4.7 Binary mixtures

- This is a first order transition with a conserved order parameter.
- Ising model (with a conserved order parameter).
- We will do a Mean Field treatment of this (cop) Ising model.

Standard treatment in Chemical Physics book by Slater - but beware!

What do we mean by "mean field"?

4.7.1. Basic ideas

- Mixture of two atomic species A and B in a solid lattice.
- Relative proportions x and 1 x.
- Alloy: composition is specified by $A_x B_{1-x}$.
- Energy of the system is specified in terms of the nearest neighbour interactions, denote

 ε_{aa} energy of a single a—a bond

 ε_{bb} energy of a single b—b bond

 ε_{ab} energy of a single a—b bond

4.7.2. Model calculation (mean field)

• Assumption: the A and B atoms are distributed randomly. Thus we are considering a *homogeneous mixture*.

• Specify temperature and volume so need Landau Helmholtz free energy;

require to know the energy and the entropy.

 Considering a bond joining two neighbouring atoms. We label one atom as the left atom and the other as the right. bond left right atom

4211 Statistical Mechanics
Week 6

Each atom may be an A atom or a B atom. Thus there are four different configurations for the bond: a
 -a, a-b, b-a, b-b.

right left atom atom	A	B
A	$\mathcal{E}_{\mathrm{aa}}$	$\mathcal{E}_{\mathrm{ab}}$
В	$\mathcal{E}_{\mathrm{ab}}$	$\mathcal{E}_{ ext{bb}}$

configuration energies

- Concentration of the A atoms is x.
- Concentration of the B atoms is 1 x.

- — Concentration of the A atoms is x.
 - Concentration of the B atoms is 1 x.
- Assume the atoms are distributed randomly so:
- Probability a site is occupied by an A atom is x.
 - Probability it is occupied by a B atom is 1 x.
- In general case concentration varies with position.
 - Probability the left atom is A is x_1
 - Probability it is B is $1 x_1$
 - Probability the right atom is A is x_r .
 - Probability it is B is $1 x_r$

• Four bond configurations a—a, a—b, b—a, b—b, then have the probabilities:

$$x_l x_r$$
, $x_l (1 - x_r)$, $(1 - x_l) x_r$, $(1 - x_l) (1 - x_r)$.

right left atom atom	A	В
A	X_1X_r	$x_1 \left(1 - x_r \right)$
В	$(1-x_1) x_r$	$(1-x_1)(1-x_r)$

configuration probabilities

4.7.3 System energy

- Have defined the energies $\{\varepsilon_{aa}, \varepsilon_{bb}, \varepsilon_{ab}\}$ of the three (four) types of bonds.
- Have the probability of occurrence of each configuration.
- The mean energy for the bond will be the sum of the energy of each state multiplied by its probability:

$$\bar{e}_{lr} = \varepsilon_{aa} x_1 x_r + \varepsilon_{ab} x_1 \left(1 - x_r \right) + \varepsilon_{ab} \left(1 - x_1 \right) x_r + \varepsilon_{bb} \left(1 - x_1 \right) \left(1 - x_r \right).$$

- Now assume composition is homogeneous: $x_1 = x_r = \text{const}, x$.
- Then mean energy per bond reduces to

$$\bar{e} = x^2 \varepsilon_{aa} + (1 - x)^2 \varepsilon_{bb} + 2x(1 - x)\varepsilon_{ab}$$

Mean energy per bond

$$\bar{e} = x^2 \varepsilon_{aa} + (1 - x)^2 \varepsilon_{bb} + 2x(1 - x)\varepsilon_{ab}$$

May be rearranged as (why do this?)

$$\bar{e} = x\varepsilon_{aa} + (1 - x)\varepsilon_{bb} + x(1 - x)\left\{2\varepsilon_{ab} - \left(\varepsilon_{aa} + \varepsilon_{bb}\right)\right\}.$$

- Internal energy is found by summing over N atomic sites in a lattice where each atom has s neighbours.
- Number of neighbour bonds will be Ns/2; the divisor of 2 removes double counting.
- Internal energy is then $E = Ns\bar{e}/2$

• Internal energy is $E=Ns\bar{e}/2$ or

$$E = \frac{Ns}{2} \left\{ x \varepsilon_{aa} + (1 - x)\varepsilon_{bb} + 2x(1 - x) \left[\varepsilon_{ab} - \left(\frac{\varepsilon_{aa} + \varepsilon_{bb}}{2} \right) \right] \right\}$$

• First two terms represent the energy of the separated pure phases E_0 .

$$E_0 = \frac{Ns}{2} \left[x \varepsilon_{aa} + (1 - x) \varepsilon_{bb} \right]$$

- Third term gives the energy of mixing E_{m} .

$$E_{\rm m} = Nsx(1-x)\left[\varepsilon_{ab} - \left(\frac{\varepsilon_{aa} + \varepsilon_{bb}}{2}\right)\right].$$

Simplify...

• We will see that that $E_{\rm m}$ is the only energy that counts.

$$E_{\rm m} = Nsx(1-x)\left[\varepsilon_{ab} - \frac{1}{2}\left(\varepsilon_{aa} + \varepsilon_{bb}\right)\right].$$

• Define the energy arepsilon

$$\varepsilon = \varepsilon_{ab} - \frac{1}{2} (\varepsilon_{aa} + \varepsilon_{bb})$$

the difference between the 'unlike' neighbour energy and the mean of the two 'like' neighbour energies. This is the *characteristic energy* of the system.

Then the energy of mixing takes the simple form

$$E_{\rm m} = Ns \, x(1-x) \, \varepsilon.$$

$$E_{\rm m} = Ns \, x(1-x) \, \varepsilon$$

- Observe that $E_{\rm m}$ is invariant under the transformation $x\to 1-x$ $E_{\rm m}$ is symmetric about the line $x=\frac{1}{2}$.
- System whose energy satisfies this condition are strictly regular solutions.
- An ideal solution has $\varepsilon = 0$; its energy of mixing is zero. It cannot lower its energy by changing its structure.
- But when $\varepsilon \neq 0$ then the solution can lower its energy by transforming to an ordered structure.
 - When $\varepsilon < 0$ then a—b bonds are preferred; ordered state will be a superlattice. (Clearly this would only happen in a solid.)
 - When $\varepsilon > 0$ then a—a and b—b bonds are preferred; ordered state will comprise separate arich and of b-rich atoms. (This would happen in both solids and liquids.)

4.7.4. **Entropy**

- Each site can be occupied by an A atom or a B atom; it has two states.
 - The probability that it is an A atom is x.
 - The probability that it is a B atom is (1 x).
- The (Gibbs) entropy is

$$S = -Nk \left[x \ln x + (1 - x) \ln(1 - x) \right].$$

• Recognise: standard entropy for 2-state system. Identical to that for the spin $^1/_2$ magnet.

4.7.5. Free energy

 System has its temperature and volume fixed thus the Helmholtz free energy is the appropriate thermodynamic potential to use.

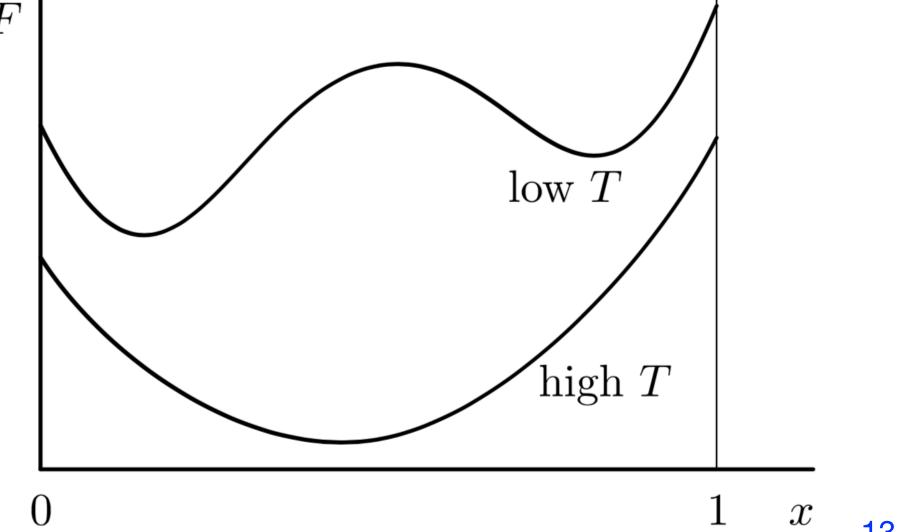
$$F = E - TS$$
.

So we have

$$F = \frac{Ns}{2} \left[x \varepsilon_{aa} + (1 - x)\varepsilon_{bb} + 2x(1 - x)\varepsilon \right] + NkT \left[x \ln x + (1 - x)\ln(1 - x) \right]$$

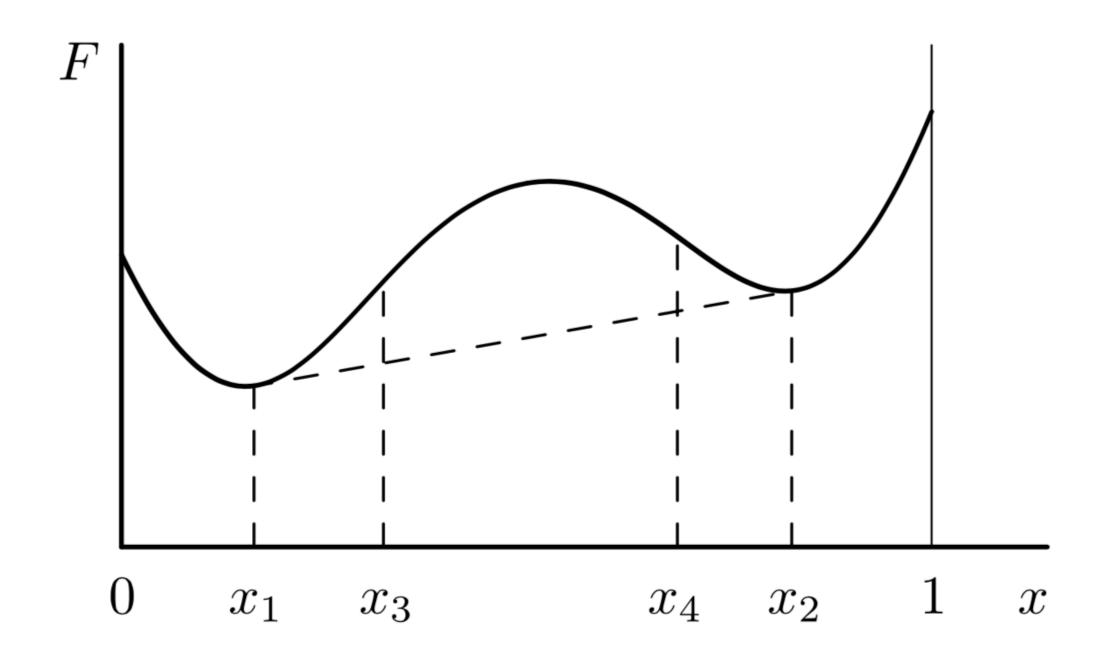
vertical shear

energy of mixing



4211 Statistical Mechanics

• Between $x = x_1$ and $x = x_2$ it is possible to lower the free energy by phase separation by dropping down from the curve to the double tangent line, with a mixture of phases at densities x_1 and x_2 . This is analogous to the situation with the liquid-gas system treated in the van der Waals



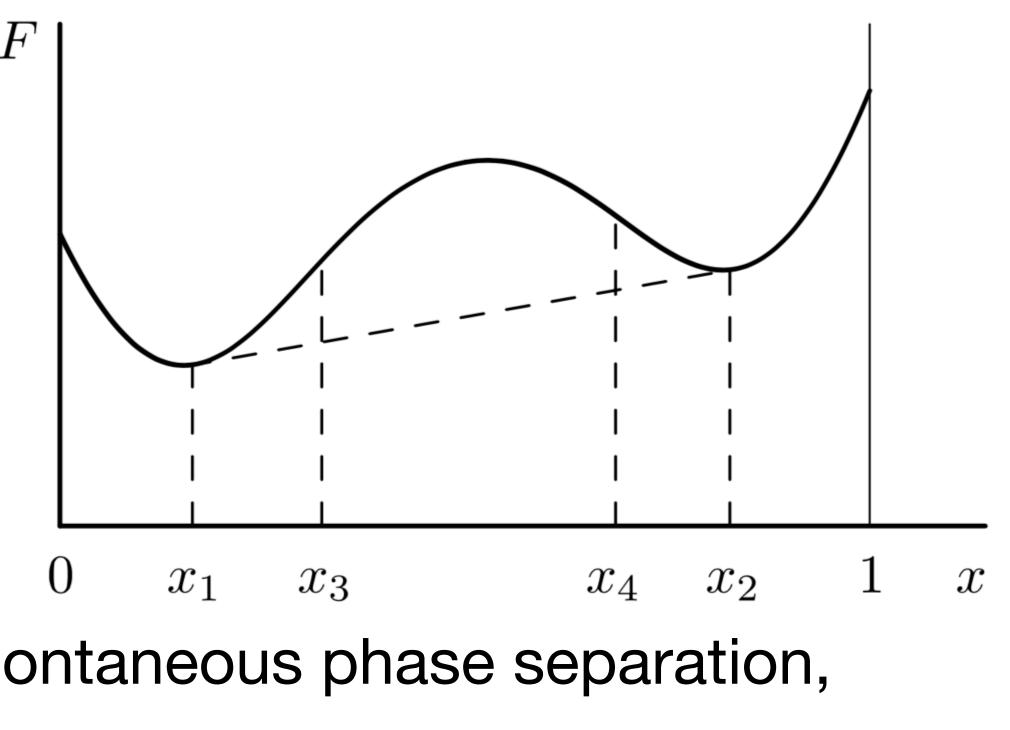
approach. And as with the fluid case, in the phase separation region some parts are *metastable* while some parts are *unstable*.

4211 Statistical Mechanics
Week 6

•

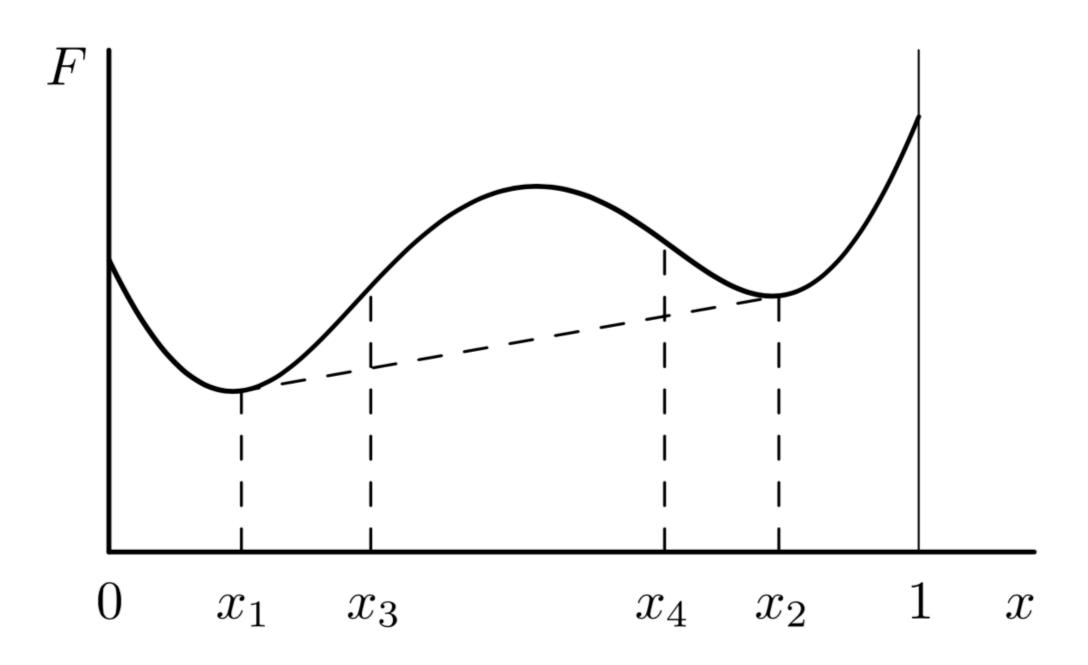
• Instability occurs whenever $\partial F/\partial x$ is a decreasing function of x, that is, when $\partial^2 F/\partial x^2 < 0$. Then the system is unstable with respect to infinitesimal concentration fluctuations. This happens in the region x_3 to x_4 . This is known as the spinodal region. If the temperature is quenched into this region then one has spontaneous phase separation,

referred to as spinodal decomposition.



15 Week 6 4211 Statistical Mechanics

• By contrast the regions x_1 to x_3 and x_4 to x_2 are metastable. Here it is possible to remain in the inhomogeneous phase unless a concentration fluctuation of sufficient magnitude occurs. The system is unstable with respect to finite concentration fluctuations. Clearly if one



waits long enough a fluctuation of sufficient magnitude will occur (but it might be a very long wait indeed).

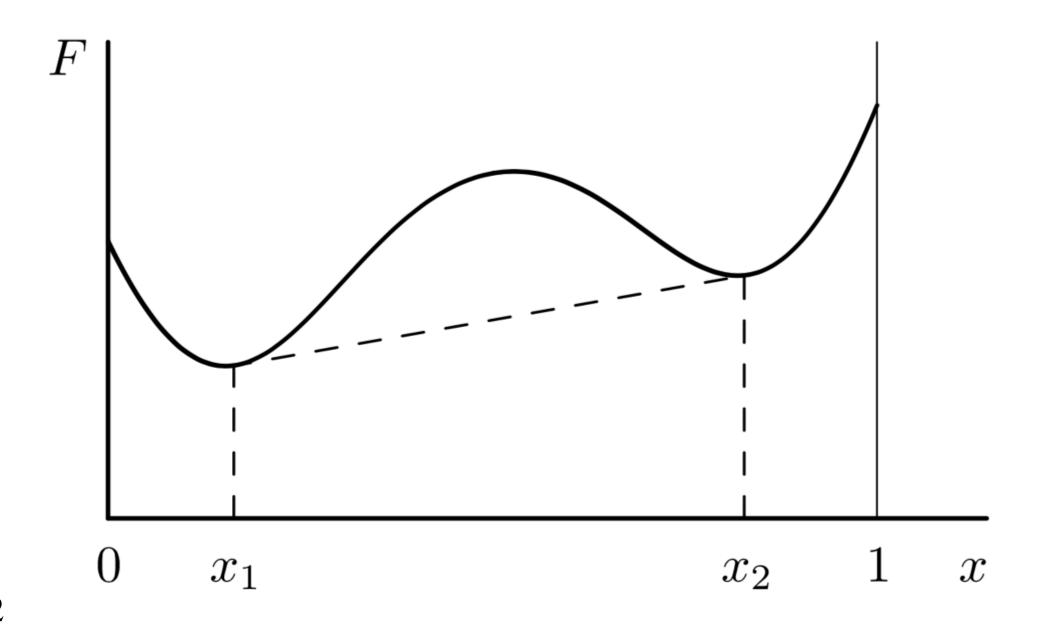
-(Look at Section 4.7.6 Lever rule)

4.7.7 Phase separation curve — the binodal

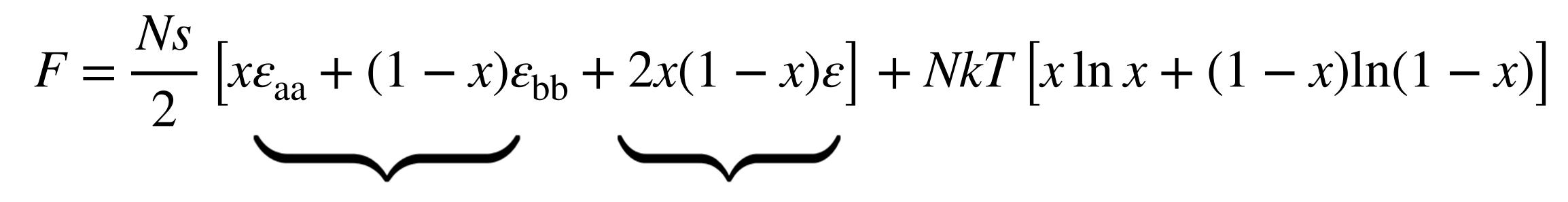
- The concentrations x_1 and x_2 of the two separated phases are determined from the double tangent construction.
- Must solve the simultaneous equations

$$\frac{\mathrm{d}F(x)}{\mathrm{d}x} \bigg|_{x_1} = \frac{\mathrm{d}F(x)}{\mathrm{d}x} \bigg|_{x_2}$$

$$F(x_2) = F(x_1) + (x_2 - x_1) \frac{\mathrm{d}F(x)}{\mathrm{d}x} \bigg|_{x_1, x_2}$$

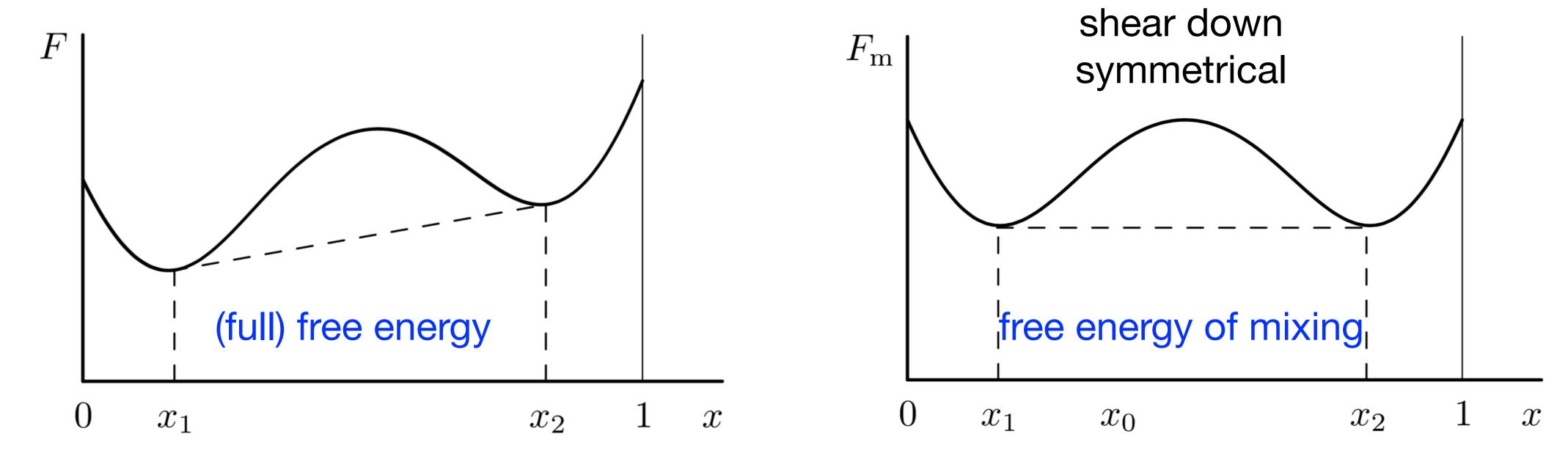


• This is horrible and messy. So let's be clever . . . Think . . .



vertical shear

energy of mixing



So work with free energy of mixing — now simply require $dF_{\rm m}/dx=0$.

4211 Statistical Mechanics
Week 6

$$F_{\rm m} = Nsx(1-x)\varepsilon + NkT \left[x\ln x + (1-x)\ln(1-x)\right].$$

• Concentration x_1 and x_2 of separated phases determined from

$$\frac{\mathrm{d}F_m(x)}{\mathrm{d}x} = 0$$

so differentiate

$$\frac{\mathrm{d}F_m(x)}{\mathrm{d}x} = Ns\varepsilon(1-2x) - NkT\ln\frac{1-x}{x} = 0.$$

- Would like to solve this for x(T), giving two solutions x_1 and x_2 .
- But can't do it!

We can't solve

$$Ns\varepsilon(1-2x) - NkT \ln\frac{1-x}{x} = 0$$

for x(T), but we can solve for T(x). Familiar?

This gives the transition temperature as a function of x:

$$T_{\rm ps} = \frac{s\varepsilon(1-2x)}{k\ln[(1-x)/x]}.$$

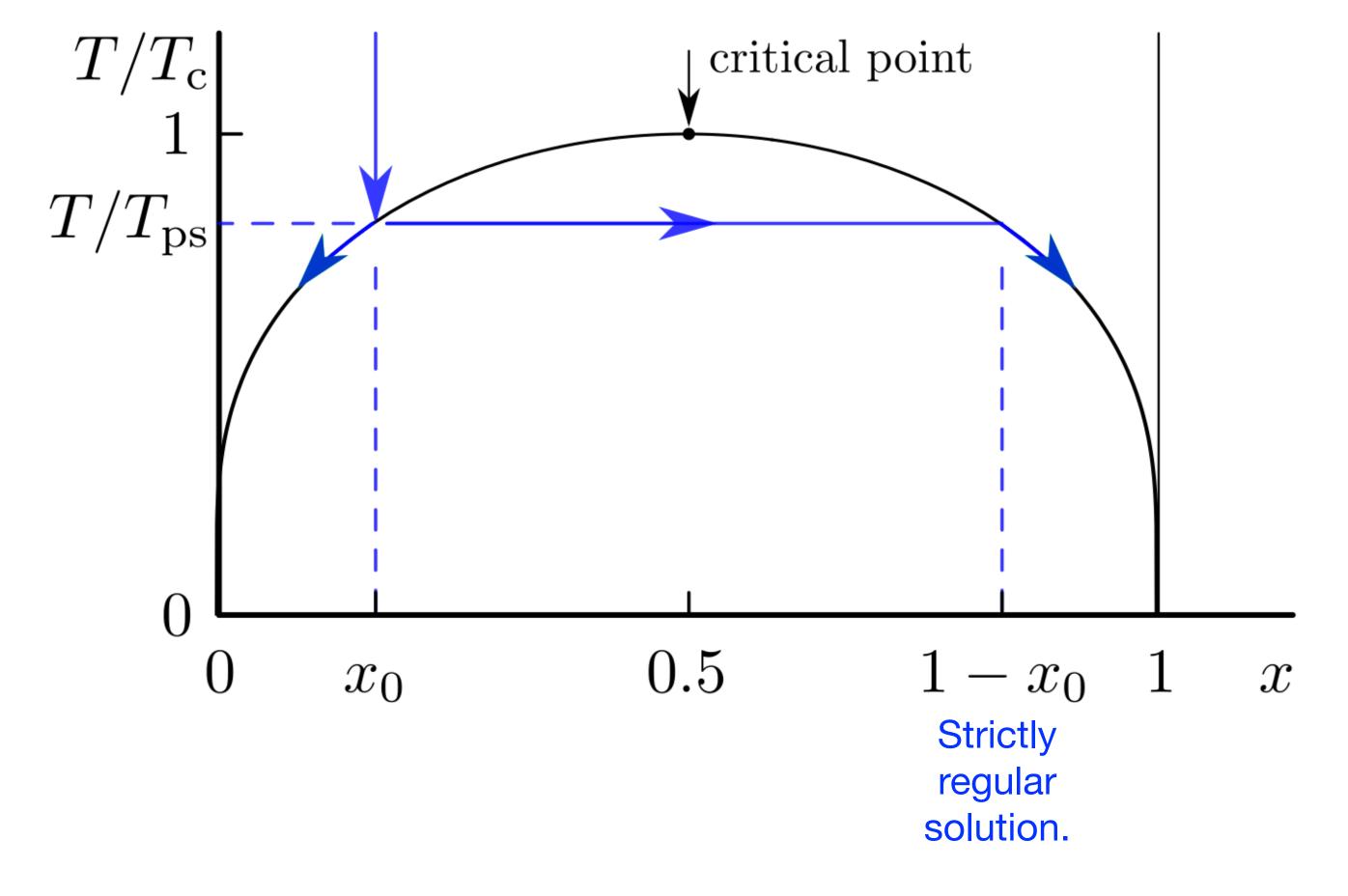
- The critical temperature $T_{
m c}$ corresponds to the maximum $T_{
m ps}$, occuring at

$$x=rac{1}{2}$$
 by symmetry. So $T_{\mathrm{c}}=rac{sarepsilon}{2k}$

phase transition curve / binodal

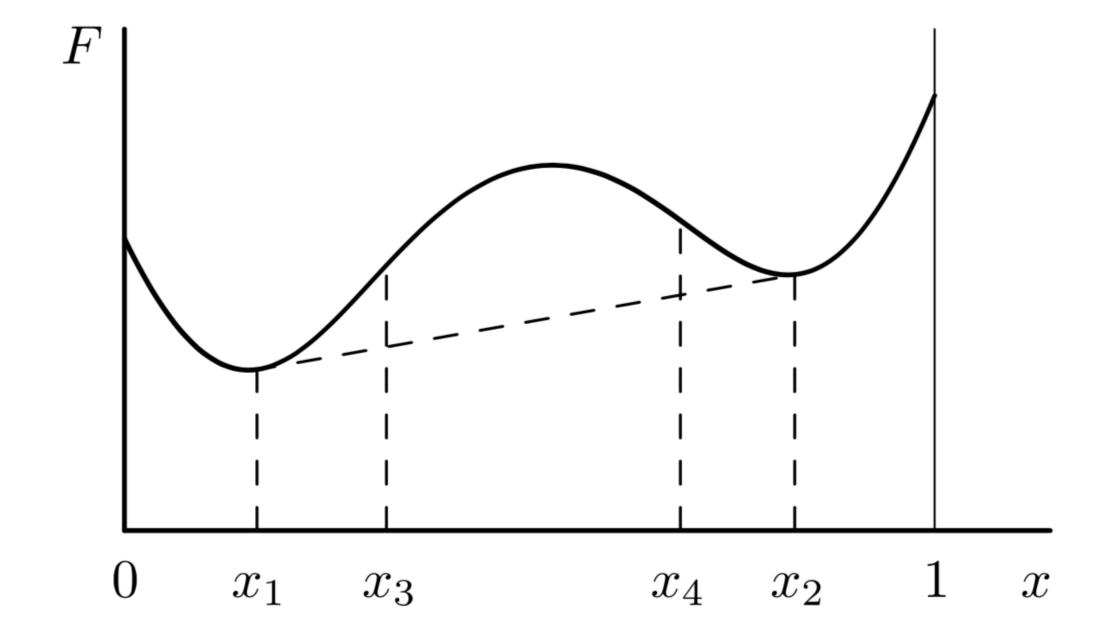
$$T_{\rm ps} = \frac{2(1-2x)}{\ln[(1-x)/x]} T_{\rm c}$$

Path of a transition



4.7.8 The spinodal curve

- The spinodal curve traces out the region of *instability* in the T-x plane.
- Negative $d^2F/dx^2 < 0$; between points x_3 and x_4 .
- These boundary points correspond to $d^2F/dx^2 = 0$. (can use F_m)



• We found dF/dx. So differentiate again

$$\frac{\mathrm{d}^2 F_{\mathrm{m}}}{\mathrm{d}x^2} = -2Ns\varepsilon + NkT\left(\frac{1}{1-x} + \frac{1}{x}\right) = 0$$

Solution of

$$-2Ns\varepsilon + NkT\left(\frac{1}{1-x} + \frac{1}{x}\right) = 0$$

gives $T_{\rm sp}(x)$:

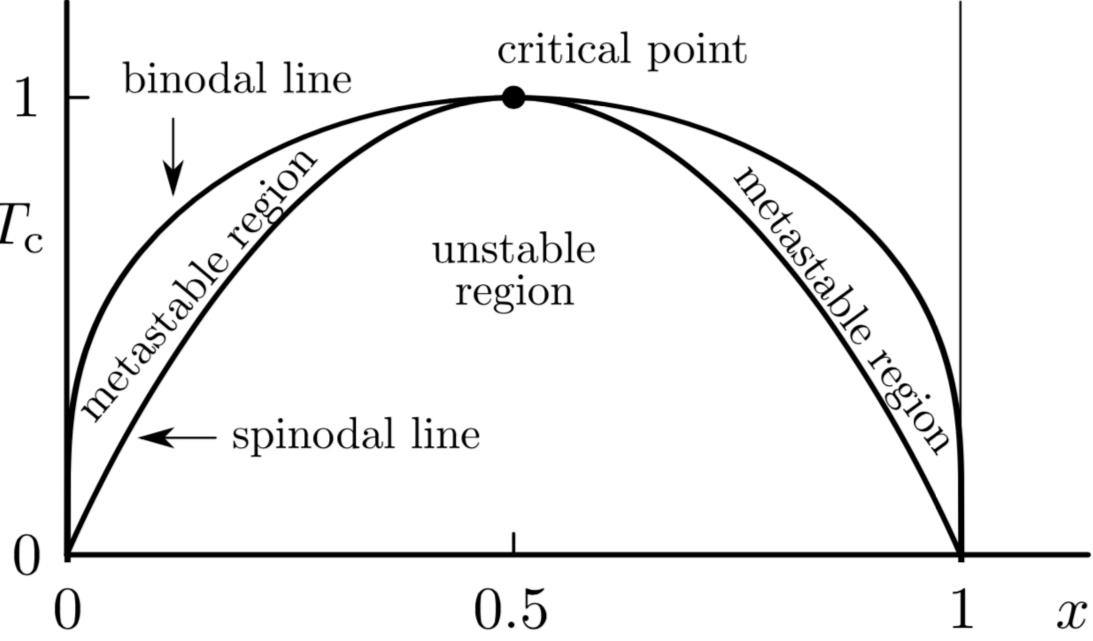
$$T_{\rm sp}(x) = \frac{2s\varepsilon}{k} x(1-x)$$

$$T \cdot$$
binodal line
$$T/T_{\rm c}$$

or, in terms of $T_{\rm c}$:

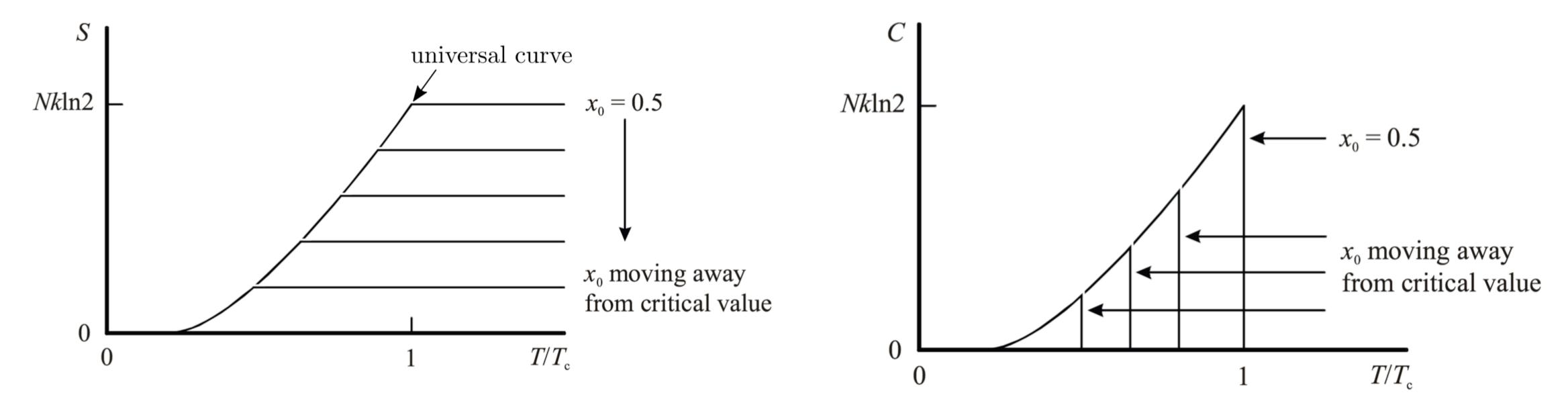
$$T_{\rm sp} = 4x(1-x)T_{\rm c}$$

 Spinodal and binodal lines meet at the critical point.



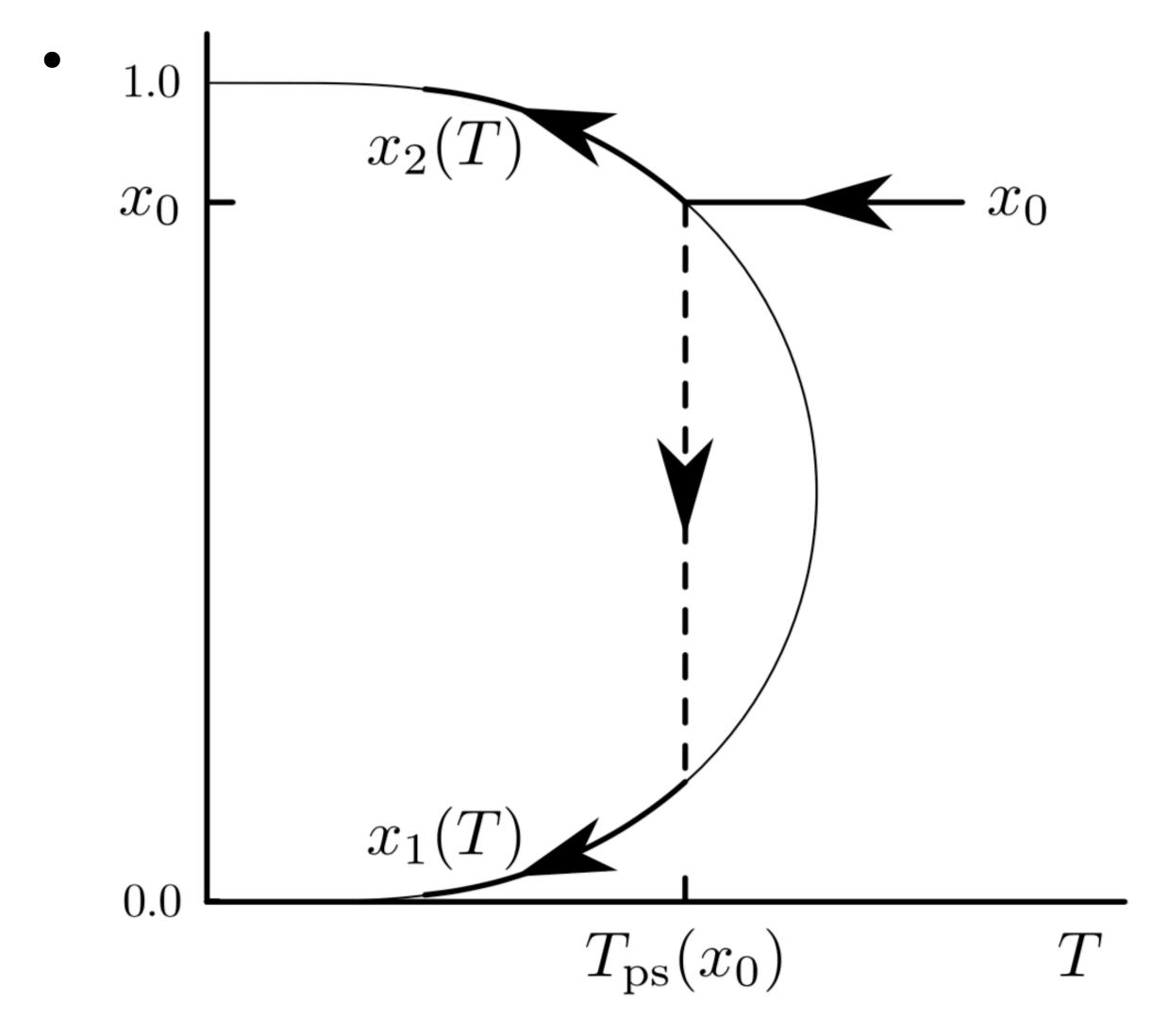
Entropy and heat capacity — no details

Look in book for further details



The entropy is continuous at the transition and there is a simple discontinuity in the heat capacity. This means that there is *no latent heat* even though the transition is first order!!! (Because V is constant rather than p.)

4.7.11. Order of the transition and the critical point



Discontinuity in x at the transition \Longrightarrow First order transition.

But — at the critical point the Discontinuity vanishes

→ Transition goes second order

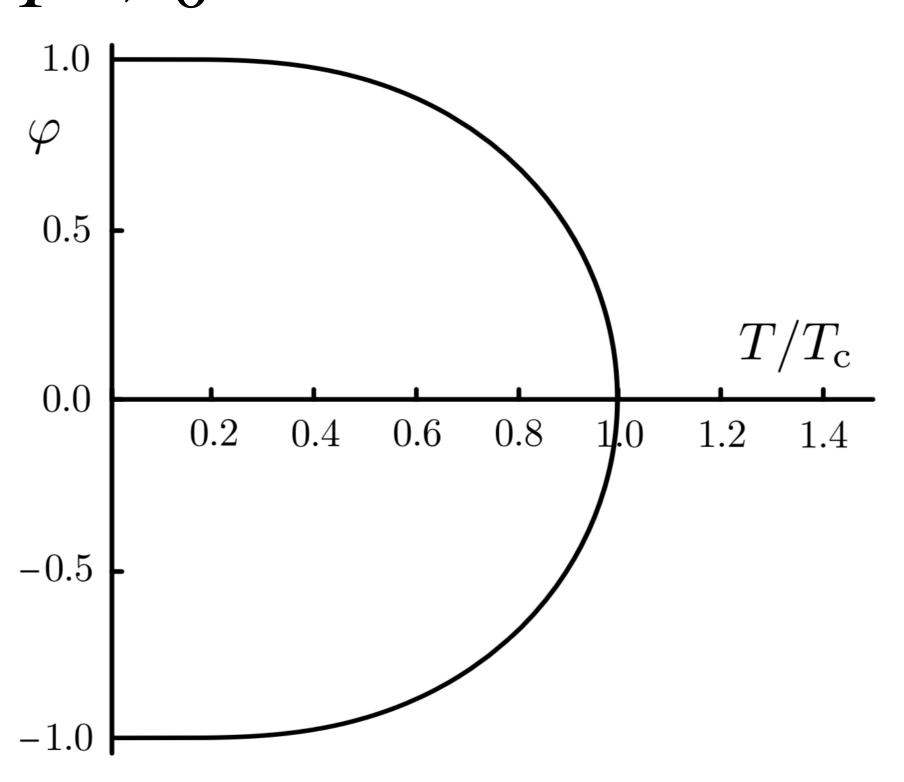
4.7.12 Around the critical point

• Define $\varphi = 2x - 1$. So

$$\varphi \to 0$$
 as $T \to T_{\rm c}$ $\varphi \to \pm 1$ as $T \to 0$

$$\frac{T}{T_{\rm c}} = \frac{2\varphi}{\ln\left[(1+\varphi)/(1-\varphi)\right]}$$

Identical to Weiss ferromagnet!!



Critical exponent β

$$\frac{T}{T_{\rm c}} = \frac{2\varphi}{\ln\left[(1+\varphi)/(1-\varphi)\right]}$$

• Expand $1 - T/T_c$ in powers of φ : $\frac{T}{T_c} = 1 - \frac{1}{3}\varphi^2 - \frac{4}{45}\varphi^4 + \dots$

and invert the series:

$$\varphi = \sqrt{3} \left(1 - \frac{T}{T_{\rm c}} \right)^{1/2} - \frac{2\sqrt{3}}{5} \left(1 - \frac{T}{T_{\rm c}} \right)^{3/2} + \dots$$

giving $\beta = \frac{1}{2}$ and $b = \sqrt{3}$.

Difference between cop and n-cop

- The diagram above, showing the critical point may be similar in both cases, but the interpretation is different.
 - For a non-conserved order parameter when the critical point is approached there is a *bifurcation* and the system breaks symmetry by choosing one rather than the other branch.
 - For a conserved order parameter *both* branches are chosen; we have coexisting fractions determined by the lever rule.
- The two are connected by Lagrange multiplier / Legendre transformation.

4.9 Restrospective

4.9.1 The existence of order

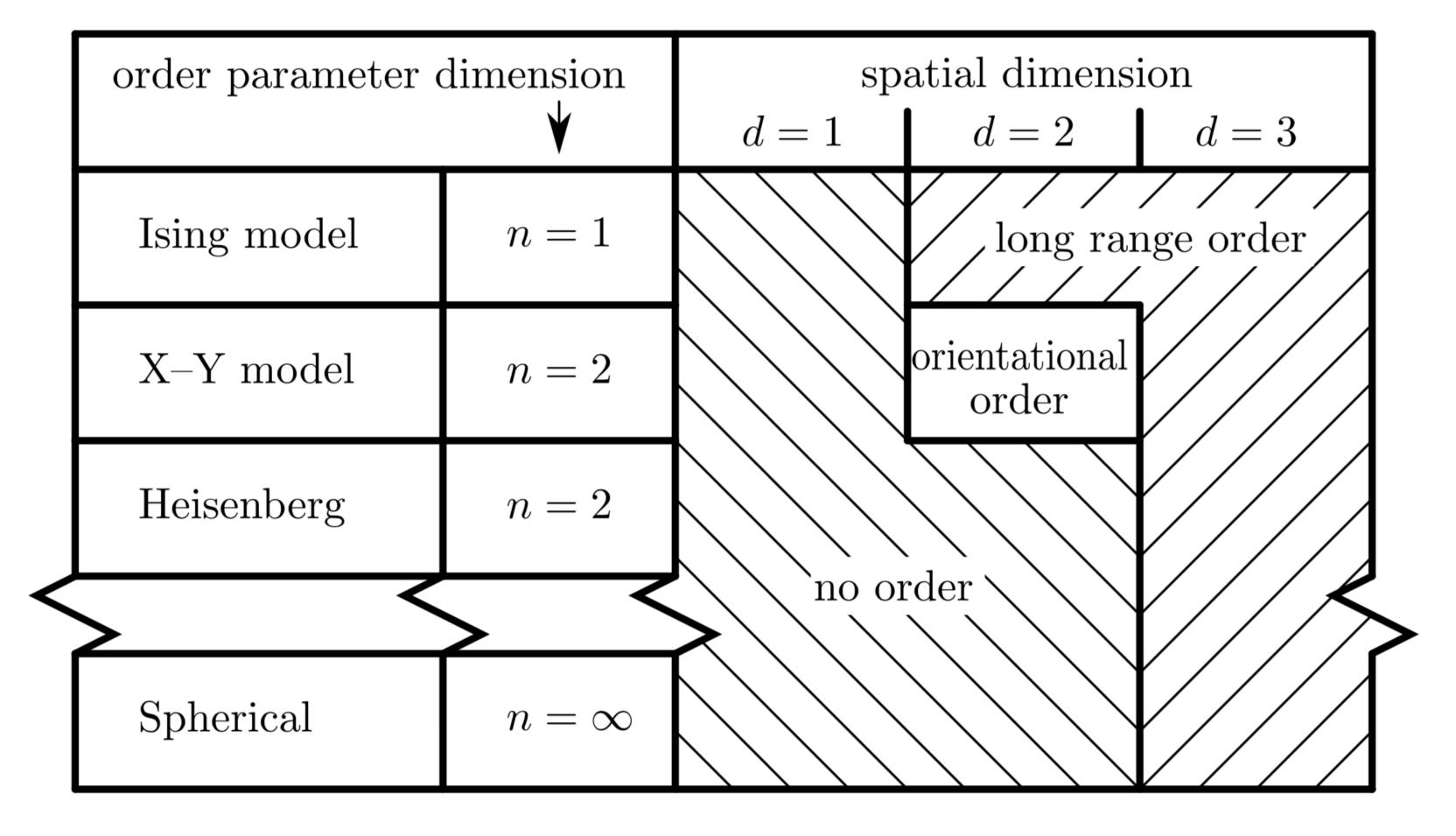
- Ising model (n = 1): no transition in d = 1, but a transition in $d \ge 2$.
- Heisenberg model (n=3): no transition in d=1 or 2, but a transition in $d \geq 3$. (Mermin-Wagner theorem fluctuations kill order in 1 and 2 d.)
- Spherical model ($n = \infty$): no transition in d = 1 or 2; \exists a transition in $d \ge 3$.
- XY model (n=2): no transition in d=1. \exists transition in $d\geq 3$. d=2?????

d is dimension of space, n is dimension of order parameter "vector"

4211 Statistical Mechanics
Week 6

n = 2, d = 2 case
 is marginal. There is
 a special order:
 orientational order.
 Transition called a
 Kosterlitz-Thouless
 transition. Nobel 2016.

Could tabulate $kT_c = x\hbar J$???



Universality classes

	d	n^{-}	$ \alpha $	β	γ	δ	ν	η
Mean field	any	any	0	1/2	1	3	1/2	0
2d Ising	2	1	0	$\frac{1}{8}$	$\frac{7}{4}$	15	1	$\frac{1}{4}$
3d Ising	3	1	0.11	0.33	1.24	4.79	0.63	0.04
3d XY	3	2	-0.01	0.35	1.32	4.78	0.67	0.04
3d Heisenberg	3	3	-0.12	0.37	1.40	4.8	0.71	0.04
3d spherical	3	∞	-1	$\frac{1}{2}$	2	5	1	0

The liquid-gas transition (Section 4.2), for which $d=3,\ n=1$, has critical exponents corresponding to those of the 3d Ising model, as expected.

But in, general, n is not sufficient to specify the order parameter (may not be a vector).

4.9.2 Validity of mean field theory

- For short range interactions mean field is exact for d=4 (and higher).
- It's all about connectivity: greater d, \Longrightarrow larger the number of neighbours.
- But some (3d) systems seem to be mean field e.g. superconductivity.
 - have to be very close to $T_{
 m c}$ to observe breakdown of mean field.
- Mean field is killed by fluctuations anomalous broadening of free energy.
- The Ginzburg criterion tells you how close.

4.9.3 Features of different Phase Transition Models

	first order		second order	symmetry broken
conserved order parameter	liquid–gas (but ∃ critical point)	\rightarrow	liquid—gas along critical isochore	none
	binary alloy (but \exists critical point)	\rightarrow	binary alloy at critical concentration	none
	solid–fluid: no critical point	\rightarrow		translational invariance
non-conserved order parameter		\rightarrow	ferromagnet	rotational invariance
	ferroelectric at high pressure	$\begin{array}{c} \text{tricritical} \\ \leftarrow \text{point} \rightarrow \end{array}$	ferroelectric at low pressure	inversion symmetry