
Section 2
Introduction to Statistical Mechanics

2.1  Introducing entropy

2.1.1  Boltzmann’s formula
A very important thermodynamic concept is that of entropy S. Entropy is a function of state, like the
internal energy. It measures the relative degree of order (as opposed to disorder) of the system when in
this state. An understanding of the meaning of entropy thus requires some appreciation of the way
systems can be described microscopically. This connection between thermodynamics and statistical
mechanics is enshrined in the formula due to Boltzmann and Planck:

S = k lnΩ

where Ω is the number of microstates accessible to the system (the meaning of that phrase to be
explained).

We will first try to explain what a microstate is and how we count them. This leads to a statement of
the second law of thermodynamics, which as we shall see has to do with maximising the entropy of an
isolated system.

As a thermodynamic function of state, entropy is easy to understand.  Entropy changes  of a system
are intimately connected with heat flow into it. In an infinitesimal reversible process ; the
heat flowing into the system is the product of the increment in entropy and the temperature. Thus
while heat is not a function of state entropy is.

dQ = TdS

2.2  The spin 1/2 paramagnet as a model system
Here we introduce the concepts of microstate, distribution, average distribution and the relationship to
entropy using a model system. This treatment is intended to complement that of Guenault (chapter 1)
which is very clear and which you must read. We choose as our main example a system that is very
simple: one in which each particle has only two available quantum states. We use it to illustrate many
of the principles of statistical mechanics.  (Precisely the same arguments apply when considering the
number of atoms in two halves of a box.)

2.2.1 Quantum states of a spin 1/2 paramagnet
A spin  has two possible orientations. (These are the two possible values of the projection of
the spin on the z axis:  .)  Associated with each spin is a magnetic moment which has the two
possible values ±µ.  An example of such a system is the nucleus of 3He which has  (this is due
to an unpaired neutron; the other isotope of helium 4He is non-magnetic).  Another example is the
electron.

S = 1 / 2
ms = ±½

S = ½

In a magnetic field the two states are of different energy, because magnetic moments prefer to line up
parallel (rather than antiparallel) with the field. 
Thus since   ,  the energy of the two states is .  (Here the arrows refer
to the direction of the nuclear magnetic moment: ↑ means that the moment is parallel to the field and
↓ means antiparallel. There is potential confusion because for 3He the moment points opposite to the
spin!).

E = −µ.B E↑ = −µB, E↓ = µB
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2.2.2 The notion of a microstate
So much for a single particle. But we are interested in a system consisting of a large number of such
particles, N. A microscopic description would necessitate specifying the state of each particle.

In a localised assembly of such particles, each particle has only two possible quantum states ↑ or ↓.
(By localised we mean the particles are fixed in position, like in a solid. We can label them if we like
by giving a number to each position. In this way we can tell them apart; they are distinguishable). In a
magnetic field the energy of each particle has only two possible values.  (This is an example of a two
level system). You can't get much simpler than that!

Now we have set up the system, let's explain what we mean by a microstate and enumerate them. First
consider the system in zero field . Then the states ↑ and ↓ have the same energy.

We specify a microstate by giving the quantum state of each particle, whether it is ↑or ↓.

For  spins ↑↑↑↑↑↑↑↑↑↑N = 10

          ↓↑↑↑↑↑↑↑↑↑

             ↑↓↓↑↓↑↓↑↑↑              are possible microstates.
That’s it!

2.2.3 Counting the microstates
What is the total number of such microstates (accessible to the system). This is called Ω. 

Well for each particle the spin can be ↑ or ↓ ( there is no restriction on this in zero field). Two
possibilities for each particle gives 210 arrangements (we have merely given three examples) for

.  For N particles .N = 10 Ω = 2N

2.2.4 Distribution of particles among states
This list of possible microstates is far too detailed to handle. What's more we don’t need all this detail
to calculate the properties of the system. For example the total magnetic moment of all the particles is

; it just depends on the relative number of up and down moments and not on the
detail of which are up or down. 
M = (N↑ − N↓)µ

So we collect together all those microstates with the same number of up moments and down moments.
Since the relative number of ups and downs is constrained by  (the moments must be
either up or down), such a state can be characterised by one number:

N↑ + N↓ = N

.m = N↑ − N↓

This number m tells us the distribution of  N particles among possible states:

N↓ = (N − m) / 2, N↑ = (N + m) / 2.

Now we ask the question:  “how many microstates are there consistent with a given distribution (given
value of m;  given values of ).  Call this . (This is Guenault’s notation).N↑, N↓ t (m)

Look at . N = 10
For   (all spins up) and   (all spins down), that's easy!  —  .m = 10 m = −10 t = 1
Now for   (one moment down)  . There are ten ways of reversing one moment.m = 8 t (m = 8) = 10
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The general result is .  This may be familiar to you as a binomial coefficient. It is
the number of ways of dividing N objects into one set of  identical objects and  different identical
objects (red ball and blue balls or tossing an unbiassed coin and getting heads or tails).  In terms of m
the function  may be written

t (m) = N! / N↑! N↓!
N↑ N↓

t (m)

t (m) =
N!

(N − m
2 )! (N + m

2 )!
.

If you plot the function  it is peaked at , ( ). Here we illustrate that for
. The sharpness of the distribution increases with the size of the system N, since the standard

deviation goes as .

t (m) m = 0 N↑ = N↓ = N / 2
N = 10

N
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Plot of the function  for 10 spinst (m)

When  the function is already much narrower:N = 100
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Plot of the function  for 100 spinst (m)

When N is large, then  approaches the normal (Gaussian) functiont (m)

t (m) ≈ 2N exp−
m2

2N
.

This may be shown using Stirling’s approximation (Guenault, Appendix 2).  Note that the RMS width
of the function is .N
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2.2.5 The average distribution and the most probable distribution
The physical significance of this result derives from the fundamental assumption of statistical physics
that each of these microstates is equally likely. It follows that  is the statistical weight of the
distribution m (recall m determines ), that is the relative probability of that distribution
occurring.

t (m)
N↑ N↓ and 

Hence we can work out the average distribution; in this example this is just the average value of m.
The probability of a particular value of m is just   i.e. the number of microstates with that
value of m divided by the total number of microstates  ( ). So the average value of m is

.

t (m) /Ω
Ω = ∑m t (m)

∑m m t (m) /Ω

In this example because the distribution function  is symmetrical it is clear that .  Also
the value of m for which  is maximum is .

t (m) mav = 0
t (m) m = 0

So on average for a system of spins in zero field : there are equal numbers of up and down
spins.  This average value is also the most probable value.  For large N the function  is very
strongly peaked at ; there are far more microstates with  than any other value.  If we
observe a system of spins as a function of time for most of the time we will find m to be at or near

. The observed m will fluctuate about , the (relative) extent of these fluctuations
decreases with N. States far away from   such as  (all spins up) are highly unlikely; the
probability of observing that state is  since there is only one such state out of a total 2N.

m = 0
t (m)

m = 0 m = 0

m = 0 m = 0
m = 0 m = N

1 /Ω = 1 / 2N

(Note: According to the Gibbs method of ensembles we represent such a system by an ensemble of Ω
systems, each in a definite microstate and one for every microstate. The thermodynamic properties are
obtained by an average over the ensemble. The equivalence of the ensemble average to the time
average for the system is a subtle point and is the subject of the ergodic hypothesis.)

It is worthwhile to note that the model treated here is applicable to a range of different phenomena.
For example one can consider the number of particles in two halves of a container, and examine the
density fluctuations.  Each particle can be either side of the imaginary division so that the distribution
of density in either half would follow the same distribution as derived above.
______________________________________________________________  End of lecture 4

2.3 Entropy and the second law of thermodynamics
2.3.1  Order and entropy
Suppose now that somehow or other we could set up the spins, in zero magnetic field, such that they
were all in an up state . This is not a state of internal thermodynamic equilibrium; it is a highly
ordered state. We know the equilibrium state is random with equal numbers of up and down spins. It
also has a large number of microstates associated with it, so it is far the most probable state. The initial
state of the system will therefore spontaneously evolve towards the more likely, more disordered

 equilibrium state. Once there the fluctuations about  will be small, as we have seen, and
the probability of the system returning fleetingly to the initial ordered state is infinitesimally small.
The tendency of isolated systems to evolve in the direction of increasing disorder thus follows from (i)
disordered distributions having a larger number of microstates (mathematical fact) (ii) all microstates
are equally likely (physical hypothesis).

m = N

m = 0 m = 0

The thermodynamic quantity intimately linked to this disorder is the entropy. Entropy is a function of
state and is defined for a system in thermodynamic equilibrium. (It is possible to introduce a
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generalised entropy for systems not in equilibrium but let's not complicate the issue). Entropy was
defined by Boltzmann  and Planck as

S = k lnΩ

where Ω is the total number of microstates accessible to a system.  Thus for our example of spins
 so that .  Here k is Boltzmann’s constant.Ω = 2N S = Nk ln 2

2.3.2 The second law of thermodynamics
The second law of thermodynamics is the law of increasing entropy. During any real process the
entropy of an isolated system always increases. In the state of equilibrium the entropy attains its
maximum value.

This law may be illustrated by asking what happens when a constraint is removed on an isolated
composite system. Is the number of microstates of the final equilibrium state be smaller, the same or
bigger ?  We expect the system to evolve towards a more probable state. Hence the number of
accessible microstates of the final state must be greater or the same and the entropy increases or stays
the same. A nice simple example is given by Guenault on p12-13. The mixing of two different gases is
another.

For a composite system . If the two systems are allowed to exchange energy, them in the
final equilibrium state the total number of accessible microstates  is always greater. 

Ω = Ω1Ω2

Ω
∗

The macroscopic desciption of this is that heat flows until the temperature of the two systems is the
same . This leads us, in the next section, to a definition of statistical temperature as 

1
T

=
∂ S

∂E |V ,N .

2.3.3 Thermal interaction between systems and temperature
Consider two isolated systems of given volume, number of particles, total energy
When separated and in equilibrium they will individually have

Ω1 = Ω1 (E1, V1, N1) Ω2 = Ω2 (E2, V2, N2)and

microstates. 

The total number of microstates for the combined system is .Ω = Ω1Ω2

Now suppose the two systems are brought into contact through a diathermal wall, so they can now
exchange energy. 

→E1, V1, N1 E2, V2, N2 E1, V1, N1 E2, V2, N2

↑

fixed diathermal wall

Thermal interaction

The composite system is isolated, so its total energy is constant. So while the systems exchange
energy (  and  can vary) we must keep  const.  And since  allE1 E2 E1 + E2 = E0 = V1, N1, V2, N2
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remain fixed, they can be ignored (and kept constant in any differentiation).

Our problem is this:  after the two systems are brought together what will be the equilibrium state?
We know that they will exchange energy, and they will do this so as to maximise the total number of
microstates for the composite system.  

The systems will exchange energy so as to maximise . WritingΩ

Ω = Ω1 (E)Ω2 (E0 − E)

we allow the systems to vary  so that  is a maximum:E Ω

∂Ω

∂E
=

∂Ω1

∂E
Ω2 − Ω1

∂Ω2

∂E
= 0

or

1
Ω1

∂Ω1

∂E
=

1
Ω2

∂Ω2

∂E

or

∂ lnΩ1

∂E
=

∂ lnΩ2

∂E
.

But from the definition of entropy, , we see this means that the equilibrium state is
characterised by

S = k lnΩ

∂ S1

∂E
=

∂ S2

∂E
.

In other words, when the systems have reached equilibrium the quantity  of system 1 is equal
to  of system 2.  Since we have defined temperature to be that quantity which is the same for
two systems in thermal equilibrium, then it is clear that  (or ) must be related
(somehow) to the temperature.

∂ S / ∂E
∂ S / ∂E

∂ S / ∂E ∂ lnΩ / ∂E

We define statistical temperature as

1
T

=
∂ S

∂E |V ,N
(recall that V and N are kept constant in the process)  With this definition it turns out that statistical
temperature is identical to absolute temperature.

It follows from this definition and the law of increasing entropy that heat must flow from high
temperature to low temperature (this is actually the Clausius statement of the second law of
thermodynamics. We will discuss all the various formulations of this law a bit later on.)

Let us prove this. For a composite system  so that  as we have seen.
According to the law of increasing entropy , so that:

Ω = Ω1Ω2 S = S1 + S2

�S ≥ 0

∆S = (
∂ S1

∂E
−
∂ S2

∂E )∆E1 ≥ 0

or, using our definition of statistical temperature:

∆S = (
1
T1

−
1
T2
)∆E1 ≥ 0.
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this means that 

E1 T2 > T1  increases if   

E1 T2 < T1  decreases if   

so energy flows from systems at higher temperatures to systems at lower temperatures.
______________________________________________________________  End of lecture 5

2.4 More on the S=1/2 paramagnet
2.4.1 Energy distribution of the S=1/2 paramagnet
Having motivated this definition of temperature we can now return to our simple model system and
solve it to find  and  as a function of magnetic field B and temperature T. Previously we had
considered the behaviour in zero magnetic field only and we had not discussed temperature.

N↑ N↓

As discussed already in a magnetic field the energies of the two possible spin states are

E↑ = −µB E↓ = µB.and

We shall write these energies as .∓ε

Now for an isolated system, with total energy E, number N, and volume V fixed, it turns out that 
and  are uniquely determined (since the energy depends on ). Thus  is fixed
and therefore it exhibits no fluctuations (as it did in zero field about the average value ). 

N↑

N↓ N↑ − N↓ m = N↑ − N↓

m = 0

This follows since we must have both

E = (N↓ − N↑) ε

N = (N↓ + N↑)

These two equations are solved to give

N↓ = (N + E / ε) / 2

N↑ = (N − E / ε) / 2.

All microstates have the same distribution of particles between the two energy levels  and .  N↑ N↓

But there are still things we would like to know about this system; in particular we know nothing
about the temperature.  We can approach this from the entropy in our now-familiar way.

The total number of microstates Ω is given by

Ω =
N!

N↑! N↓!
.

So we can calculate the entropy via :S = k lnΩ

S = k {ln N! − ln N↑! − ln N↓!}

Now we use Stirling’s approximation (Guenault Appendix 2) which says

ln x! ≈ x ln x − x;

this is important you should remember this. 

PH261 –  BPC/JS  –  1997                                                                                                          Page 2.7



Hence

S = k {N ln N − N↑ ln N↑ − N↓ ln N↓} ,

where we have used . Into this we substitute for  and  since we need S in terms of
E for differentiation to get temperature.

N↓ + N↑ = N N↑ N↓

S = k 

N ln N −

1
2
(N + E / ε) ln {

1
2
(N + E / ε)} −

1
2
(N − E / ε) ln {

1
2
(N − E / ε)} .

Now we use the definition of statistical temperature:  to obtain the temperature:1 / T = ∂ S / ∂E|N.V
1
T

=
k

2ε
ln {

N − E / ε
N + E / ε} .

(You can check this differentiation with Maple or Mathematica if you wish!)

Recalling the expressions for  and , the temperature expression can be written:N↑ N↓

1
T

=
k

2ε
ln {

N↑

N↓
} ,

which can be inverted to give the ratio of the populations as
N↑

N↓

= exp−2ε / kT .

Or, since  we findN↓ + N↑ = N

N↑

N
=

exp−ε / kT

exp+ε / kT + exp−ε / kT

N↓

N
=

exp+ε / kT

exp+ε / kT + exp−ε / kT

1614121086420
0.0
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0.8

1.0

N↑ / N

N↓ / N

kT / ε

Temperature variation of up and sown populations

This is our final result. It tells us the fraction of particles in each of the two energy states as a function
of temperature. This is the distribution function. On inspection you see that it can be written rather
concisely as

n (ε) = N
exp−ε / kT

z
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where the quantity z

z = exp−ε / kT + exp+ε / kT

is called the (single particle) partition function.  It is the sum over the possible states of the factor
. This distribution among energy levels is an example of the Boltzmann distribution. exp−ε / kT

This distribution applies generally(to distinguishable particles) where there is a whole set of possible
energies available and not merely two as we have considered thus far. This problem we treat in the
next section. In general 

z = ∑
states

exp−ε / kT ,

where the sum is taken over all the possible energies of a single particle. In the present example there
are only two energy levels.

In the general case  is the average number of particles in the state of energy ε  (In the present
special case of only two levels  and  are uniquely determined).  To remind you, an example
of counting the microstates and evaluating the average distribution for a system of a few particles with
a large number of available energies is given in Guenault chapter 1. The fluctuations in  about this
average value are small for a sufficiently large number of particles.  (The 1/ factor)

n (ε)
n (ε1) n (ε2)

n (ε)
N

2.4.2  Magnetisation of  magnet  —  Curie’s lawS = 1 / 2
We can now obtain an expression for the magnetisation of the spin 1/2 paramagnet in terms of
temperature and applied magnetic field.  The magnetisation (total magnetic moment) is given by:

.M = (N↑ − N↓)µ

We have expressions for  and , giving the expression for M asN↑ N↓

M = Nµ
exp−ε / kT − exp+ε / kT

exp+ε / kT + exp−ε / kT

= −Nµ tanh ε / kT

or, since , the magnetisation in terms of the magnetic field isε = −µB

M = Nµ tanh (
µB

kT )
.

3.02.01.00.0
0.0

0.2

0.4

0.6

0.8

1.0

µB / kT

M / Nµ
saturation

M ∼
Nµ2B

kT

linear region

magnetisation of paramagnet
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The general behaviour of magnetisation on magnetic field is nonlinear.  At low fields the
magnetisation starts linearly but at higher fields it saturates as all the moments become aligned.  The
low field, linear behaviour may be found by expanding the tanh:

M =
Nµ2

kT
B.

The magnetisation has the general form

M = C
B

T
,

proportional to B and inversely proportional to T.  This behaviour is referred to as Curie’s law and the
constant  is called the Curie constant.C = Nµ2 / k

2.4.3 Entropy of  magnetS = 1 / 2
We can see immediately that for the spin system the entropy is a function of the magnetic field. In
particular at large  all the moments are parallel to the field. There is then only one possible
microstate and the entropy is zero. But it is quite easy to determine the entropy at all  from

.

B / T
B / T

S = k lnΩ

As we have seen already

S / k = N ln N − N↑ ln N↑ − N↓ ln N↓.

Since  , this can be writtenN = N↓ + N↑

S / k = −N↑ ln N↑ / N − N↓ ln N↓ / N.

And substituting for  and  we then getN↑ N↓

S =
Nk

exp (−2µB / kT) + 1
ln [exp (−2µB / kT) + 1] +

Nk

exp (2µB / kT) + 1
ln [exp (2µB / kT) + 1]

S

T

Nk ln 2

higher B

lower B

0
0

Entropy of a spin 1/2 paramagnet
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1 At low temperatures .  Then the first term is negligible and the 1s may be ignored.
In this case .  Clearly  as , in agreement
with our earlier argument.

kT ≪ 2µB
S ≈ Nk (2µB / kT) exp (−2µB / kT) S → 0 T → 0

2 At high temperatures .  Then both terms are equal and we find .
There are equal numbers of up and down spins: maximum disorder.

kT ≫ 2µB S = Nk ln 2

3 The entropy is a function of  and increasing B at constant T reduces S; the spins tend to
line up; the system becomes more disordered. 

B / T

______________________________________________________________  End of lecture 6

2.5 The Boltzmann distribution
2.5.1  Thermal interaction with the rest of the world − using a Gibbs ensemble
For an isolated system all microststes are equally likely; this is our Fundamental Postulate.  But what
about a non-isolated system?  What can we say about the probabilities of microstates of such a
system?  Here the probability of a microstate will depend on its energy and on properties of the
surroundings.

A real system will have its temperature determined by its environment.  That is, it is not isolated, its
energy is not fixed; it will fluctuate (but the relative fluctuations are very small because of the 
rule).  

1 / N

All we really know about is isolated systems; here all quantum states are equally probable.  So to
examine the properties of a non-isolated system we shall adopt a trick.  We will take many copies of
our system.  These will be allowed to exchange (heat) energy with each other, but the entire collection
will be isolated from the outside world.  This collection of systems is called an ensemble.

The point now is that we now know that all microstates of the composite ensemble are equally likely.
Of the N individual elements of the ensemble, there will be  in the microstate of energy , so the
probability of an element being in this microstate will be .  

ni εi

ni / N

collection of identical systems

System in energy state of εj

a Gibbs ensemble of systems used to calculate {ni}

There are many distributions  which are possible for this ensemble.  In particular we know that
because the whole ensemble is isolated then the number of elements and the total energy are fixed.  In
other words any distribution  must satisfy the requirements

{ni}

{ni}
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∑
i

ni = N

∑
i

niεi = E.

By analogy with the case of the spin 1/2 paramagnet, we will denote the number of microstates of the
ensemble corresponding to a given distribution  by .  Then the most likely distribution is
that for which  is maximised.

{ni} t ( ){ni}

t ( ){ni}

2.5.2  Most likely distribution
The value of  is given byt ( ){ni}

=
N!

∏i ni!
t ( ){ni}

since there are N elements all together and there are  in the ith state.  So the most probable
distribution is found by varying the various  to give the maximum value for t.  It is actually more
convenient (and mathematically equivalent) to maximise the logarithm of t.  

ni

ni

The maximum in  corresponds to the place where its differential is zero:ln t

d ln =
∂ ln t

∂ n1
dn1 +

∂ ln t

∂ n2
dn2 + … +

∂ ln t

∂ ni
dni + … = 0t ( ){ni}

 
If  the  could be varied independently then we would have the following set of equationsni

∂ ln
∂ ni

= 0, i = 1, 2, 3, … .
t ( ){ni}

Unfortunately the  can not all be varied independently because all possible distributions  must
satisfy the two requirements

ni {ni}

∑
i

ni = N

∑
i

niεi = E;

there are two constraints on the distribution .  These may be incorporated in the following way.
Since the constraints imply that

{ni}

d ∑
i

ni = 0

and

d ∑
i

niεi = 0,

we can consider the differential of the expression 

ln t ({ni}) − α ∑
i

ni − β∑
i

niεi

where α and β are, at this stage undetermined.  This gives us two extra degrees of freedom so that we
can maximise this by varying all  independently.  In other words, the maximum in  is alsoni ln t
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specified by

d



ln t ({ni}) − α ∑

i

ni − β∑
i

niεi



 = 0

Now we have recovered the two lost degrees of freedom so that the  can be varied independently.
But then the multipliers α and β are no longer free variables and their values must be found from the
constraints fixing N and E.  (This is called the method of Lagrange’s undetermined multipliers.)

ni

The maximisation can now be performed by setting the N partial derivatives to zero

∂

∂ ni






ln t ({ni}) − α ∑
i

ni − β∑
i

niεi





= 0, i = 1, 2, 3, … .

We use Stirling’s approximation for lnt, given by

ln t ({ni}) = (∑
i

ni) ln (∑
i

ni) − ∑
i

ni ln ni.

so that upon evaluating the N partial derivatives we obtain

ln ∑
i

ni − ln nj − α − βεj = 0

which has solution

nj = Ne−αe−βεj
.

These are the values of  which maximise t subject to N and E being fixed.  This gives us the most
probable distribution .

nj

{ni}

The probability that a system will be in the state j is then found by dividing by N:

pj = e−αe−βεj
.

So the remaining step, then, is to find the constants α and β. 

2.5.3  What are α and β?
For the present we shall sidestep the question of α by appealing to the normalisation of the probability
distribution.  Since we must have

∑
j

pj = 1

it follows that we can express the probabilities as

pj =
e−βεj

Z
where the normalisation constant Z is given by

Z = ∑
j

e−βεj
.

The constant Z will turn out to be of central importance; from this all thermodynamic properties can be
found.  It is called the partition function, and it is given the symbol Z because of its name in German:
zustandsumme (sum over states).
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But what is this β?  For the spin 1/2 paramagnet we had many similar expressions with  there,
where we have β here.  We shall now show that this identification is correct.  We will approach this
from our definition of temperature:

1 / kT

1
T

=
∂ S

∂E |V ,N .

Now the fundamental expression for entropy is , where Ω is the total number of
microstates of the ensemble.  This is a little difficult to obtain.  However we know , the number
of microstates corresponding to a given distribution .  And this t is a very sharply peaked function.
Therefore we make negligible error in approximating Ω by the value of t corresponding to the most
probable distribution.  In other words, we take

S = k lnΩ
t ({ni})

{ni}

S = k ln (
N!

∏i ni!)
where

nj = Ne−αe−βεj
.

Using Stirling’s approximation we have

S = k



N ln N − ∑

i

ni ln ni





= k {N ln N + αN + βE} .

From this we immediately identify

1
T

=
∂ S

∂E |V ,N = kβ

so that

β =
1

kT
as we asserted.

The probability of a (non-isolated) system being found in the ith microstate is then

pi ∝ e−εi/kT

or

pi =
e−εi/kT

Z
This is known as the Boltzmann distribution or the Boltzmann factor.  It is a key result.  Feynman says
“This fundamental law is the summit of statistical mechanics, and the entire subject is either a slide-
down from the summit, as the principle is applied to various cases, or the climb-up to where the
fundamental law is derived and the concepts of thermal equilibrium and temperature clarified”. 

______________________________________________________________  End of lecture 7
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2.5.4 Link between the partition function and thermodynamic variables
All the important thermodynamic variables for a system can be derived from Z and its derivatives.  We
can see this from the expression for entropy.  We have

S = k {N ln N + αN + βE} .

And since  we have, on taking logarithmse−α = N / Z

α = − ln N + ln Z

so that

S = k {N ln N − N ln N + N ln Z + E / kT}

= Nk ln Z + E / T .

Here both S and E refer to the ensemble of N elements.  So for the entropy and internal energy of a
single system

S = k ln Z + E / T ,

which, upon rearrangement, can be written

E − TS = −k ln Z.

Now the thermodynamic function

F = E − TS

is known as the Helmholtz free energy, or the Helmholtz potential.  We then have the memorable
result

F = −kT ln Z.

2.5.5  Finding Thermodynamic Variables
A host of thermodynamic variables can be obtained from the partition function.  This is seen from the
differential of the free energy.  Since

dE = TdS − pdV

it follows that

dF = −SdT − pdV .

We can then identify the various partial derivatives:

S = −
∂F

∂T |V = kT
∂ ln Z

∂T |
V
+ k ln Z

p = −
∂F

∂V |
T
= kT

∂ ln Z

∂V |
T
.

Since  we can then express the internal energy asE = F + TS

E = kT2 ∂ ln Z

∂T |
V
.

Thus we see that once the partition function is evaluated by summing over the states, all relevant
thermodynamic variables can be obtained by differentiating .Z

It is instructive to examine this expression for the internal energy further.  This will also confirm the
identification of this function of state as the actual energy content of the system.  If  is the probability
of the system being in the eigenstate corresponding to energy  then the mean energy of the system
may be expressed as

pj

εj
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E = ∑
j

εjpj

=
1
Z ∑j

εj e−βεj

where Z is the previously-defined partition function, and it is convenient here to work in terms of β
rather than converting to .1 / kT

In examimining the sum we note that  

εj e−βεj
= −

∂

∂ β
e−βεj

so that the expression for E may be written. after interchanging the differentiation and the summation,

E = −
1
Z

∂

∂ β
∑

j

e−βεj
.

But the sum here is just the partition function, so that

E = −
1
Z

∂Z

∂ β

= −
∂

∂ β
ln Z.

And since , this is equivalent to our previous expressionβ = 1 / kT

E = kT2 ∂ ln Z

∂T |
V
,

however the mathematical manipulations are often more convenient in terms of β.
 
2.5.6  Summary of methodology
We have seen that the partition function provides a means of calculating all thermodynamic
information from the microscopic description of a system. We summarise this procedure as follows:

1 Write down the possible energies for the system.
2 Evaluate the partition function for the system.
3 The Helmholtz free energy then follows from this.
4 All thermodynamic variables follow from differentiation of the Helmholtz free energy.

2.6 Localised systems
2.6.1 Working in terms of the partition function of a single particle
The partition function methodology described in the previous sections is general and very powerful.
However a considerable simplification follows if one is considering systems made up of
noninteracting distinguishable or localised particles.  The point about localised particles is that even
though they may be indistinguishable, perhaps a solid made up of argon atoms, the particles can be
distinguished by their positions.
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Since the partition function for distinguishable systems is the product of the partition function for each
system, if we have an assembly of N localised identical particles, and if the partition function for a
single such particle is z, then the partition function for the assembly is

Z = zN
.

It then follows that the Helmholtz free energy for the assembly is

F = −kT ln Z

= −NkT ln z

in other words the free energy is N times the free energy contribution of a single particle; the free
energy is an extensive quantity, as expected.

This allows an important simplification to the general methodology outlined above.  For localised
systems we need only consider the energy levels of a single particle.  We then evaluate the partition
function z of a single particle and then use the relation  in order to find the
thermodynamic properties of the system.

F = −NkT ln z

We will consider two examples of this, one familiar and one new. 
______________________________________________________________  End of lecture 8

2.6.2  Using the partition function I  —  the  paramagnet (again)S = 1 / 2
Step 1) Write down the possible energies for the system
The assembly of magnetic moments µ are placed in a magnetic field B.  The spin ½ has two quantum
states, which we label by ↑ and ↓.  The two energy levels are than 

ε↑ = −µB, ε↓ = µB.

Step 2)  Evaluate the partition function for the system
We require to find the partition function for a single spin.  This is

z = ∑
states i

e−εi/kT

= eµB/kT
+ e−µB/kT

.

This time we shall obtain the results in terms of hyperbolic functions rather than exponentials — for
variety.  The partition function is expressed as the hyperbolic cosine:

z = 2 cosh µB / kT .

Step 3)  The Helmholtz free energy then follows from this
Here we use the relation

F = −NkT ln z

= −NkT ln {2 cosh µB / kT} .

Step 4)  All thermodynamic variables follow from differentiation of the Helmholtz free energy
Before proceeding with this step we must pause to consider the performance of magnetic work.  Here
we don’t have pressure and volume as our work variables; we have magnetisation M and magnetic
field B.  The expression for magnetic work is
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d⁄ W = −MdB,

so comparing this with our familiar , we see that when dealing with magnetic systems we must
make the identification

−pdV

p ↔ M

V ↔ B.

The internal energy differential of a magnetic system is then

dE = TdS − MdB

and, of more immediate importance, the Helmholtz free energy  has the differentialE − TS

dF = −SdT − MdB.

We can then identify the various partial derivatives:

S = −
∂F

∂T |B = NkT
∂ ln z

∂T |
B
+ Nk ln z,

M = −
∂F

∂B|T = NkT
∂ ln z

∂B |
T
.

Upon differentiation we then obtain

S = −
NµB

T
tanh µB / kT + Nk ln {2 cosh µB / kT} ,

M = Nµ tanh µB / kT .

The internal energy is best obtained now from

E = F + TS

= −NkT ln z + TS

= −NkT ln {2 cosh µB / kT} + T 


−

NµB

T
tanh µB / kT + Nk ln {2 cosh µB / kT}


,

giving

E = −NµB tanh µB / kT .

We note that the internal energy can be written as  as expected.E = −MB

By differentiating the internal energy with respect to temperature we obtain the thermal capacity at
constant field

CB = Nk (
µB

kT )
2

sech2
µB / kT .

Some of these expressions were derived before, from the microcanonical approach; you should check
that the exponential expressions there are equivalent to the hyperbolic expressions here.

We plot the magnetisation as a function of inverse temperature.  Recall that at high temperatures we
have a linear region, where Curie’s law holds.  At low temperatures the magnetisation saturates as all
the moments become aligned against the applied field.

Incidentally, we note that the expression

M = Nµ tanh µB / kT
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is the equation of state for the paramagnet.  This is a nonlinear equation.  But recall that we found
linear behaviour in the high  region whereT / B

M =
Nµ2B

kT
,

just as it is in the high temperature region that the ideal gas equation of state  is valid.p = NkT / V

3.02.01.00.0
0.0

0.2

0.4

0.6

0.8

1.0

µB / kT

M / Nµ
saturation

M ∼
Nµ2B

kT

linear region

magnetisation of spin 1/2 paramagnet against inverse temperature

Next we plot the entropy, internal energy and the thermal capacity as a function of temperature.
Observe that they all go to zero as .  T → 0

At low temperatures the entropy goes to zero, as expected.  And at high temperatures the entropy goes
to the classical two-state value of  per particlek ln 2

S ∼ 2Nk (
µB

kT )
e−

2µB
kT T → 0

S ∼ Nk ln 2 − 4Nk (
µB

kT )
2

T → ∞.

The thermal capacity  is particularly important as it is readily measurable.  It exhibits a maximum of
  at a temperature of  .  This is known as a Schottky anomaly.  Ordinarily

the thermal capacity of a substance increases with temperature, saturating at a constant value at high
temperatures.  Spin systems are unusual in that the energy states of a spin are finite and therefore
bounded from above.  The system then has a maximum entropy.  As the entropy increases towards this
maximum value it becomes increasingly difficult to pump in more heat energy. 

CB ∼ 0.44Nk T ∼ 0.83µB / k

At both high and low temperatures the thermal capacity goes to zero, as may be seen by expanding the
expression for :CB

CB ∼ 4Nk (
µB

kT )
2

e−
2µB
kT T → 0

CB ∼ 2Nk (
µB

kT )
2

T → ∞.
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______________________________________________________________  End of lecture 9
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2.6.3  Using the partition function II  —  the Einstein model of a solid
One of the challenges faced by Einstein was the explanation of why the thermal capacity of solids
tended to zero at low temperatures.  He was concerned with nonmagnetic insulators, and he had an
inkling that the explanation was something to do with quantum mechanics.  The thermal excitations in
the solid are due to the vibrations of the atoms.  Einstein constructed a simple model of this which was
partially successful in explaining the thermal capacity.

In Einstein’s model each atom of the solid was regarded as a simple harmonic oscillator vibrating in
the potential energy minimum produced by its neighbours.   Each atom sees a similar potential, so they
all oscillate at the same frequency; let us call this .  And since each atom can vibrate in three
independent directions, the solid of N atoms is modelled as a collection of  identical harmonic
oscillators.

ω / 2π
3N

We shall follow the procedures outlined above.

Step 1) Write down the possible energies for the system
The energy states of the harmonic oscillator form an infinite ‘ladder’ of equally spaced levels; you
should be familiar with this from your quantum mechanics course.

1
2ħω

3
2ħω

5
2ħω

7
2ħω

9
2ħω

1

j = 0

2

3

4

εj = (j +
1
2) ħω j = 0, 1, 2, 3, …

single particle energies:

… ……

Step 2)  Evaluate the partition function for the system
We require to find the partition function for a single harmonic oscillator.  This is

z = ∑

∞

j = 0

e−εj/kT

= ∑

∞

j = 0

exp {− (j +
1
2)

ħω

kT } .

To proceed, let us define a characteristic temperature θ, related to the oscillator frequency by

θ = ħω / k.

Then the partition function may be written as

z = ∑

∞

j = 0

exp {− (j +
1
2)

θ

T }

= e−θ/2T
∑

∞

j = 0

(e−θ/T
)
j

and we observe the sum here to be a (convergent) geometric progression.  You should recall the result

∑

∞

n = 0

xn
= 1 + x + x2

+ x3
+ … =

1
1 − x

.
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If you don’t remember this result then multiply the power series by  and check the sum.1 − x

The harmonic oscillator partition function is then given by

z =
e−θ/2T

1 − e−θ/T
.

Step 3)  The Helmholtz free energy then follows from this
Here we use the relation

F = −3NkT ln z

=
3N

2
kθ + 3NkT ln {1 − e−θ/T

} .

Step 4)  All thermodynamic variables follow from differentiation of the Helmholtz free energy
Here we have no explicit volume dependence, indicating that the equilibrium solid is at zero pressure.
If an external pressure were applied then the vibration frequency  would be a function of the
interparticle spacing or, equivalently, the volume.  This would give a volume dependence to the free
energy from which the pressure could be found.  However we shall ignore this.  

ω / 2π

The thermodynamic variables we are interested in are then entropy, internal energy and thermal
capacity.  The entropy is

S = −
∂F

∂T |V

= 3Nk



ln (

eθ/T

eθ/T
− 1) +

θ / T
(eθ/T

− 1)



 .

In the low temperature limit S goes to zero, as one would expect.  The limiting low temperature
behaviour is

S ∼ 3Nk
θ

T
e−θ/T T → 0.

At high temperatures the entropy tends towards a logarithmic increase

S ∼ 3Nk ln (
T

θ
) T → ∞.

The internal energy is found from

E = −3N
∂

∂ β
ln z

where we write  asln z

ln z = −
βħω

2
− ln {1 − e−βħω} .

Then on differentiation we find

E = 3N {
ħω

2
+

ħω

eβħω − 1}
.

The first term represents the contribution to the internal energy from the zero point oscillations; it is
present even at .T = 0
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At high temperatures the variation of the internal energy is

E ∼ 3NkT {1 +
1
12 (

θ

T )
2

− … } .
The first term is the classical equipartition part, which is independent of the vibration frequency.  

Turning now to the thermal capacity, we have

CV =
∂E

∂T |V ,

= 3Nkθ
∂

∂T {
1

eθ/T
− 1}

.

Upon differentiation this then gives

CV = 3Nk (
θ

T )
2 eθ/T

(eθ/T
− 1)2

.

At high temperatures the variation of the thermal capacity is

CV ∼ 3Nk −
1
4

Nk (
θ

T )
2

+ … T ≫ θ

where the first term is the constant equipartition value.  At low temperatures we find

CV ∼ 3Nk (
θ

T )
2

e−θ/T T ≪ θ.

We see that this model does indeed predict the decrease of  to zero as , which was
Einstein’s challenge.  The decrease in heat capacity below the classical temperature-independent value
is seen to arise from the quantisation of the energy levels.  However the observed low temperature
behaviour of such thermal capacities is a simple  variation rather than the more complicated
variation predicted from this model.  

CV T → 0

T3

The explanation for this is that the atoms do not all oscillate independently.  The coupling of their
motion leads to normal mode waves propagating in the solid with a continuous range of frequencies.
This was explained by the Debye model of solids.

The Einstein model introduces a single new parameter, the frequency  of the oscillations or,
equivalently, the characteristic temperature .  And the prediction is that  is a universal
function of .  To the extent that the model has some validity, each substance should have its own
value of θ; as the   figure shows, the value for diamond is ∼1300K.  This is an example of a law of
corresponding states:  When the temperatures are scaled appropriately all substances should exhibit
the same behaviour.  

ω / 2π
θ = ħω / k CV

T / θ
CV
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Finally we give the calculated properties of the Einstein model in terms of hyperbolic functions; you
should check these.  

The partition function for simple harmonic oscillator can be written as

z =
1
2

cosech (
θ

2T )
,

so that the Helmholtz free energy for the solid comprising  such oscillators is3N

F = 3NkT ln 

2 sinh (

θ

2T )



.

And from this the various properties follow: 

S = 3Nk {(
θ

2T )
coth (

θ

2T )
− ln 


2 sinh (

θ

2T )


}

E =
3
2

Nkθ coth (
θ

2T )

CV = 3Nk (
θ

2T )
2

cosech2
(
θ

2T )
.

______________________________________________________________  End of lecture 10
Equation of state for the Einstein solid
We have no equation of state for this model so far.  No p – V relation has been found, since there was
no volume-dependence in the energy levels, and thus in the partition function and everything which
followed from that.  This deficiency can be rectified by recognising that the Einstein frequency, or
equivalently the temperature θ may vary with volume.  Then the pressure may be found from

p = −
∂F

∂V |
T

= −
3Nk

2
coth (

θ

2T )
dθ
dV

.

We note that the equilibrium state of the solid when no pressure is applied, corresponds to the
vanishing of .  In fact θ will be a minimum at the equilibrium volume   (why?).  For small
changes of volume from this equilibrium we may then write

dθ / dV V0

θ = θ0 + α (
V − V0

V0
)
2

so that

dθ
dV

=
2α
V2

0
(V − V0) .

Then the equation of state for the solid is

p =
3Nkα

V2
0

(V0 − V) coth (
θ0

2T ) .

The high-temperature limit of this is

p =
6Nkα

V2
0 θ

(V0 − V)T

and the low-temperature, temperature-independent limit is

p = 3Nkα
(V0 − V)

V2
0

. 
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