
Section 4
Statistical Thermodynamics of delocalised particles

4.1  Classical Ideal Gas
4.1.1  Indistinguishability
Since the partition function is proportional to probabilities it follows that for composite systems the
partition function is a product of the partition functions for the individual subsystems.  The free energy
is proportional to the logarithm of of the partition function and this leads to the the extensive variables
of composite systems being additive.  

In this section we shall examine how the (canonical) partition function of a many-particle system is
related to the partition function of a single particle.  In Section 2.6 we saw how this could be done for
localised systems where the particles, although indistinguishable,  could be individually identified by
the sites they occupied.  In that case for an assembly of N identical but distinguishable particles the
resultant partition function would be the product of the (same) partition functions of a single particle, z

Z = zN
.

For delocalised particles, as in a gas, this is not possible.  The key question is that of
indistinguishability of the atoms or molecules of a many-body system.  When two identical molecules
are interchanged the system is still in the same microstate, so the distinguishable particle result
overcounts the states in this case.  Now the number of ways of redistributing N particles when there
are  particles in the first state,  particles in the second state etc. isn1 n2

N!
n1! n2! n3! .....

so that for a given distribution {  the partition function for identical indistinguishable particles isni}

Z =
n1! n2! n3! .....

N!
zN

4.1.2  Classical approximation
The problem here is the occupation numbers { }; we do not know these in advance.  However at high
temperatures the probability of occupancy of any state is small; the probability of multiple occupancy
is then negligible.  This is the classical régime.  Under these circumstances the factors 
can be ignored and we have a soluble problem.

ni

n1! n2! n3! ....

In the classical case we have then

Z =
1

N!
zN
.

The Helmholtz free energy

F = −kT ln Z

is thus

F = −NkT ln z + kT ln N! .

This is N times the Helmholtz free energy for a single particle plus an extra term depending on T and
N.  So the second term can be ignored so long as we differentiate with respect to something other than
T or N.  Thus when differentiating with respect to volume to find the pressure, the result is N times
that for a single particle.
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The problem then boils down to finding the partition function z for a single particle

z = ∑
i

e−εi/kT

so the first thing we must do is to find what these energies  are.εi

4.1.3  Specifying the single-particle energy states
We consider a cubic box of volume .  Each side has length .  Elementary quantum mechanics
tells us that the wave function must go to zero at the walls of the box − only standing waves are
allowed.

V V1/3

λ

2
= V1/3 λ

2
=

1

2
V1/3 λ

2
=

1

3
V1/3

Standing waves in a box

In the general case the allowed wave lengths λ satisfy  orλ / 2 = V1/3 / n

λn =
2
n

V1/3 n = 1, 2, 3, 4 ........ ∞

In three dimensions there will be a λ for the x, y, and z directions:

λnx
= 2

V1/3

nx
, λny

= 2
V1/3

ny
, λnz

= 2
V1/3

nz
.

We can now use the deBroglie relation  to obtain the momentum and hence the
energy.

p = h / λ = 2πħ / λ

px =
πħnx

V1/3
, py =

πħny

V1/3
, pz =

πħnz

V1/3
.

and so for a free particle the energy is then

ε =
p2

2m
=

p2
x + p2

y + p2
z

2m
which is

ε =
π

2
ħ

2

2mV2/3 {n2
x + n2

y + n2
z} .

In this expression it is the triple of quantum numbers ( ) which specify the quantum state, so
we may write 

nx, ny, nz

ε = ε (nx, ny, nz) .

4.1.4  Density of states
In principle, since the quantum states are now specified, it is possible to evaluate the partition function
sum.  In practice – for a box of macroscopic dimensions – the energy levels are extremely closely
spaced and it proves convenient to approximate the sum by an integral:
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∑
i

e−εi/kT
→ ⌠


⌡

∞

0

g (ε) e−ε/kTdε

where  is the number of single particle quantum states with energy between ε and .  The
quantity  is called the density of states.  

g (ε)dε ε + dε
g (ε)

To find an expression for the density of states we note that each triple of quantum numbers ( )
specifies point on a cubic grid.  If we put

nx, ny, nz

R2
= n2

x + n2
y + n2

z

then the energy is given by

ε =
π

2
ħ

2R2

2mV2/3
.
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ny

Counting of quantum states

Now the number of states of energy up to ε, denoted by  is given by the number of points in the
octant up to .  (An octant since  are positive).  And the number of points in the octant
is approximately equal to the volume of the octant: 

N (ε)

ε (R) nx, ny nz and

N (ε) =
1
8

4
3
πR3

.

But since

R =




2mV2/3

π2ħ2





1/2

ε
1/2
,

we then obtain

N (ε) =
1
6

V

π2ħ3
[2mε]3/2

.

Recall that the density of states  is defined by saying that the number of states with energy
between ε and  is .  In other words

g (ε)
ε + dε g (ε)dε

g (ε)dε = N (ε + dε) − N (ε)

or, simply
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g (ε) =
dN (ε)

dε
.

So differentiating  we obtainN (ε)

g (ε) =
1
4

V

π2ħ3
[2m]

3/2
ε

1/2

which is the required expression for the density of states.

4.1.5  Calculating the partition function
The partition function, in integral form, is given by

z = ∫
∞

0
g (ε) exp−ε / kT dε

=
V

4π2ħ3
(2m)

3/2
∫
∞

0
ε

1/2 exp−ε / kT dε.

This integral is evaluated by making the substitution

x = ε / kT

so that

z =
V

4π2ħ3
(2mkT)3/2

∫
∞

0
x1/2e−x dx.

Here the physics is all outside the integral.  The integral is a pure number (an example of the gamma
function), given by , so thatπ / 2

z = (
mkT

2πħ2)
3/2

V .

For a gas of N particles we then have

Z =
1

N!
zN
.

We use Stirling’s approximation when evaluating the logarithm:

ln Z = −N ln N + N + N ln z = N ln


(

mkT

2πħ2)
3/2 Ve

N





from which all thermodynamic properties can be found.

We note parenthetically that the (single particle) partition function could have been evaluated
classically without enumeration of the quantum states and without the consequent need for the energy
density of states.    

The classical partition function is given by the integral

z =
1
h3 ∫ exp−ε / kT d3p d3q

where the classical “state” is specified as a cell in p – q space, or phase space.  The extent in phase
space of such a state is given by the unspecified quantity h.  For the ideal gas

ε = p2 / 2m.

Thus the q integrals are trivial, giving a factor V, and we have

z =
V

h3


∫

∞

−∞

exp−p2 / 2mkT dp


3

.
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The integral is transformed to a pure number by changing variables:  so thatp = x 2mkT

z =
V

h3
{2mkT}3/2 


∫

∞

−∞

exp−x2 dx


3

.

The integral is  so thatπ

z = (
2πmkT

h2 )
3/2

V

just as in the “quantum” calculation.  Thus we obtain the partition function from purely classical
arguments and as a bonus we see that by comparison with the quantum result, this justifies the use of
Planck’s constant in the normalization factor for the classical state element of phase space.                  
 ______________________________________________________________  End of lecture 18

4.1.6  Thermodynamic properties
We start from the Helmholtz free energy:

F = −kT ln Z = −NkT ln


(

mkT

2πħ2)
3/2 Ve

N




,

giving

p = kT
∂ ln Z

∂V |
T
= NkT

∂ ln z

∂V |
T
=

NkT

V
.

This is the ideal gas equation, and from this we identify directly our statistical temperature T with the
temperature as measured by an ideal gas thermometer.

The internal energy is

E = kT2 ∂ ln Z

∂T |
V

= NkT2d ln T3/2

dT
=

3
2

NkT .

This is another important property of an ideal gas.  On purely macroscopic grounds we saw that the
ideal gas equation of state leads to an internal energy which depends only on temperature (not pressure
or density).  Here we have calculated this dependence for a monatomic gas.  From the energy
expression we obtain the thermal capacity

CV =
∂E

∂T |
V

=
3
2

Nk .

This is a constant, independent of temperature, in violation of the Third Law.  This is because of the
classical approximation − ignoring multiple state occupancy etc.  

The entropy is found from

S = −
∂F

∂T |
V

which leads to

S = Nk ln


(

mkT

2πħ2)
3/2 Ve5/2

N




.

This is the Sackur-Tetrode equation, quoted before in Section 3.5.1.  Note that the  value of
the entropy is  .  This is totally un-physical and it is in violation of the third law of
thermodynamics.  Of course this problem is all tied up with quantum mechanics and multiple
occupancy; this semiclassical model lets us down here. 

T → 0
− ∞
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4.1.7  Thermal deBroglie wavelength
It is instructive to examine further the expression we have derived for the single-particle partition
function.  We found

z = (
mkT

2πħ2)
3/2

V ,

and since z must be dimensionless it follows that the quantity  must have the dimensions
of length.  This can be verified directly.  Let us therefore define a quantity  by

2πħ2 / mkT
Λ

Λ = (2πħ
2

mkT )
1/2

,

which we shall call the thermal deBroglie wavelength.  Then in terms of this the partition function is
given, simply, by

z =
V

Λ3
.

The explanation for the name is as follows.  A temperature T is associated with a thermal energy 
which manifests itself in the form of kinetic energy.  We may therefore equate this to  which
gives us a corresponding thermal momentum.  And from the momentum we can find a wavelength
using the deBroglie relation .  Thus we have

kT
p2 / 2m

p = h / λ

E = kT =
p2

2m
=

(2πħ / λ)2

2m
from which we find

λ = (2π
2
ħ

2

mkT )
1/2

which, apart from a numerical factor, corresponds to the thermal deBroglie wavelength  defined
above.  

Λ

So  represents the quantum-mechanical ‘size’ of the particle due to its thermal energy.  By ‘size’
here we mean the distance over which the particle may be found  – the uncertainty in its position.  We
then have a simple interpretation of the partition function:

Λ

z = .
volume of the box

‘thermal volume’ of the particle

4.1.8  Breakdown of the classical approximation
Let us now briefly examine the region of validity of our treatment of the ideal gas.  In particular we
are concerned with the adding together of the independent effects of a number of particles.  And
clearly this must be related to the question of multiple occupancy of quantum states.

The classical approximation can only hold if the particles can be regarded as being truly independent.
In other words, we require that quantum mechanical effects don’t cause the particles to ‘see’ one
another.  We may express this condition as

≪thermal volume of particle
volume of box

number of particles

or
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Λ
3N

V
≪ 1.

We tabulate below this parameter   for a number of gases at their normal boiling pointΛ
3N / V

T in K Λ
3N / V

He   4.2 1.5
H2 20.4 0.44
Ne 27.2 0.015
A 87.4 0.00054

Since  it follows that deviations from classical behaviour are more likely to be observed
with lighter atoms.  The table indicates that the classical condition is satisfied for most gases right
down to the liquefaction point, except for helium.  In considering liquid and gaseous helium the
effects of quantum mechanics must be taken into account.  Thus the remarkable properties of cooled
helium.

Λ ∝ m−1/2

4.2  Quantum statistics
4.2.2  Bosons and Fermions
All particles in nature can be classified into two groups according to the behaviour of the wave
function under the exchange of identical particles.  For simplicity let us consider only two identical
particles.  The wave function can then be written

Ψ = Ψ (r1, r2)

where                                       is the position of the 1st particler1

and                                           is the position of the 2nd particle.r2

Let us interchange the particles.  The operator to effect this is denoted by  (the permutation operator).
Then 

P

PΨ (r1, r2) = Ψ (r2, r1) .

We are interested in the behaviour of the wave function under interchange of the particles.  Since the
particles are indistinguishable, all observed properties will be the same before and after the
interchange.  This means that the wave function can only be multiplied by a phase factor :p = eiϕ

PΨ = eiϕ
Ψ.

Thus far it is not much of a conclusion.  But let us now perform the swapping operation again.  Then
we have

P2
Ψ (r1, r2) = PΨ (r2, r1) = Ψ (r1, r2) ;

the effect is to return the particles to their original states.  Thus the operator P must obey

P2
= 1.

And taking the square root of this we find for p, the eigenvalues of :P

p = ±1.

In other words the effect of swapping two identical particles is either to leave the wave function
unchanged or to change the sign of the wave function.  
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All particles in nature belong to one class or the other.  Particles for which
 are called Bosonsp = +1

while those for which
 are called Fermions.p = −1

This property continues for all time since the permutation operator commutes with the Hamiltonian.
Fermions have the important property of not permitting multiple occupancy of quantum states.
Consider two particles in the same state, at the same position r.  The wave function is then

Ψ = Ψ (r, r) .

Swapping over the particles we have

PΨ = −Ψ.

But  so that  since both particles are in the same state.  The conclusion is thatΨ = Ψ (r, r) PΨ = +Ψ

)Ψ (r, r) = −Ψ (r, r

and this can only be so if

Ψ (r, r) = 0.

Now since  is related to the probability of finding particles in the given state, the result 
implies a state of zero probability − an impossible state.  We conclude that it is impossible to have
more than one Fermion in a given quantum state.

Ψ Ψ = 0

This discussion was carried out using  and  to denote position states.  However that is not an
important restriction.  In fact they could have designated any sort of quantum state and the same
argument would follow.  

r1 r2

This is the explanation of the Pauli exclusion principle obeyed by electrons. 

We conclude:

For Bosons we can have any number of particles in a quantum state.
For Fermions we can have either 0 or 1 particle in a quantum state.

But what determines whether a given particle is a Boson or a Fermion?  The answer is provided by
relativistic quantum mechanics and it depends on the spin of the particle.  Particles whose spin angular
momentum is an integral multiple of ħ are Bosons while particles whose spin angular momentum is
integer plus a half ħ are Fermions.  (In quantum theory ħ/2 is the smallest unit of spin angular
momentum.)

For some elementary particles we have:














S =
1
2

→

   electrons

protons

   neutrons

Fermions
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












→

S = 1photons









S = 0

π mesons

κ mesons

Bosons

For composite particles (such as atoms) we simply add the spins of the constituent parts.  And since
protons, neutrons and electrons are all Fermions we can say:

Odd  number of Fermions  →  Fermion

Even number of Fermions  →  Boson.

The classic example of this is the two isotopes of helium.  Thus

3He is a Fermion
4He is a Boson.

At low temperatures these isotopes have very different behaviour.
 ______________________________________________________________  End of lecture 19

4.2.3  The quantum distribution functions
We shall obtain the distribution functions for particles obeying Fermi-Dirac statistics and those
obeying Bose-Einstein statistics.  Thus we want to know the mean number of particles which may be
found in a given quantum state.  The method is based on an idea in Feynman’s book Statistical
Mechanics, Benjamin (1972).  We start by considering an idealised model, of a subsystem comprising
a single quantum state of energy ε, in  thermal equilibrium with a reservoir of many particles.  The
mean energy of a particle in the reservoir is denoted by µ (we will tighten up on the precise definition
of mean energy later).

m: mean energy of particle in reservoir

e: energy of particle in subsystem

reservoir of
many particles

particle transferred
from reservoir to
subsystem

Transfer of a particle from reservoir to the subsystem

A particle may be in the reservoir or may be in the subsystem.  The probability that it is in the
subsystem is proportional to the Boltzmann factor , while the probability that it is in the
reservoir is proportional to .  If  is the probability that there is one particle in the
subsystem and  is the probability of no particles in the subsystem, then we may write

exp (−ε / kT)
exp (−µ / kT) P (1)

P (0)

P (1)
P (0)

= exp−
(ε − µ)

kT
P (1) = P (0) exp−

(ε − µ)

kT
.or

If the statistics allow (for Bosons, but not for Fermions) then we may transfer more particles from the
reservoir to the subsystem.  Each particle transferred will lose an energy µ and gain an energy ε.
Associated with the transfer of n particles there will therefore be a Boltzmann factor of

.  And so the probability of having n particles in the subsystem isexp−n (ε − µ) / kT
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P (n) = P (0) exp−
n (ε − µ)

kT
.

Let us put

x = exp−
(ε − µ)

kT
. (1)

Then

P (n) = P (0) xn
. (2)

Normalisation requires that all possible probabilities sum to unity.  For Fermions we know that n can
take on only the values 0 and 1, while for Bosons n can be any integer.  Thus we have

P (0) + P (1) = 1 for Fermions

∑
∞

n = 0

P (n) = 1 for Bosons

which can be written, quite generally as

∑
a

n = 0

P (n) = 1

where  for Fermions and  for Bosons.a = 1 a = ∞

Since  is given by Equation (2), the normalisation requirement may be expressed as P (n)

P (0) ∑
a

n = 0

xn
= 1

which gives us :P (0)

P (0) =



∑

a

n = 0

xn




−1

.

We will be encountering the above sum of powers of x quite frequently, so let’s denote it by the
symbol Σ:

Σ = ∑
a

n = 0

xn
. (3)

In terms of this

P (0) = Σ
−1
,

and then from Equation (2)

P (n) = xn / Σ .

What we want to know is the mean number of particles in the subsystem.  That is, we want to calculate

n¯ = ∑
a

n = 0

nP (n) ,

which is given by

n¯ =
1
Σ
∑

a

n = 0

nxn
.
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The sum of  may be found by using a trick (which is really at the heart of many Statistical
Mechanics calculations).  The sum differs from the previous sum Σ which we used, because of the
extra factor of n.  Now we can bring down an n from  by differentiation.  Thus we write 

nxn

xn

nxn
= x

d
dx

xn
,

so that

∑
a

n = 0

nxn
= x

d
dx ∑

a

n = 0

xn
.

Observe that the sum on the right hand side here is our original sum Σ.  This means that  can be
expressed as 

n¯

n¯ = x
1
Σ

dΣ
dx

or

n¯ = x
d ln Σ

dx
.

It remains, then, to evaluate Σ for the two cases.  For Fermions we know that , so that the sum
in Equation (3) is .  For Bosons a is infinity; the sum is an infinite (convergent) geometric series.
The sum of such a geometric progression is .  Thus we have

a = 1
1 + x

1 / (1 − x)

Fermions Bosons

Σ = 1 + x Σ = (1 − x)−1

ln Σ = ln (1 + x) ln Σ = − ln (1 − x)

upon differentiating

d ln Σ
dx

=
1

1 + x

d ln Σ
dx

=
1

1 − x
so that

x
d ln Σ

dx
=

x

1 + x
x

d ln Σ
dx

=
x

1 − x
and  is then given byn¯

n¯ =
1

x−1 + 1
n¯ =

1
x−1 − 1

Finally, substituting 
for  from Eq (1):x

n¯ =
1

exp (ε − µ) / kT + 1
n¯ =

1
exp (ε − µ) / kT + 1

                            
These expressions will be recognised as the Fermi-Dirac and the Bose-Einstein distribution functions.
However, it is necessary to understand the way in which this idealised model relates to realistic
assemblies of Bosons or Fermions.  We have focussed attention on a given quantum state, and treated
it as if it were apart from the reservoir.  In reality the reservoir is the entire system and the quantum
state of interest is in that system.  The entire analysis then follows through so long as the mean energy
of a particle, µ, in the system is changed by a negligible amount if a single quantum state is excluded.
And this must be so for any macroscopic system.
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4.2.4  The chemical potential
We now turn to an examination of the meaning of µ within the spirit of this picture.  We said that it
was the mean energy lost when a particle is removed from the reservoir, which we now understand to
mean the entire system.  When a particle is removed the system remains otherwise unchanged.  There
are two ways in which the system is unchanged.

• The distribution of particles in the other (single particle) energy states is unchanged - the
entropy remains constant.

• The energy of the various states (single particle energy levels) is unchanged as the volume
remains constant.

Thus our µ is equal to  at constant S and V.  This tells us that we have an extension of the first
law of thermodynamics; there is another way in which the internal energy of a system can be changed.
As well as adding heat and doing work, we can add particles.  So the extended differential expression
for E is:

∂E / ∂N

dE = TdS − pdV + µdN.

The quantity µ is called the chemical potential, and it is defined as

µ =
∂E

∂N |
S,V

.

An expression in terms of the Helmholtz free energy is more amenable to calculation (from the
partition function).  Recall that F is defined as

F = E − TS

form which we obtain

dF = dE − TdS − SdT .

Using the extended version of the First Law expression for , this then givesdE

dF = −SdT − pdV + µdN

form which we may express the chemical potential µ as

µ =
∂F

∂N |
T ,V

.

For the classical ideal gas, whose free energy was found to be

F = −NkT ln


(

mkT

2πħ2)
3/2 Ve

N




, 

the chemical potential is obtained by differentiation:

µ = −kT ln


(

mkT

2πħ2)
3/2 V

N




.

At high temperatures µ is large and negative.  It goes to zero as , but of course then the
classical approximation breaks down and the correct quantum-mechanical expression for µ must be
used, which will be different for Fermions and Bosons.                                                                           

T → 0

 ______________________________________________________________  End of lecture 20
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4.2.5  Methodology for quantum gases
The Bose-Einstein and the Fermi-Dirac distribution functions give the mean number of particles in a
given single particle quantum state in terms of the temperature T and the chemical potential µ.  These
are the intensive variables which determine the equilibrium distribution .  Now we have a good
intuitive feel for the temperature of a system.  But the chemical potential is different.  This determines
the number of particles in the system when it is in a state of equilibrium.  In reality, however, it is
more intuitive to speak of a system containing a given (mean) number of particles.  In that case it is
the number of particles in the system which determines the chemical potential.  

n¯ (ε)

Now the number of particles in the system is given by

N = ∑
i

n¯ (εi)

which converts to the integral

N = ∫
∞

0
α n¯ (ε)g (ε)dε

where α is the factor which accounts for the degeneracy of the particles’ spin states.  This is 2 for
electrons since there are two spin states for a spin ½; in general it will be .(2S + 1)

The expression for N is inverted to give µ, which can then be used in the distribution function to find
the other properties of the system.  For instance, the internal energy of the system would be found
from

E = ∑
i

εi n¯ (εi)

or, in integral form

E = ∫
∞

0
α ε n¯ (ε)g (ε)dε

4.3  The Fermi Gas
4.3.1  The Fermi-Dirac distribution
One has to use the Fermi distribution for fermions whenever the classical low density / high
temperature approximation breaks down.  That is, when

N

V (2πħ
2

mkT )
1/2

÷ 1.

Some examples of this are:

• Conduction electrons in a metal  –  Here, because the electrons are so light, even at room
temperatures one is “well-into” the quantum régime.

• Liquid 3He  –  When the helium is a liquid, at temperatures in the region of 1K, one is in the
quantum régime because the helium atoms are sufficiently light.

• Neutron stars  –  In such stars the density of matter is very high indeed.

• Nuclear matter  –  Although the numbers of particles involved makes the concept of thermal
equilibrium rather suspect, the high density of nuclear matter requires a quantum treatment.
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On the other hand, usually the density of electrons in a semiconductor is sufficiently small to permit
the use of classical statistics.

The Fermi-Dirac distribution for the mean number of fermions in the state of energy ε is given by

n¯ (ε) =
1

exp (ε − µ) / kT + 1
.

We see that  goes from zero at high energies to one at low energies.  The changeover occurs at
, where 

n¯ (ε)
ε = µ n¯ (ε) = ½.

n̄ (ε)

0

1

εµ

Fermi-Dirac distribution

The transition from zero to one becomes sharper as the temperature is reduced.

4.3.2  Fermi gas at zero temperature
At zero temperature the Fermi-dirac distribution function

n¯ (ε) =
1

exp (ε − µ) / kT + 1

becomes a box function

n¯ (ε) = 1 ε < µ

= 0 ε > µ.

Note that in general the chemical potential depends on temperature.  Its zero temperature value is
called the Fermi energy

εF = µ (T = 0) .

εF

n̄ (ε)

0

1

ε

empty statesall states filled up

Fermi-Dirac distribution at T = 0

In accordance with the methodology described in the previous section, the first thing to do is to
evaluate the total number of particles in the system in order to find the chemical potential – the Fermi
energy in the   case.  T = 0
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The density of states is given by

g (ε) =
V

4π2ħ3
(2m)

3/2
ε

1/2

and we shall consider spin ½ particles, so we have set .  The total number of particles in the
system is then

α = 2

N =
V

2π2ħ3
(2m)

3/2
∫
εF

0
ε

1/2dε

=
V

3π2ħ3
(2mεF)

3/2
.

This may be inverted to obtain the Fermi energy

εF =
ħ

2

2m (3π
2N

V )
2/3

.

This gives the chemical potential at zero temperature.  Observe that it depends on the density of
particles in the stystem, so the Fermi energy is, as expected, an intensive variable.

Having obtained the zero-temperature chemical potential, the Fermi-Dirac function is now completely
specified at , and we can proceed to find the internal energy of the system.  This is given byT = 0

E =
V

2π2ħ3
(2m)

3/2
∫
εF

0
ε

3/2dε

which may be expressed as 

E = 3
5 NεF .

The internal energy is proportional to the number of particles in the system and so it is, as expected, an
extensive quantity.

4.3.3  Fermi temperature and Fermi wavevector
Corresponding to the Fermi energy it proves convenient to introduce a Fermi temperature  defined
by

TF

kTF = εF.

The Fermi temperature is then given by

TF =
ħ

2

2mk (3π
2N

V )
2/3

and in terms of this the condition for the classical approximation to be valid:

N

V (2πħ
2

mkT )
1/2

≪ 1

becomes, to within a numerical factor

T ≫ TF.

We can estimate  for electrons in a metal.  The interatomic spacing is roughlyTF

(
V

N )
1/3

∼ 2.7Å,

giving a number density of
N

V
∼ 5 × 1022 electrons per cm3
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if we assume that each atom contributes one electron.  This gives

εF ∼ 4.56 eV

or

TF ∼ 5 × 104 K.

The conclusion, from this, is that the behaviour of electrons in a metal at room temperature are
determined very much by quantum mechanics and the exclusion principle.  For temperatures 
most of the energy states below εF are filled, while most above are empty.  In this case the system is
said to be degenerate.  Thus electrons in a metal are degenerate at room temperatures.

T ≪ TF

Some values of Fermi temperatures calculated from known electron densities for monovalent metals
are

electron concentration TF in K
      in cm−3

Li 4.7 × 1022 5.5 × 104

Na 2.7 × 1022 3.8 × 104

K 1.4 × 1022 2.5 × 104

Rb 1.2 × 1022 2.2 × 104

Cs 0.9 × 1022 1.8 × 104

The case of 3He is a little more complicated.  The calculated value of TF is ∼ 5K, but the observed
value is more in the region of 0.05K.  This discrepancy is understood in terms of the interatomic
interactions.  A remarkably successful theory for this has been developed  –  Landau’s Fermi liquid
theory.

Other parameters can be used to specify the properties of the highest-energy fermions at .  The
energy of such a particle is .  Alternatively we could talk of the velocity of the particle  –  the Fermi
velovity.  Similarly we can specify the Fermi momentum or the Fermi wavevector.  The wavevector of
the particles of energy  is found from the expression

T = 0
εF

εF

εF =
ħ

2

2m
k2

F,

or

kF =
1
ħ

2mεF.

Using the expression for  we then find:εF

kF = (3π
2N

V )
1/3

which depends only on concentration.  In fact we see that the Fermi wavevector is approximately
equal to the inter-particle spacing.

 ______________________________________________________________  End of lecture 21
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4.3.4  Qualitative behaviour of degenerate Fermi gas
The effect of a small finite temperature may be modelled very simply by approximating the Fermi-
Dirac distribution function by a piecewise linear function.  This must match the slope of the curve at

, and the derivative is found to be ε = µ

dn¯ (ε)

dε |
ε = µ

=
−1

4kT
.

n̄ (ε)

µ ε

0

µ + 2kTµ − 2kT

all states filled up empty states

partially filled
states

Simple modelling of Fermi-Dirac distribution

In this model we see that there is a region of partially-occupied states extending from  to
.  States below this are totally filled and states above are empty.  Most of the particles

are “frozen in” to states below the Fermi energy.  Only a small fraction  of the particles are
practically excitable – having vacant states above and below them.  It is only this fraction of the
particles which is available for responding to stimuli.

ε = µ − 2kT
ε = µ + 2kT

∼ T / TF

Very crudely this is saying that at a temperature T extensive properties of a degenerate Fermi gas will
be a fraction   of that of the corresponding classical system.  The thermal capacity of a classical
gas is , so we would expect the thermal capacity of a Fermi gas to be

T / TF
3
2Nk

C ∼
T

TF
Nk

— the prediction is that C depends linearly on temperature.  And indeed it does, as we shall see.

Similarly, since we saw that the magnetisation of a classical system of magnetic moments was
inversely proportional to temperature: , Curie’s law where C here is the curie constant.
So we expect the thermal capacity of a Fermi gas to be

M = CB / T

M ∼
CB

TF

— the prediction is that the magnetisation will tend to a temperature-independent value.  This is
observed to be so. 

4.3.5  Fermi gas at low temperatures – simple model
We shall now use the above piecewise approximation to calculate properties of the Fermi gas.  At each
stage we will compare the approximate result with the correct expression.  The distribution function,
in this approximation, is

n¯ (ε) = 1 0 < ε < µ − 2kT

= 1 −
ε − µ + 2kT

4kT
µ − 2kT < ε < µ + 2kT

= 0 µ + 2kT < ε

from which the thermodynamic properties may be calculated.
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The chemical potential may now be found by considering the total number of particles in the system:  

N =
4πV

h3
(2m)

3/2
∫
∞

0
n¯ (ε) ε1/2dε .

Using the approximate form for  this givesn¯ (ε)

N =
8πV

3h3
(2mµ)3/2

+
4
3
(kT)2

πV

h3
(2m)

3/2
µ
−1/2

+ ....

If we express N in terms of the previously-calculated Fermi energy, in other words, in terms of the
zero temperature chemical potential, then we have

ε
3/2
F = µ

3/2 


1 +

1
2 (

kT

µ )
2

+ ...



 ,

which, by the binomial theorem, gives  as εF

εF = µ



1 +

1
2 (

kT

µ )
2

+ ...





2/3

= µ +
1
3
(kT)2

µ
+ ... .

This may be solved for µ and re-expanded in powers of T to give (in terms of  rather than )TF εF

µ = εF



1 −

1
3 (

T

TF
)
2

+ ...



 .

The correct expression (i.e. not approximating the Fermi distribution) is very similar:

µ = εF



1 −

π
2

12 (
T

TF
)
2

+ ...



 ,

the leading temperature term being some 2.5 times greater.  This result shows that as the temperature
is increased from  the chemical potential decreases from its zero temperature value, and the first
term is in .  

T = 0
T2

From a knowledge of the temperature dependence of the chemical potential the Fermi-Dirac
distribution is then given as a function of temperature and energy.  The function is plotted below for
electrons in a metal for which .  TF = 5 × 104 K

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

n̄ (ε)

ε / k  in units of 104 K

500 K5000 K
1 × 10  K4

2.5 × 10  K
4

5 × 10  K
4

10 × 10  K4

Fermi-Dirac distribution function at different temperatures
for a system for which   (electrons in a metal) TF = 5 × 104 K
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4.3.6  Internal energy and thermal capacity
In the spirit of the piecewise approximation of the Fermi-Dirac distribution, we can take the
approximate chemical potential and use it in the piecewise approximation to find the internal energy of
the fermions.  In this way one finds

E = E0



1 +

5π2

2 (
T

TF
)
2

+ …



 ,

while the exact series expression is

E = E0



1 +

5π2

12 (
T

TF
)
2

+ …



 ,

up to terms in .  T2

The thermal capacity at low temperatures is found by differentiating this expression for the internal
energy.  Thus we obtain

CV =
∂E

∂T |
V

=
5
6
π

2E0
T

T2
F
,

or, eliminating  in favour of ,E0 TF

CV =
1
2
π

2Nk
T

TF
.

So at low temperatures the thermal capacity of a fermi gas is linear in temperature.  Thus  goes to
zero as T goes to zero, as required by the third law of thermodynamics.

CV

The figure below shows the measured thermal capacity of potassium at low temperatures.  It is
conventional to plot  against  in order to distinguish the linear electronic thermal capacity and
the cubic phonon thermal capacity.  In other words we are saying that the expected behaviour, when
the effect of lattice vibrations is included, is

CV / T T2

CV =
1
2
π

2Nk
T

TF
+ × T3

,const

so that

CV

T
=

1
2
π

2Nk
1
TF

+ × T2
.const

Thus when  is plotted against  the intercept gives the electronic contribution to .  The
straight line fit to the data is given by

CV / T T2 CV

CV / T = 2.08 + 2.57 T2
.

This corresponds to a Fermi temperature of 1.97 × 104 K (check this).  This is in qualitative agreement
with the calculated from the known electron density, which was 2.5 × 104 K.TF
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Thermal capacity of potassium

The thermal capacity of liquid 3He at very low temperatures exhibits the expected linear temperature
dependence.  Measurements of  taken over a range of pressures are shown in the figure below.  The
linear behaviour is quite apparent.  The strange behaviour occurring at very low temperatures
corresponds to the superfluid phase transition.  But that is another story …
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thermal capacity of liquid 3He at different pressures

4.3.6  Equation of state.
— Not covered.

 ______________________________________________________________  End of lecture 22
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4.4  The Bose Gas
4.4.1  Generalisation of the density of states function
This section on the density of states is not specific to bosons.  It is just that it is convenient to take a
fresh look at the density of states at this stage with a view to some future applications, which happen
to be boson systems.

Recall that the fundamental problem which the density of states addresses is the conversion of sums
over states to integrals – in the case considered, integrals over energy.  The energy density of states

 was defined by saying that the number of states with energy between ε and  is .
This is compactly expressed in the equation
g (ε) ε + dε g (ε)dε

g (ε) =
dN (ε)

dε
where  is the number of states having energy less than ε.  In Section 4.1.4  we obtained the
expression for  as

N (ε)

g (ε)

g (ε) =
1
4

V

π2ħ3
[2m]

3/2
ε

1/2

— in particular, the energy dependence goes as .ε
1/2

The derivation of this expression relied on a number of assumptions.  It was for free and
nonrelativistic particles: .  And the result applied to three-dimensional systems: we had
three quantum numbers for the three spatial dimensions and we evaluated the volume of an octant.  (So
for instance we could not use the result for the treatment of surface waves or adsorbed films.)

ε = p2 / 2m

In this section we shall relax the first restriction, allowing for other energy – momentum relations.
The extension to other dimensions will simply be quoted.  That derivation (actually quite simple) is
left to the student.  The general treatment here is best treated from a consideration of the density of
states in k – space.

The starting point for the specification of the state of a system confined to a box is the fact that the
wavefunction must go to zero at the walls of the box.  This leads us to admit only states which
comprise an integral number of half wavelengths within the box.  The allowed values were denoted by

λnx = 2
V1/3

nx
, λny = 2

V1/3

ny
, λnz = 2

V1/3

nz

where

nx, ny, nz = 1, 2, 3, 4, … .

This gives us the components of the wave vector as

kx =
πnx

V1/3
, ky =

πny

V1/3
, kz =

πnz

V1/3
,

so that the wavevector is simply

k =
π

V1/3 {nxi + ny j + nz k} .

This is telling us that the allowed states of the system can be represented by the points on a rectangular
grid in k – space.  And in particular this indicates that the density of points in k – space is uniform.
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To discuss the magnitude k of the vavevector k it is convenient to define the quantity R as

R = n2
x + n2

y + n2
z

so that

k =
π

V1/3
R.

Then we may say that the number of states for which the magnitude of the wavevector is less than k is
given by the volume of the octant of radius R.  That is,

N (k) =
1
8

4
3
πR3

,

giving us

N (k) =
V

6π2
k3
.

The density of states in k – space is the derivative of this:

g (k) =
dN

dk
=

V

2π2
k2
.

Previously we were interested in the energy density of states , and this can now be
found by the chain rule

g (ε) = dN / dε

g (ε) =
dN

dε
=

dN

dk

dk

dε

=
V

2π2
k2 /

dε
dk

,

which is the most convenient way to represent the energy – wavevector derivative.

We also note here that the procedure generalises to the density of states expressed in terms of any
other variable.  For instance, we will be using (angular) frequency ω in a future application, and the
chain rule may be used in exactly the same way to give

g (ω) =
dN

dω
=

dN

dk

dk

dω

=
V

2π2
k2 /

dω
dk

. 
Finally we quote the density of states in k – space for other dimensions:

g (k) =
L

π
one dimension                                

g (k) =
A

2π
k two dimensions                              

g (k) =
V

2π2
k2
. three dimensions                            

From these the density of states in any other variable may be found.
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4.4.2  Examples of Bose systems
There are two important cases of bosons to consider.

• “Real” particles such as Helium-4, rubidium vapour etc.

• “Zero-mass” particles such as Photons and Phonons

Only the first is a real particle in the classical meaning of the word.  The number of particles is
conserved in the first case.  This is in marked contrast to the second case; the number of photons or
phonons is not conserved.  This has important thermodynamic consequences.  We will explore this
later.  We start the discussion of bosons with a survey of the properties of 4He.

4.4.3  Helium - 4
Liquid 4He displays the remarkable property of superfluidity below a temperature of 2.17 K.  Two of
the most startling properties of the system are

•                     Viscosity  →  0

• Thermal conductivity  →  ∞    !!

On the other hand liquid 3He shows no such behaviour (at these temperatures).  This implies that
superfluidity is closely related to the statistics of the particles.

If we consider an assembly of non-interacting bosons it is quite clear that at  all particles will be
in the same quantum state  –  the single-particle ground state.  This is in contrast to the Fermi case
where the Pauli exclusion principle forbids such behaviour.  For bosons it then seems obvious that at
very low temperatures there will be a macroscopic number of particles still in the ground state.  This
number may be calculated:

T = 0

N0 = N



1 − (

T

TB
)
3/2





where N is the total number of particles in the system and the temperature  in the expression is given
by

TB

TB =
h2

2πmk




N

2.612 V




2/3

.

The calculation of  is slightly messy.  It follows the calculation of N as in the Fermi case,
converting the sum over single-particle states for N by an integral using the energy density of states

.  But in this case one must recognise that the density of states, being proportional to , excludes
the ground state which must be put in “by hand”.                                                                                    

N0

g (ε) ε
1/2

The temperature  is close to the Fermi temperature, so it indicates the temperature at which
specifically quantum behaviour will occur.   Below we plot a graph of the ground state occupation.

TB
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N0

T

N

TB

ground state occupation for a Bose gas

For temperatures  there will be some particles in the ground state.  However it will not be a
macroscopic number.  The plot indicates that for temperatures  there will be a macroscopic
number of particles in the ground state.  

T > TB

T < TB

The particles in the ground state will have no entropy.  It is therefore to be expected that the behaviour
of this system will be different below and above this temperature .  If we estimate this temperature
for liquid 4He, using the measured molar volume of 27 cm3 then we obtain

TB

TB ∼ 3.13 K.

The agreement with the superfluid transition temperature of liquid 4He, 2.17 K, is fair when we
consider that the atoms of 4He do actually interact and so they cannot really be considered as an ideal
(noninteracting) gas,

This collapse of particles into the ground state below  is known as Bose-Einstein condensation.  It is
the only example of a phase transition occurring in a system of noninteracting particles.

TB

We see then that the superfluidity of 4He is understood in terms of a Bose-Einstein condensation.

  Superfluidity of 3He is observed at temperatures below 3 mK; we saw the indication of this in the
heat capacity curves for liquid 3He above.  And superfluidity of electrons  – superconductivity  –  is
observed in some metals and metal oxide compounds.  These examples of the superfluidity of
fermions cannot be understood in terms of a simple Bose-Einstein condensation.  In these cases it is
believed that the fermions form pairs, that will be bosons.  Superfluidity in Fermi systems is
understood in terms of a Bose-Einstein condensation of these pair bosons.                                             
______________________________________________________________  End of lecture 23
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4.4.4  Phonons and photons  —  quantised waves
The harmonic oscillator has the very important property that its energy eigenvalues are equally spaced:

εn = nħω + .zero point energy

We have already calculated the internal energy of a harmonic oscillator.  We shall write this result
here as

E =
ħω

exp ħω

kT − 1
+ .zero point contribution

We shall, in the following sections, ignore the (constant) zero point energy contribution.  This is
allowed since in reality we would always differentiate such expressions to obtain measurable
quantities.  

The expression for E can be reinterpreted in terms of the Bose distribution.  The internal energy has
the form

E = n¯ ħω

where  is the Bose distribution, the mean number of bosons of energy . But here the chemical
potential is zero.

n¯ ħω

The conclusion is that we can regard a harmonic oscillator of (angular) frequency ω as a collection of
bosons of energy , having zero chemical potential.ħω

The fact that we can regard the harmonic oscillator as a collection of bosons is a consequence of the
equal spacing of the oscillator energy levels.  The vanishing of the chemical potential is due to the fact
that the number of these bosons is not conserved.

We shall explore this by considering an isolated system of particles.  If N is conserved then the
number is determined – it is given and it will remain constant for the system.  On the other hand if the
number of particles is not conserved then one must determine the equilibrium number by maximising
the entropy:

∂ S

∂N |
E,V

= 0.

(E and V are constant since the system is isolated.)

Now from the differential expression for the First Law

dE = TdS − pdV + µdN

we see that

dS =
1
T
{dE + pdV − µdN} .

So the entropy derivative is 

∂ S

∂N |
E,V

= −
µ

T
and we conclude that the equilibrium condition for this system (at finite temperature) is simply

µ = 0.

In other words  for non-conserved particles.  µ = 0
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We seem to have arrived at a particle description through the quantisation of harmonic vibrations.
These ideas can be applied to simple harmonic oscillations in:

• waves in solids (and liquids) —   phonons

• electromagnetic waves —   photons.

In both these cases we may have a range of frequencies or energies ( ) so that in calculations of
thermodynamic properties we will need to calculate the density of these states.

ε = ħω

4.4.5  Photons in thermal equilibrium  –  black body radiation
Black body radiation was a big problem before the advent of quantum theory.  There was a simply-
stated problem without a satisfactory solution.  It is known that bodies glow and emit light when
heated sufficiently.  The spectrum of colours seems to depend little on the nature of the body,
particularly if the surface is black.  The problem is to explain this universal behaviour  –  the shape of
the spectrum as a function of temperature.

In considering the spectrum of the radiation the universality gives the first hint of the solution; it must
be a property of the body and not of the body under consideration.  Thus we can make a model system,
an idealisation of the situation which retains the important features of the problem, but which is
possible to solve.

Our model is simply a cavity which is connected to the outside world by a small hole.  We shall look
through the hole, at the spectrum of the radiation in the cavity.

radiation from a cavity

We consider the light waves in the cavity to be in thermal equilibrium with the walls.  The photons
will have a distribution given by the Bose-Einstein formula, but with zero chemical potential.  To
calculate the properties of this system we then use the Bose-Einstein distribution function together
with the photon density of states.  The internal energy can immediately be written down:

E = ∫
∞

0
α ε (ω) g (ω) n¯ (ω) dω

where α is the degeneracy factor, here 2 for the 2 transverse polarisations of the photon.  The energy
of a photon of frequency ω is

ε (ω) = ħω.

The formula for the density of frequency states is

PH261 –  BPC/JS  –  1997                                                                                                          Page 4.26



g (ω) =
V

2π2
k2 /

dω
dk

and since for photons

ω = ck

where c is the speed of light.  This gives us the frequency density of states as

g (ω) =
V

2π2

ω
2

c3
.

The internal energy is then

E =
Vħ

π2c3
⌠

⌡

∞

0

ω
3 dω

exp ħω

kT − 1
.

Before performing this integral we note that its argument gives the energy density per unit frequency
range:

dE

dω
=

Vħ

π2c3

ω
3

exp ħω

kT − 1
.

This is Planck’s formula for the spectrum of black body radiation.  An example is shown in the figure,
but plotted as a function of wavelength, which is more popular with spectroscopists.

0 0.5 1.0 λ

blue green red

8000 K

5800 K

4000 K

intensity

wavelength

black body radiation at three different temperatures
the wiggly line is the spectrum from the sun

The spectrum from the sun indicates that the sun’s surface temperature is about 5800 K.  It is also
interesting to note that the peak of the sun’s spectrum corresponds to the visible spectrum, that is the
region of greatest sensitivity of the human eye.

A remarkable example of black body radiation is the spectrum of electromagnetic radiation observed
arriving from outer space.  It is found that when looking into space with radio telescopes, a uniform
background of electromagnetic “noise” is seen.  The spectrum of this is found to fit the black body
curve  –  for a temperature of about 2.7 K.  The conclusion is that the equilibrium temperature of the
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universe is 2.7 K, which is understood as the remaining “glow” from the Big Bang.  The data shown
below comes from the COBE satellite, and it fits to the Planck black body curve for a temperature of
2.735 K.  The quality of the fit of the data to the theoretical curve is quite remarkable.
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cosmic background radiation plotted on 2.735 K black body curve

 ______________________________________________________________  End of lecture 24

4.4.6  The spectrum maximum
When a body is heated it goes from a dull red at lower temperatures, to a bluish white at higher
temperatures.  The perceived colour of the radiation can be found by examining the peak in the
emission spectrum.  Let us first find the maximum of the energy density

dE

dω
=

Vħ

π2c3

ω
3

exp ħω

kT − 1
.

Upon differentiation and setting equal to zero we obtain

(3 −
ħω

kT ) exp
ħω

kT
= 3.

This can not be solved analytically, but the solution may be found very easily by iteration using a
pocket calculator.  The result is

ħω

kT
= 2.8214… .

This specifies the maximum in the spectrum:

ωmax = 2.8214
kT

ħ
,

which in S.I. units is

ωmax = 3.67 × 1011 T .

The peak in the spectrum, ωmax is proportional to the temperature.  This is known as Wein’s
displacement law.   The magnitude of the energy density at the maximum may be found by
substituting ωmax back into the expression for the energy density spectrum:
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dE

dω |peak
= 1.421

Vk3T3

π2c3ħ2

so the magnitude of the peak scales with the cube of the temperature.

4.4.7  Internal energy and thermal capacity of a photon gas
The internal energy is found by integrating the expression for the energy density.  We have already
encountered the expression:

E =
Vħ

π2c3
⌠

⌡

∞

0

ω
3 dω

exp ħω

kT − 1
.

By changing the variable of integration to

x =
ħω

kT
the integral becomes a dimensionless number

E =
Vħ

π2c3 (
kT

ħ
)
4
⌠

⌡

∞

0

x3 dx

ex − 1
.

The integral may be evaluated numerically, or it may be solved in terms of the gamma function to give

⌠
⌡

∞

0

x3 dx

ex − 1
=

π
4

15
so that the internal energy is

E =
π

2Vħ

15c3 (
kT

ħ
)
4

.

  From the expression for the internal energy we may find the pressure of the photon gas using

pV =
1
3

E ,

which gives, in S.I. units

p = 2.47 × 10−16 T .

This is obviously related to the radiation pressure treated in electromagnetism.  Note that the pressure
is very small indeed.                                                                                                                                  

Turning now to the thermal capacity, we obtain this by differentiating the internal energy:

CV =
∂E

∂T |
V
,

giving

CV =
4π2Vk4

15ħ3c3
T3
.

We see that  is proportional to .  Also note that the thermal capacity goes to zero as  as
required by the Third Law.

CV T3 T → 0

4.4.8  Energy flux
Finally we consider the energy carried by a photon gas.  This is particularly important when treating
the energy flow through radiation from a hot body to a cold body.  
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Kinetic theory tells us that the energy flux, the power per unit area e carried by particles of velocity c
is given by

e =
1
4

c
E

V
.

We thus find immediately

e =
π

2k4

60ħ3c2
T4
.

The energy flux is proportional to the fourth power of the temperature.  This is known as the Stefan-
Boltzmann radiation law. This result is conveniently written as

e = σT4

where σ is Stefan’s constant:

σ = 5.68 W m−2 K−4
.

The net energy flux between two bodies at different temperatures is given by the difference between
the fluxes in either directions.  Thus

enet = σ (T4
h − T4

c )

where  is the temperature of the hot body and  is the temperature of the cold body.Th Tc

Remember that these results hold for black bodies  –  perfect absorbers of the radiation.  The flux
between shiny surfaces will be considerably reduced.

4.4.9  Phonons  –  Debye model of a solid
The Einstein model of a solid was successful in that it showed that the thermal capacity went to zero
as the temperature was reduced.  But the exponential reduction in  was not in accord with the
experimentally-observed  behaviour.  The problem with the Einstein model was that it treated each
atom as if its motion were independent of that of its neighbours.  In practice the vibrations are coupled
and this leads to the propagation of waves throughout the solid with a range of oscillation frequencies.

CV

T3

Phonons (sound waves) are different from photons (light waves) in that they propagate in a discrete
medium.  This leads to a maximum frequency of oscillation since the wavelength can not be less than
the interparticle spacing.  Since there are N particles, each with three directions of oscillation, the
system will have 3N degrees of freedom.  There will then be 3N modes of oscillation  –  recall ideas on
normal modes from your mechanics courses.  This will enable us to find the maximum frequency of
oscillation of the propagating waves.  Counting all the modes up to the maximum frequency we have

∫
ωmax

0
α g (ω) dω = 3N

where α is the degeneracy factor, here 3 for the three polarisations of the wave or three directions of
oscillation and  is the frequency density of states given byg (ω)

g (ω) =
V

2π2
k2 /

dω
dk

.

To proceed we must thus find the  relation, the dispersion relation for the propagating waves.
You might recall having calculated   for a one-dimensional chain.  For small
wavenumber k this reduces to a linear relation, .  Here the speed of propagation is independent
of k.  In the Debye model this linear relation is assumed to hold over the entire allowed frequency
range.  We have an indication that we should be on the right track to obtain the correct low-
temperature behaviour since at low temperatures only the lowest k states will be excited.  And we have

ω − k
ω ∝ | sin ka / 2 |

ω = ck
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already seen that a linear dispersion relation leads, in three dimensions, to a cubic thermal capacity
(photons).  So we are assuming the relation

ω = ck,

where c is the speed of sound, up to the cutoff frequency.  This gives us the frequency density of states
as in the photon case

g (ω) =
V

2π2

ω
2

c3
.

In practice the velocity of propagation may be different for the different polarisations.  This may be
accounted for by writing

1
c3

=
1
3 {

1
c3

1
+

1
c3

2
+

1
c3

3
} .

The cutoff frequency  is found fromωmax

∫
ωmax

0
3

V

2π2

ω
2

c3
dω = 3N,

which may be integrated up to give

ωmax =
6Nπ2c3

V
.

And the density of states may be expressed in terms of this frequency:

g (ω) = 3N
ω

2

ω3
max

.

4.4.10  Phonon internal energy and thermal capacity
The internal energy is similar to that for the photon case, except that here the integral over frequency
has a cutoff rather than going of to infinity:

E = ∫
ωmax

0
α ε (ω) g (ω) n¯ (ω) dω.

Here α is the degeneracy factor 3 and the energy of a phonon of frequency ω is

ε (ω) = ħω.

Using our above formula for the phonon density of frequency states, this gives

E =
9Nħ

ω3
max

⌠

⌡

ωmax

0

ω
3 dω

exp ħω

kT − 1
.

Because of the finite upper limit of the integral, it is impossible to obtain an analytic expression for E.
Only a numerical solution is possible.  

To find the thermal capacity we must differentiate the internal energy.  Only the Bose-Einstein factor
depends on temperature, and differentiating this gives

d
dT

1
exp ħω

kT − 1
=

ħω

kT2

exp ħω

kT

(exp ħω

kT − 1)2
.

The expression for  is thenCV

CV =
∂E

∂T |
V

=
9Nħ2

ω3
maxkT2

⌠

⌡

ωmax

0

ω
4 exp ħω

kT dω

(exp ħω

kT − 1)2
.
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Again, this is impossible to integrate.  However simplification is possible by changing the variable of
integration to

x =
ħω

kT
.

Also we introduce a temperature corresponding to the cutoff frequency:

θD =
ħωmax

k
.

The thermal capacity can then be written as

CV = 9Nk (
T

θD
)
3
⌠

⌡

θD/T

0

x4 ex dx
(ex − 1)2

.

The integral is a function of  only and it may be calculated numerically.  The functionθD / T

FD (y) =
3
y3

⌠

⌡

y

0

x4 ex dx
(ex − 1)2

is called the Debye function and it is tabulated in the American Institute of Physics handbook.  In
terms of this function the thermal capacity is

CV = 3NkFD (
θD

T ) .
Observe that the thermal capacity is a universal function of .T / θD

The graph shows thermal capacity against  for a variety of substances.  The fit is impressive and
it supports the universality idea.  (  is shown rather than  as it is easier to measure.  But for solids
we know that   Certainly the Debye model gives a better fit to the data than does the
Einstein model.

T / θD

Cp CV

Cp ∼ CV.)

ice
copper
diamond
silicon
argon

θD = 192 K
θD = 344.5 K
θD = 2200 K
θD = 640 K
θD = 92.0 K

T / θD 10110−1
10−2

10−3

Cp / 3Nk

10−2

10−1

1

thermal capacity of various solids
solid line is fit to Debye model

dotted line is Einstein model with θE = θD
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4.4.11  Limiting forms at high and low temperatures
At high temperatures we recover the usual classical behaviour:

CV = 3Nk T ≫ θD.for

As  the upper limit of the integral tends to infinity and the integral tends to a constant number,
just as in the photon case.  The thermal capacity then has the characteristic  behaviour, in this case:

T → 0
T3

CV ∼
12
5
π

4Nk (
T

θD
)
3

.

This is the important cubic behaviour that is observed experimentally, but which the Einstein model
did not give.

The following figure shows the heat capacity of solid argon plotted against .  This shows the quality
of the fit at low temperatures.
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heat capacity of solid argon at low temperatures

The Debye model should be regarded as an interpolation procedure.  It gives the correct behaviour at
high and low temperatures.  It is not quite so good in the middle range.  Here the precise density of
states, obtained from the correct dispersion relation, is important.  Our expression for  was only
an approximation, treating the solid as a continuum (linear  relation), but with a frequency
cutoff.  In reality the equations of motion for the system must be solved to obtain the correct 
relation, and from that the real density of states   –  but of course that is impossible.

g (ω)
ω − k

ω (k)
g (ω)

The figure below shows  for a real solid together with the forms predicted by the two models:g (ω)

Einstein model g (ω) ∝ δ (ω − ωE)

Debye model   up to cutoff.g (ω) ∝ (ω /ωD)
2
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g (ω)

ωfrequency 

Einstein model
Debye model
real solid
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density of states for a real solid

The real density of states contains kinks and spikes.  In this respect it has some features of the Einstein
model delta function.  So both the Einstein model and the Debye models contain some aspects of the
truth.  But of course, as we have argued already, the Debye model is more appropriate at explaining
the low temperature behaviour.  

An alternative viewpoint is to adopt the Debye model but to force agreement with the temperature
dependence of the thermal capacity by allowing the Debye temperature to vary with temperature.
Such a temperature variation is shown in the inset to the figure.

                                                                                                                                                                   

 ______________________________________________________________  End of lecture 25
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