 1 .

kT kT kT

kT kT

kT

e e e
kT kT

e e
kT

e

µ µ µ

µ µ

µ

µ µ

µ

− −

−

+ + = + +

= + +

= +

+  

Thus we conclude 
 { }F ln 1kTkT eµε = + . 

And this may be rearranged to give the chemical potential as 
 { }Fln 1kTkT eεµ = − , 

as required. 
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6  Calculate the low temperature chemical potential of a two-dimensional gas of 
fermions by the Sommerfeld expansion method of Section 2.4.3. Observe that the 
temperature series expansion terminates. Compare this result with the exact result of 
the previous question. Discuss the difference between the two results.  
 
We start from the expression for the Fermi energy for a two-dimensional system, 
following from the expression for the total number of particles: 

 ( )F
0

dnε ε ε
∞

= ∫ . 

This may be integrated by parts (the other factor of the integrand in this case is unity): 

 ( )F
0

dnε ε ε ε
∞

′= −∫ . 

We have to expand the ε factor about ε = µ 
 ( )ε µ ε µ= + −  

so the Fermi energy is given by 

 ( ) ( ) ( )F
0 0

d dn nε µ ε ε ε µ ε
∞ ∞

′ ′= − − −∫ ∫ ε  

with no higher order terms. The first integral is –IB0B of Section 2.4.3 and the second 
integral is –kTIB1B. Now IB0B = 1, which may be shown quite simply. And within the 
approximation of the Sommerfeld expansion, that the lower limit of the integral be 
extended to –∞, IB1B vanishes, as do all the odd-order terms. Thus the Sommerfeld 
expansion expression for the chemical potential is simply  
 Fµ ε= ; 
the expansion terminates (rather early) and it completely misses the temperature 
dependence of µ away from T = 0.  
 
The previous Problem showed in 2d the chemical potential may be expressed exactly 
 { }Fln 1kTkT eεµ = − . 

This can also be written as 

 
( ){ }

{ }

F F

F
F

ln 1

ln 1

kT kT

kT

kT e e

e

ε ε

ε

µ

ε

−

−

= −

= + −
 

which is more convenient at low temperatures. Then the logarithm term is the part 
missed by the Sommerfeld series. And at low temperatures the exponential is small 
and so the logarithm can be expanded in powers of this exponential 

 { }F F F F F2 3 41 1 1ln 1
2 3 4

kT kT kT kT kTe e e e eε ε ε ε ε− − − − −− = − − − − −…  

so that 

 F F F F2 3 4
F

1 1 1
2 3 4

kT kT kT kTe e e eε ε ε εµ ε − − − −= − − − − −… . 

It is the exponential terms that are missed by the Sommerfeld expansion. 
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7  The general formula for the Fermi integrals IBnB of Section 2.4.3 was quoted as  

                                                   ( )
( ) ( )

2

2

d
1

2 2 !

x
n

n x

n

eI x x
e

n nζ

∞

−∞

−

=
+

= −

∫
 

Derive this result. (You might find the discussion in Landau and Lifshitz, Statistical 
Physics, helpful.)  
 
8 Obtain the chemical potential µ, the internal energy E and the heat capacity CBvB for 
system with general density of states g(ε) as in Section 2.4.4. I.e. show that these are 
given in terms of the behaviour of the density of states at the Fermi surface. 
 
9 Consider the Bose gas at low temperatures.  You saw in Section 2.5.2 and 2.5.3 that 
when the occupation of the ground state is appreciable then the chemical potential µ is 
very small and it may be ignored, compared with ε in the integral for the number of 
excited states.   
 
Show that when the ground state occupation NB0B is appreciable then µ may be 
approximated by 
 0~ kT Nµ − . 
Now consider the more stringent requirement that µ may be neglected in comparison 
with ε in the integral for the number of excited states.  This will be satisfied if µ is 
much less than the energy εB1B of the first excited state.  The expression for εB1B is 

 
2 2

1 2 3~
2mV
πε = . 

Where does this expression come from? 
 
Show that the condition 1µ ε�  is satisfied when 1510N �  (approximately) when 
considering 1cmP

3
P of P

4
PHe (molar volume 27cmP

3
P) at a temperature of about 1K. 

 
Thus show that the expression 

 
3 2

0
c

1 TN N
T

⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

is then valid to temperatures below TBcB right up to within  ∼ 10P

−8
PTBcB of the critical 

temperature. 
 
 
10  Liquid P

4
PHe has a molar volume at saturated vapour pressure of 27cmP

3
P. Treating 

the liquid as an ideal gas of bosons, find the temperature at which Bose-Einstein 
condensation will occur. How will this temperature change as the pressure on the fluid 
is increased? 
 
The condensation temperature is given, from Eq. 2.50, by 
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2 32

c 3.313 NT
mk V

⎧ ⎫= ⎨ ⎬
⎩ ⎭

= . 

The ‘atomic mass’ of helium is 4. And one atomic mass unit weighs 1.66 × 10P

–27
P kg 

so a helium atom weighs 6.64 × 10P

–27
P kg. 

 
The volume of one mole of liquid helium is 27 cmP

3
P, or 27 × 10P

–6
P mP

3
P. Now N/V is 

Avogadro’s number divided by the molar volume: 

 

23

6

28

6.02 10
27 10

2.23 10

N
V −

×
=

×
= ×

 

We need the 2/3 power of this: 

 
2 3

187.92 10N
V

⎛ ⎞ = ×⎜ ⎟
⎝ ⎠

. 

Then, using the values for Planck’s constant and Boltzmann’s constant, we obtain 

 
( )234

18
c 27 23

1.05 10
3.313 7.92 10

6.64 10 1.38 10
3.15 K.

T
−

− −

×
= ×

× × ×
=

×  

The temperature at which Bose-Einstein condensation occurs is 3.15 K. 
 
Since the formula for TBcB indicates that it increases with density, N/V, and since 
increasing the pressure will increase the density, it follows that increasing the pressure 
will increase the Bose-Einstein condensation temperature. 
 
11 The superfluid transition temperature of liquid helium decreases with increasing 
pressure. Very approximately 1

c ~ 0.015 K barT p −∂ ∂ − . How does this compare with 
the behaviour predicted from the Bose-Einstein condensation? 
 
The Bose-Einstein condensation temperature is given by 

 
2 32

c 3.313 NT
mk V

⎧ ⎫= ⎨ ⎬
⎩ ⎭

= ; 

this predicts that TBcB will increase with pressure (density). So the observed reduction 
of TBcB with pressure is in conflict with this model.  
 
12 Show that below the transition temperature the entropy of a Bose gas is given by 

                                                 
3 2

3 2

1 2 c

5
3

I TS Nk
I T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.  

Since the number of excited particles is given by  

                                                      
3 2

ex
c

TN N
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

show that the entropy per excited particle is given by  
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                                                         3 2

1 2

5 1.28
3ex

IS k k
N I

= ≈ . 

Discuss the connection between this result and the two fluid model of superfluid P

4
PHe. 

 
The entropy is most conveniently found from the heat capacity CBVB. Since 

 V
v

SC T
T

∂
=

∂
 

it follows that 

 dVCS T
T

= ∫ . 

And since the heat capacity is given from Eq. 2.54 as 

 
3 2

3 2

5 2 c

5
2V

I TC Nk
I T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

upon integration we find 

 
3 2

3 2

1 2 c

5
3

I TS Nk
I T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

as required. 
 
Now the number of particles out of the ground state, the number of excited particles, 
is 

 
3 2

ex
c

TN N
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

so dividing the total entropy we obtain the entropy per excited particle as   

 3 2

1 2

5 1.28
3ex

IS k k
N I

= ≈ . 

This indicates that the entropy per excited particle is a constant, independent of 
temperature. Now the two fluid model argues that the system is comprised of two 
interpenetrating fluids – the ‘normal’ component and the ‘superfluid’ component. And 
it asserts that the superfluid component carries no entropy. Here we see that the 
entropy may indeed all be associated with the ‘normal’ or excited component, each 
excited particle carrying the same ‘unit’ of entropy.  
 
 
13 Show that the Bose-Einstein transition temperature of a gas of bosons and the 
Fermi temperature for a gas of ‘similar’ fermions are of comparable magnitude. 
Discuss why this should be. 
 
The Bose-Einstein transition temperature for a gas of spin 0 bosons (α = 1) is given by 

 

2 32

c

2 32

2
2.612

3.313 .

NT
mk V

N
mk V

π ⎧ ⎫= ⎨ ⎬
⎩ ⎭

⎧ ⎫= ⎨ ⎬
⎩ ⎭

=

=
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The Fermi temperature of a gas of spin ½ fermions (α = 2), F kε , is given by  

 

2 32 2

F

2 32

6
2 2

4.785 .

NT
mk V

N
mk V

π⎧ ⎫
= ⎨ ⎬

⎩ ⎭

⎧ ⎫= ⎨ ⎬
⎩ ⎭

=

=
 

Thus the Bose condensation temperature and the Fermi temperature are very similar. 
They certainly depend on all the system variables in the same way and the the Fermi 
temperature of a gas of spin ½ fermions is approximately 1.4 times the Bose-Einstein 
transition temperature for a gas of spin 0 bosons. 
 
The reason they are similar is because both temperatures are characterised by the 
thermal deBroglie wavelength for the particles becoming comparable with the inter-
particle spacing. This is the condition for quantum effects to become important. 
 
 
14  In Section 2.6 we studied a paramagnetic solid: a collection of essentially 
distinguishable magnetic moments. If we were to consider a (classical) gas of 
indistinguishable magnetic moments, how would the partition function be modified? 
What would the observable consequences of this modification?  
 
A full treatment of a gas of particles would require consideration of the particles’ 
kinetic energy. However if we neglect this then the only modification to the partition 
function would be the inclusion of the N! term for indistinguishability. Then we 
would have 

 { }2cosh
!

NkT
Z

N
ε

=  

and since the free energy is lnF kT= − Z
 { }ln 2cosh lnF NkT kT NkT N NkTε= − + − . 

The first term is the free energy calculated for the distinguishable solid case and the 
second and third terms are the corrections for indistinguishability. 
 
Since , it follows that d dF S T M= − − dB

 andF FM S
B T

∂ ∂
= − = −

∂ ∂
. 

This means that while the magnetisation of the system will be the same as that of the 
distinguishable system, there will be extra contributions to the entropy (and thus to the 
heat capacity etc.).  
 
 
15 Show, using arguments similar to those in Section 2.1.3, that the energy levels of 
an ultra-relativistic or a massless particle with energy-momentum relation E = cp are 
given by  

 ( )1 22 2 2
1 3 x y z

c n n n
V
πε = + +
= . 

Hence show that the pressure of a gas of such particles is one third of the (internal) 
energy density.  
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16  Evaluate the Fermi temperature for liquid P

3
PHe, assuming it to be a Fermi “gas”. Its 

molar volume is 36 cmP

3
P.  Calculate the   de Broglie wavelength at T  =  TBFB and show 

that it is comparable to the interparticle spacing as expected. 
 
The Fermi temperature is given by 

 

2 32 2

F

2 32

6
2 2

4.785 .

NT
mk V

N
mk V

π⎧ ⎫
= ⎨ ⎬

⎩ ⎭

⎧ ⎫= ⎨ ⎬
⎩ ⎭

=

=
 

The ‘atomic mass’ of P

3
PHe is 3. And one atomic mass unit weighs 1.66 × 10P

–27
P kg so a 

helium-3 atom weighs 4.98 × 10P

–27
P kg. 

 
The volume of one mole of liquid helium-3 is 36 cmP

3
P, or 36 × 10P

–6
P mP

3
P. Now N/V is 

Avogadro’s number divided by the molar volume: 

 

23

6

28

6.02 10
36 10

1.67 10

N
V −

×
=

×
= ×

 

so that 

 
2 3

186.53 10N
V

⎛ ⎞ = ×⎜ ⎟
⎝ ⎠

. 

Then, using the values for Planck’s constant and Boltzmann’s constant, we obtain 

 
( )234

18
F 27 23

1.05 10
4.785 6.53 10

4.98 10 1.38 10
5.01 K.

T
−

− −

×
= × × ×

× × ×
=

 

Thus the Fermi temperature is calculated as 5.01 K. 
 
 
17  In Problem 2.1 we found the expression for the energy density of states g(ε) for a 
gas of fermions confined to two dimensions and we saw that it was independent of 
energy.  What surface density of electrons is necessary in order that TBFB  =  100 mK? 
Show that, for a given area, the low temperature heat capacity is linear in T and 
independent of the number of electrons. 
 
At zero temperature, where the Fermi distribution becomes a step function, the 
number of particles in the system may be expressed as 

 ( )
F

0

dN g
ε

α ε ε= ∫  

and since in 2d the density of states is  

 ( ) 22
mAg ε
π

=
=

, 

independent of energy, N is given by 

 F22
mAN α ε

π
=

=
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so that 

 
2

F
2 N

m A
πε
α

=
= , 

and the Fermi temperature F FT kε= is 

 
2

F
2 NT

mk A
π

α
=

= . 

The areal density corresponding to a given Fermi temperature is 

 F
22

mkTN
A

α
π

=
=

. 

For electrons we have α = 2, m = 9.11×10P

–31
P kg, so for a Fermi temperature of 0.1 K 

we have 

 ( )
31 23

234

13

2 9.11 10 1.38 10 0.1

2 1.06 10

3.56 10 .

N
A π

− −

−

× × × × ×
=

× ×

= ×

 

So the number density is 3.56×10P

13
P electrons per square meter. 

 
The heat capacity is found by differentiating the internal energy.  
 
The simple treatment of the next part is to use the argument that at low temperatures 
only a fraction T/TBFB of the electrons will be excited so that the internal energy is 
essentially this fraction of the classical (equipartition) internal energy NkT in two 
dimensions. Thus 

 
2

F

~ TE Nk
T

 

and so, upon differentiation, 

 
F

~V
TC Nk
T

. 

Thus in the low-temperature limit the heat capacity is linear in T, as in the 3-d case.  
 
The point here is that in 2-d the Fermi temperature is proportional to N (over A) so 
this N cancels with that in the expression for CBVB, making the heat capacity 
independent of N: 

 
2

F
2 NT

mk A
π

α
=

=  

so that 

 F
2

2

~

~
2

V
TC Nk
T

mk ATα
π=

 

and thus we see that the low-temperature heat capacity of a 2-d electron gas is 
independent of the number of electrons. 
 
A better treatment of the low-temperature heat capacity would use the Sommerfeld 
expansion. This gives the internal energy as 
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2 2

F

const
6

kTE N
T

π
= +  

and the heat capacity is then 

 
2

F6V
TC Nk
T

π
= . 

This is the correct low temperature limiting behaviour, but as we saw in Problem 2.6, 
the Sommerfeld method is incapable of treating the higher-order terms in 2-d. 
Observe this result demonstrated that the previous approximation gives the correct 
result to within a numerical correction factor. Then that argument about the N from 
the Fermi temperature cancelling still applies and again we find that the heat capacity 
will be independent of N. 
 
 
18  Use the Sommerfeld expansion method of Section 2.4.3 to show that the Fermi-
Dirac distribution function may be approximated, at low temperatures, by 

 ( ) ( ) ( ) ( )
2

21 ~
61kT kT

e ε µ

πµ ε δ ε µ
−

′Θ − − − +
+

…  

where Θ is the unit step function and δ ′ is the first derivative of the Dirac delta 
function. 
 
Can you write down the general term of the series? 
 
According to the results of Section 2.4.3 integrals of the form 

 ( )
( )

0

d
1kTI

e ε µ

ϕ ε
ε

∞

−
=

+∫ , 

where φ(ε) is an arbitrary function, are approximated by 

 ( )
0

d
! d

n n

n n
n

kT
I I

n ε µ

ψ
ε

∞

= =

= ∑ . 

Here ψ is the integral of φ: 
 ( ) ( )dψ ε ϕ ε= ε∫ . 

We have the expression for the Sommerfeld expansion as 

 ( )
( )

( )
00

dd
! d1

n n

n nkT
n

kT
I

ne ε µ
ε µ

ϕ ε ψε
ε

∞ ∞

−
= =

=
+

∑∫  

and we can write this out term by term  

 ( )
( ) ( ) ( ) ( ) ( )2 4 3 1

2 4 3 1
0 0

d d
2 4! !1

n n

n nkT

kT kT kTd d dI I I
d d n de

µ

ε µ

ϕ ε ϕ ϕε ϕ ε ε
ε ε ε

∞ −

−−

ϕ
= + + + +

+∫ ∫ … …+ . 

The right hand side could be written as  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2
0 0

4
1

4
0 0

d d
2

d d
4! !

n
n

n

kT
I

kT kT
I I

n

µ ε ϕ ε ε δ ε µ ϕ ε ε

δ ε µ ϕ ε ε δ ε µ ϕ ε ε

∞ ∞

∞ ∞
−

′Θ − + − +

′′′+ − + + −

∫ ∫

∫ ∫… …+
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where Θ is the step function and δP

(n)
P is the nth derivative of the delta function. Then 

since this result holds for arbitrary functions φ(ε) we can equate the insides of the 
integral to give 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 4

2 4

1

1
2 4!1

!

kT

n
n

n

kT kT
I I

e
kT

I
n

ε µ µ ε δ ε µ δ ε µ

δ ε µ

−

−

′ ′′′= Θ − + − + − + +
+

+ − +

…

…

 

If we substitute for the values of IBnB in the first few terms we obtain 

 ( ) ( ) ( ) ( ) ( ) ( )
2 4

2 41 7
6 3601kT kT kT

e ε µ

π πµ ε δ ε µ δ ε µ
−

′ ′′′= Θ − + − + − +
+

… , 

as required. And the general term of the expansion is given by 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 122 2
!

n nn nnnI kT n kT
n

δ ε µ ζ δ ε µ− −−− = − − . 

Observe that the first term of the expansion, the step function, is the zero-temperature 
distribution function. The higher order terms give the finite-temperature corrections to 
this. 
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