
PH 2420 *Electromagnetism* Worksheet 1

CAPACITORS AND CYLINDRICAL SYMMETRY

Write your name here to get your first mark

A cylindrical capacitor is constructed from two long concentric cylindrical conductors of length l and radius a and b (where a < b).

There is a charge of +Q on the inner conductor and -Q on the outer conductor.

First, a few questions to introduce the idea of surface charge density.

a)	What is the surface area of the inner tube?		Area =		
b)	Since the charge on the inner tube is $+Q$, and area, the areal charge density, the charge period.	U	σ = +		
c)	The units of σ are		units :		
For completeness, let us consider the outer tube as well.					
d)	The surface area of the outer tube is		Area =		
e)	The surface charge density σ on the outer t	ube is	σ =		
Now we shall consider the electric field E between the cylinders. Note that it is because of the symmetry of the system that we can use Gauss's law – but of course the cylindrical symmetry only applies so long as we can ignore the effects at the ends, that is, if the cylinders are long: $l \ge b$.					
f)	By considering the symmetry of the system direction of E between the cylinders?		ction is:		
g)	What is the component of <i>E</i> along the leng of the cylinder?		of <i>E</i> is:		

To evaluate the electric field E we construct a 'gaussian' cylinder of radius r and length d placed concentrically between the inner and the outer cylinder.					
h)) Gauss's law tells us that the flux of <i>E</i> through the surface of the cylinder, $\int E da$ is given by $1/\epsilon_0$ times what?				
i)	In terms of the total charge Q , what is the charge enclosed by the 'gaussian' cylinder? Charge =				
j)	How much flux passes throug ends of the gaussian cylinder?		nrough ends =		
k)	What is the surface area of the gaussian cylinder through which the lines of E penetrate?Surface area =				
1)	Since the E field is is perpendicular to the curved surface of the cylinder, and it is constant over the surface of the cylinder, Gauss's law tells us that				
	$E \times area = charge$	e enclosed / ϵ_0 .			
	So at a radius <i>r</i> what is the ma	gnitude of <i>E</i> ?	$E(r) = \dots$		
At this stage you should have obtained $E(r)=Q/2\pi\epsilon_0 rl$. If not then you must go back and check – if necessary refer to your notes on Gauss's law.					
m)	The potential difference betwee the work done in moving <i>wha</i>		Moving		
n)	The work done in moving a characteristic field E , is given by the integrated by t	• • •	tric $W = -q \int \dots$		

o) What is the - sign doing in this expression?
The - sign is here because we must do work by applying the force
the electric force experienced by the charge.

p) The *potential difference V* between the two cylindrical conductors of radius *a* and *b* is the work done in moving a unit charge from one cylinder to the other:

$$V = -\int_{a}^{b} E(r) \, \mathrm{d}r \; .$$

Since the dependence of E on r is known, this integral can be evaluated. Find the expression for V:

Do your working in the box below

		$V = \dots$
q)	The <i>capacitance</i> is given in terms of the potential difference V and the charge Q . The expression is:	<i>C</i> =
r)	So what is the expression for the capacitance of the cylindrical capacitor, in terms of its dimensions etc.?	<i>C</i> =

Some interesting observations:

In the expression for *C* we have the factor $2\pi\epsilon_0$. This is typical of systems with *cylindrical* symmetry, just as one finds $4\pi\epsilon_0$ for systems with *spherical* symmetre – e.g. the field or potential of a point charge.

Note also that the *logarithm* in the expression for C is also a characteristic of cylindrical symmetry.

The capacitance is proportional to ε_0 . For a dielectric medium the electric permittivity is enhanced by the dielectric constant. We see that the capacitance is enhanced by the same factor.