PH 242 *Electromagnetism* Worksheet 2

GENERAL QUIZ

First, so as you get at least one mark, here is an easy question

a)	What is your name?	My name is	
b)	Write down in vector form Coulomb's between two charges Q_1 and Q_2 separate		F =
c)	What is the relationship between the the electric potential V ?		$E = \dots$
d)	Consider a scalar field <i>V</i> . Write down the change in <i>V</i> between two points so infinitessimal vector d <i>l</i> .	eparated by an	$V = \dots$
e)	Complete the statement of Gauss's la The flux of E out of a closed surface	is equal to the total	
0			
f)	Write down Gauss's law in terms of a surface integral.		
g)	Write down Poisson's equation.		
h)	Under what conditions does this redu	ce to Laplace's equation	?
Now complete the following systements:			
i)	The electric field inside a conductor i	S	
j)	The electric potential insode a conduc	ctor is	
k)	The field outside a conductor points		to the surface and is
	equal to $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
1)	The field inside a cavity in a conducte	or is	

Now some questions on magnetism:

m) Write down the law of force between two current elements $d\mathbf{l}_1$ and $d\mathbf{l}_2$ carrying currents I_1 and I_2

d**F** =

n) What is the magnetic field **B** at a point P a displacement **r** away from a small element d**l** carrying a current **I**?

 $\boldsymbol{B} = \dots$

o) What is the divergence of B?

 $div \mathbf{B} = \dots$

p) What is the field *B* a distance *a* away from a long wire carrying a current *I* in the *z* direction?

For Linear Isotropic Homogeneous conductors \boldsymbol{i} and \boldsymbol{E}

 $B = \dots$

q) What shape do the lines of **B** trace out?

∮B.d**l** =

.....

r) Write down in integral form Ampère's law

s) Write this in terms of a curl

are related by

Give the units of the following quantities:

u) Electric charge Q

.....

v) Electric potential *V*

.....

w) Capacity C

t)

.....

x) Magnetic field B

.....

y) Electric permittivity ε_0

.....

z) Magnetic permeability μ_0