
X  ELECTRIC FIELDS AND MATTER 
 

10.1  Dielectrics and dipoles 
It is an experimentally observed fact that if you put some (insulating) matter between the 
plates of a capacitor then the capacitance increases. Since the capacitance is given by the 
ratio of charge to voltage 
                                                                    C  =  Q/V 
 
this means that when matter is inserted between the plates 
 
 Q increases when V is held constant 
or V decreases when Q is held constant. 
 
The first case would apply to a capacitor connected to a battery, and the second case applies 
to an electrically isolated capacitor.  We will consider the second. 
 
 The explanation for the effect is that there is a relative displacement of the positive 
and negative charges in the substance between the plates. The charge on the positive plate 

attracts the negative charge and repels the positive charge of the substance, 
while the charge on the negative plate attracts the positive charge and repels 
the negative charge of the substance. In this way there is a partial 
cancellation of the capacitor’s electric field and the potential difference 
between the plates, and its capacitance thereby increases. 
 
 The (insulating) material between the plates is called a dielectric.  

The enhancement of the capacitance of a capacitor by a dielectric is thus a consequence of the 
polarisation of the dielectric. So to understand the nature of dielectrics, we must be familiar 
with the properties of polarised matter. 

+++++++++++++++

+++++++++++++++

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−

 
 The simplest model for polarisation is a dipole.  This is an equal positive and negative 
point charge separated by a small displacement. 
 
 There are two origins for dipoles in matter: 
 
1) Permanent dipoles, for example NaCl  

There is a permanent dipole due to the asymmetric charge distribution 
associated with the ionic bond of the NaCl “molecule”. The sodium ion 
loses an electron and the chlorine ion gains it. While the charge distribution 
is asymmetric, the entire assembly remains electrically neutral. 

Na+ Cl−

 
2) Induced dipoles, for example O2 (in an electric field) 

Here an applied electric field induces a polarisation by pulling the positive 
charges one way and the negative charges the other way. This can happen in 
individual atoms and in covalently bonded molecules, as O2, where the 
bonding electron orbits become distorted by the electric field. 

+ +

E  
 We shall see that dipoles can explain most of the electrical properties of insulators. 
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 We define the electric dipole moment p as 
 

                                                  p  =  q l                                               (10.1) 
 
where p points along l, from –q to +q. In the next section we will start to 
explore the properties of electric dipoles.  However, here we will consider 

the simple application of Gauss’s law to a dipole. 

+q−q
l

p

 
 Gauss’s law tells us that the flux of E through a closed surface is proportional to the 
total charge in the enclosed volume. Considering a surface enclosing a dipole, we see that the 
total emergent flux is zero. To zeroth order the dipole has no electrical effect: all the lines of 
E leaving the positive charge terminate on the negative one; there are no free lines.  But what 
is important is the first non-vanishing order.  Although there is no net flux, in some places the 
lines of E go in, and in other places they go out – as we shall see. 

 
 The bulk electric behaviour of matter is described in terms 
of the electric polarisation vector P.  This is defined as the total 
dipole moment per unit volume.   
 

 

P 

p                                    N=P p                                            (10.2)   
 
where N is the number of dipoles of moment P, per unit volume. 

 

10.2  Electric potential of a dipole 
As a prelude to finding the electric field of a dipole we shall calculate the electric potential at 
the “field point” F by adding the potentials from the two source charges. 

 
The separation of the charges is 2x, which we had denoted by l. 
The magnitude of the dipole moment in this case is then 
 
                                       p  =  2xq. 
 
The potential at point F is given by  
 

                          
0 b a

1 1
4

qV
r rπε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

 
We are considering the potential at a distance r from the dipole 
very much greater than the separation 2x between the charges. 
After all, in practice r is a macroscopic distance while x is a 

microscopic dimension. In this case we see that the distances ra and rb are very similar. To the 
extent that they are equal we see that there is no potential, and thus no field. We must thus 
consider specifically the difference between (the reciprocals) of these distances.  However, 
since x/r is such a small quantity, we may consider an expansion in this small quantity, 
keeping only the leading term. 

ra rbr

+q
x x

field point F

A B

source point
S

p θ

r

–q
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 Expressions for ra and rb may be written in terms of the distance r and the angle θ  by 
the use of the cosine rule: 

 
2 2 2

a
2 2 2

b

2 cos

2 cos

r r x xr

r r x xr

θ

θ

= + +

= + −
 

 
so taking the square root we obtain ra as 
 

 
1 22

a
21 cosx xr r
r r

θ
⎧ ⎫⎪ ⎪⎛ ⎞= + +⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
                                

and its reciprocal: 

 
1 22

a

1 1 21 cosx x
r r r r

θ
−

⎧ ⎫⎪ ⎪⎛ ⎞= + +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

                     
We may now expand through the use of the binomial theorem: 
 

 
2

a

1 1 11 cos
2

x x
r r r r

θ
⎧ ⎫⎪ ⎪⎛ ⎞= − − +⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
…  

                                          
with a similar expression for rb by changing the sign of the cosine: 
 

 
2

b

1 1 11 cos
2

x x
r r r r

θ
⎧ ⎫⎪ ⎪⎛ ⎞= + − +⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
…  

 
From these we find the difference in the reciprocal distances as 
 

 2
b a

1 1 2 cosx
r r r

θ− = +… 

                       
and so to leading order in the small quantity x/r the electric potential at point F due to the 
dipole at point S is given by 
 

                                                             2
0

2 cos
4

q xV
r

θ
πε

= . 

                            
But since the dipole moment p is simply 2xq, the potential may be expressed as 
 

                                                              2
0

1 cos
4

pV
r

θ
πε

=                                                   (10.3) 

  
Note that for the dipole V  ~  1/r2, compared with V  ~  1/r for a point charge (electric 

monopole).  We shall see that this gives an E field that varies as 1/r3 for the dipole compared 
with 1/r2 for the monopole. The dipole field thus falls off much faster; it has a shorter range. 
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 Taking account of the direction of the dipole, since  
 
                                                          ˆcosp rθ = =p.r p.r  
 
we can write the dipolar potential in vector form as 

                                                            
2

0

3
0

ˆ1
4

1 .
4

V
r

r

πε

πε

=

=

p.r

p.r
                                                         (10.4) 

 It is interesting to note from our definition and properties of the grad function that 
since the change in a quantity V on undergoing a displacement dr is given by 
Equation (3.24): 
 
                                                           dV   =   dr . grad(V), 
 
the potential of the dipole may be written in the compact form: 
 

                                                           
0

1 grad
4

V
rπε

⎛ ⎞= ⎜ ⎟
⎝ ⎠

p. 1 .                                              (10.5) 

 
 
 
The figure shows equipotential lines for an 
electric dipole. The equipotential lines for 
a single charge are concentric circles. 
Observe how the equipotentials around the 
charges of the dipole are distorted.   
 
 
 

 

10.3  Electric field of a dipole 
Since the electric field is a vector, we must decide what co-ordinate 
system to use when describing E in terms of its components. While 
rectangular co-ordinates are the most familiar, the symmetry of this 
particular system makes polar co-ordinates much more convenient to 
use. Recall that the electric field is given as the negative gradient of 
the electrostatic potential: 
 
                                          E  =  −gradV. 
 
We are familiar with the expression for the components of the 

gradient in rectangular co-ordinates; these were given in Equation (3.23). You should have 
encountered the gradient in other co-ordinate systems from your maths courses. In polar co-
ordinates the components of gradV are given by (there is no dependence on φ) 
 

r

p

Er

Eθ

θ

z
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                                                     1,r
VE E
r rθ

V
θ

∂ ∂
= − = −

∂ ∂
                                     (10.6) 

 
so that using V for the dipole, from Equation (10.3), we find 
 

                                                3 3
0 0

2 cos sin,
4 4r
p pE E

r rθ
θ θ

πε π
=

ε
=                                      (10.7) 

 
  
The diagram shows the lines of E surrounding an 
electric dipole. Observe the characteristic shape of 
the dipole field. Although there is much cancellation 
of the fields from the two charges, it is not complete: 
thus the dipole field. The almost-cancellation may be 
clearly seen by superimposing the fields from the 
two charges. The lines from one charge point out 
while those from the other point in. Where the lines 
cross there is almost complete cancellation, with the 
remnant field essentially perpendicular. Thus the 

dipole field lines follow the Moiré curves of the intersections of the lines.  

+
-

 
 
 

+
−
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10.4  Dipole in a uniform E field 
 

In a uniform electric field the forces on the two charges 
constituting the dipole will be equal and opposite, 
although not co-linear. Thus there will be no net force on 
the dipole but there will be a couple (a torque). 
 
             
 

F E = +q

F E = –q

+q

–q

E

p
θ

For a dipole p in a uniform E field we conclude: 
 
                                                               Force  =  0                                                            (10.8) 
 
                                               Couple  =  E q dl sinθ  =  p × E.                                          (10.9) 
  
 We shall now calculate the potential energy of a dipole in a uniform electric field.  
The potential energy of the dipole is the work done in bringing it to its particular orientation 
from some reference state.  The torque on the dipole due to the external E field has 
magnitude pEsinθ and it acts in the clockwise direction. So to rotate the dipole we must apply 
an anticlockwise torque: in the direction of increasing θ. And the work done is the integral of 
the torque with respect to θ:  

                                                 

Work done Torque d

sin  d

cos .

Ep

Ep

θ

θ θ

θ

=

=

= −

∫
∫  

 
We have used the indefinite integral as we do not want to have the complication of 

considering the initial reference orientation; the above result is correct to within the addition 
of a constant.  It may be seen that the constant is zero when the reference state is taken as that 
when the dipole is pointing perpendicular to the field.  Then the potential energy has the 
simple form: 
                                                                  .V = −E.p                                                       (10.10) 
 
(Note that V here is the potential energy and not the electric potential.) 
 

10.5  Dipole in a non-uniform E field 
In a uniform field there was no net force on a dipole because the force on one charge was 

exactly balanced by the force on the other. This was 
because both charges experienced the same electric field. 
If, however, the field were non-uniform then the two 
charges would be in slightly different fields and so they 
would experience slightly different forces. We may write 
the net force on the dipole as 
 

F E = + (a)q

F E = – (b)q

+q

–q

E
a

b

p
θ

                                               F  =  q { E(a)  −  E(b) }. 
 

PH2420 / © B Cowan 2007 10.6 



X  Electric Fields and Matter 

Now E(b) may be related to E(a) by a Taylor expansion 
 

 ( ) ( )b a x y z
x y z

⎧ ⎫∂ ∂ ∂
= − + +⎨ ⎬∂ ∂ ∂⎩ ⎭

E E EE E  

                    
where (x, y, z) are the components of the vector from point a to point b. 
 
Thus we have for the force 

 
.x y z

q x y z
x y z

p p p
x y z

⎧ ⎫∂ ∂ ∂
= + +⎨ ⎬∂ ∂ ∂⎩ ⎭

∂ ∂ ∂
= + +

∂ ∂ ∂

E E EF

E E E
 

 
This is an interesting mathematical structure. In this form it has to be written in terms of the 
components of the dipole moment p; it cannot be expressed in coordinate-independent form 
involving p and our familiar div, grad and curl. However we note that the x component of the 
force can be written as 
 .gradx xF E= p  
 
and similarly for the y and z components. Thus 
 

 
.grad
.grad

.grad

x x

y

z z

F E
F

F E
yE

=
=

=

p
p

p

 (10.11) 

 
These may be conveniently combined together in the following symbolic manner: 
 
                                                           F  =  (p . grad)E.                                                    (10.12) 
 
We must regard Eq. (10.11) as the definition of the p.grad operator. Interestingly we have 
found that this very structure actually appears in the expressions for grad(A.B) and curl(A×B) 
in Chapter 3. 

10.6  Free and bound charge 
We now come to a most important concept in the consideration of the electrical properties of 
matter. Our fundamental viewpoint is that matter is simply a collection of charges and 
currents. However, the charges that constitute matter are different from the charges that are 
responsible for charging an insulator or which flow as current in a conductor. We are led to 
the idea of bound charge. This is the charge within neutral matter which, when displaced, is 
responsible for its polarisation: causing for the dipole moments of the constituent atoms or 
molecules. 
 
 Recall that in Section 10.1 we introduced the polarisation P of a macroscopic body: 
the dipole moment per unit volume. So if there are N dipoles per unit volume, and each 
dipole has a moment p then the polarisation is given by 
 N=P p . (10.13) 

PH2420 / © B Cowan 2007 10.7 



X  Electric Fields and Matter 

10.7  Bound surface charge density 
If an insulator has a polarisation then the displaced bound charge produces a net positive 

charge at one end and a negative charge at the other end. 
The dipole moment of the strip is is given by its volume 
times P: 
 
                dipole moment  =  a l P. 

    →     →     →     →     →     →     →
  →P

l

aarea

 
 
 
 

But this strip may be regarded as a single dipole: charges +q and −q separated by a distance l.  
Thus  
 
                                                                lq  =  alP 
 
so that the equivalent charge on the ends of the strip are +aP and −aP. The area of the strip is 
a so that the bound surface charge density σb  is simply P. Taking into account the orientation 
of the surface with respect to the direction of the polarisation the bound charge on the area a 
may be written as 
 
                                                               Qb  =   P . a                                                        (10.14) 
 
and the surface charge density as  
                                                                 b ˆσ = P.n .                                                        (10.15) 
 
Here  is the unit vector pointing perpendicularly from the surface. n̂

10.8  Bound volume charge density 
If the polarisation of a body is not uniform then there will be a non-zero charge density within 
the body even though as a whole it is electrically neutral. When the body becomes polarised 
there is an internal movement of bound charge. Applying the arguments of the previous 
section to a small element within the body, the bound charge flowing out of a volume v 
across a surface area da is given by P.da. So the total charge flowing out of the volume is  
 
                                                           out

closed
surface

dQ = ∫∫ P. aw . 

But the volume was neutral. So the charge remaining in the volume is then −Qout. And this 
must be equal to the volume integral of the bound charge (volume) density ρb:  
 
                                                     b

volume bounding
surface

d dvρ = −∫∫∫ ∫∫ P. aw . 

The right hand side of this equation may be transformed to a volume integral through the use 
of the divergence theorem 
                                                      

bounding volume
surface

d div v=∫∫ ∫∫∫P. a Pw d

so that 
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                                                       . b
volume volume

d divv vρ = −∫∫∫ ∫∫∫ Pd

Now the volume of integration is really quite arbitrary. This equation holds irrespective of the 
precise volume specified, and this can only hold if the arguments of the two integrals are 
equal. In other words, the bound charge ρb is related to P, the polarisation, by 
 
                                                               ρb  =  −div P.                                                     (10.16) 
 
(There are some analogies between this discussion and the derivation of the equation of 
continuity.) 

10.9  Gauss’s law including dielectrics 
Our statement of Gauss’s law, which we may express as 
 
                                                                 div E  =  ρ/ε0
 
includes the effect of all charges.  In our treatment of matter we interpret the electrical 
properties of dielectrics as due to the action of bound charges. In other words we are saying 
that there are two types of charge we must consider: bound charges and free charges. And 
Gauss’s law above refers to all the charges. We thus write it in the form 
 
                                                        div E  =  ρfree/ε0  + ρb/ε0. 
 
But ρb is related to P by Equation (10.16), so that 
 
                                                       div E  = ρfree/ε0  −  div P/ε0. 
 
Now the bound charge, or equivalently the polarisation, is something that we do not have 
control over; it just happens. It can be regarded as an effect rather that a cause, and as such 
we can take the div P over to the left hand side of the equation, writing 
 
                                                         div(ε0E + P)  =  ρfree.                                               (10.17) 
 
This equation is giving us another way to look at Gausss’s law in the presence of dielectrics.  
Whereas in the absence of dielectrics the (free) electric charge is the source of the E field, in 
the presence of a dielectric of polarisation P the free charge may be regarded as the source of 
a field E + P/ε0. 
 
 Conventionally one defines a new vector field D, called the electric displacement: 
 
                                                              D  =   ε0E + P.                                                    (10.18) 
 
In terms of this, Gauss’s law in the presence of matter may be written as 
 
                                                               div D  =  ρfree.                                                    (10.19) 
 
This is the modification of the Maxwell equation (M1) to include the effects of matter. 
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 Note that only the Maxwell equations with ‘sources’ will become modified to account 
for the effects of the bound source, be it charge or current. Thus the div E equation is 
modified but the curl E equation will not be. And similarly in the magnetic case the div B 
equation will not be modified, while the curl B equation will be. 

10.10  Fields in matter 
The discussions which led to the introduction of the electric displacement D are valid in 
matter ‘on the average’. It is really artificial to talk of the dipole moment per unit volume, 

which was how we defined the polarisation vector 
P. In reality, on the microscopic level, at most 
places within matter the polarisation is zero, only 
rising to a large value at the atomic sites. Similarly, 
the electric field in matter is a very rapidly varying 
quantity. Since the discussion above only makes 
sense for continuously varying polarisation P, we 
are really referring to a spatial average over volumes 
containing a large number of atoms. That means that 
when using the field equations in their form 

+
−

E

− − −
+ + +

 
                                          div D  =  ρfree,     curl E  =  −∂B/∂t 
 
we are referring to spatially averaged fields;  these are two of the macroscopic Maxwell 
equations.  However, when we use the field equations in their original form 
 
                                           div E  =  ρ/ε0,     curl E  =  −∂B/∂t 
 
then we mean the actual fields which can vary as rapidly as necessary;  these are two of the 
microscopic Maxwell equations. 

10.11  Dielectric constant and electric susceptibility 
From the phenomenological point of view the macroscopic Maxwell equations have required 
the use of a new electric field vector, the D field. But this presents a complication, because 
now there are more variables than there are equations. We need another relationship 
connecting D and E. In general we will have some functional form 
 
                                                                  D  =  D(E)                                                       (10.20) 
 
which is referred to as a constitutive relation. This is a statement about the dielectric medium 
in which we measure the fields. 
 
 For a linear, isotropic homogeneous dielectric the E field and the D field will be 
proportional and parallel. In that case we can write 
 
                                                                      D  =  εE                                                       (10.21) 
 
where ε is known as the permittivity of the dielectric.  Alternatively, this can be expressed as 
 
                                                                    D  =  ε0εrE                                                    (10.22) 
 

PH2420 / © B Cowan 2007 10.10 



X  Electric Fields and Matter 

where ε0 is the permittivity of free space and εr is called the relative permittivity or dielectric 
constant.  Clearly εr is dimensionless. For air, εr is about 1.0006 at NTP, while for water it is 
about 81 for static fields. In practice the dielectric constant is found to vary with frequency 
for oscillatory fields; the polarisation of the atoms can’t keep up as the E field varies. 
  
 The remaining discussions of this section refer specifically to LIH systems. We start 
with a consideration of what is happening at the microscopic level. 
  
 For the (induced) dipole moment of an atom or molecule we write 
                                                                    p  =  αE                                                         (10.23) 
 
where α is referred to as the polarisibility.  This is a relation that holds at the microscopic 
level. At the macroscopic level the polarisation P will then be proportional to E and we write 
 
                                                                   P  =  ε0χeE,                                                    (10.24) 
 
and χe is known as the electric susceptibility.  The inclusion of ε0 in the definition means that 
χ will be dimensionless. The relation between the relative permittivity and the electric 
susceptibility is easily seen to be 
                                                                   εr  =  1 + χe .                                                  (10.25) 

10.12  Fields at boundaries 
An important problem, when considering dielectrics, is to understand how the electric fields 
E and D behave at the boundary between two materials. Apart from the interest in the static 
case, where one might need to know the field in the vicinity of a surface, this problem is 
related to the refraction of electromagnetic waves at the boundary between different media.  
It turns out that the boundary conditions on E and D can be found easily from the relevant 
Maxwell equations. In the static case and in the absence of free charges, the two ‘electric’ 
field equations are 
                                                        div D  =  0,   curl E  =  0 . 
 
 Applying div D = 0 to the Gaussian pillbox, the total flux of D through the surface is 
zero. If we let the height of the box shrink to zero then the flux of D in through the bottom 

must be equal to the flux of D out through the top. And since the flux 
of D through the surface is given by the normal component of D times 
the area and the areas of the top and the bottom are equal, this means 
that the normal component of D on both sides of the boundary must be 
equal. In other words the normal component of D is continuous at a 
boundary. Obviously, the boundary can be between two dielectrics or 
between one dielectric and free space. 

Dn

 
 Applying curl E = 0 to the loop indicated, we may evaluate the line integral of E 
around the loop. As the height of the loop tends to zero only the tangential parts of the 

integral contribute. The integral on one side of the boundary cancels 
with the one on the other side. And since the directions of integration 
are opposite, it follows that the two line integrals (evaluated in the 
same direction) must be equal. The lengths are equal and so therefore 
the components of E along the surface must be equal. In other words 
the tangential component of E at a boundary is continuous.   

Et
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10.13  Coulomb’s law revisited 
In a vacuum the force between two charges is given by Coulomb’s law. We now investigate 
how this will be changed in the presence of a dielectric. Clearly we are considering the case 
where the two charges are immersed in a fluid (liquid or gas) dielectric. In a solid there would 
be other stresses involved when embedded charges were moved even slightly.   
 
 In the vacuum case we went from the inverse square law for E: 
 

                                                                2
04

QE
rπε

=  

to the Gauss‘s law expression giving the divergence of E: 
 
                                                                 div E = ρ/ε0. 
 
Now in the presence of a dielectric medium Gauss’s law, in general, becomes rather 
complicated since the bound charges of the medium must be included in ρ. However, we 
have seen that the difficulty may be side-stepped by the introduction of the electric 
displacement vector D. We then recover a Gauss’s law expression, for D, in terms of the free 
charges 
                                                                 div D = ρfree. 
 
For isotropic media, where the lines of the field will emanate from a charge uniformly in all 
directions, the expression for div D may be inverted, to give 
 

                                                                  free
24

QD
rπ

=  

 
where the charge Q here is the free charge, and note that there is no ε0 in the expression. 
Strictly this inversion relies on curlD being zero (spherical symmetry), thus we are assuming 
the medium is isotropic. 
 The force on a second charge q in the dielectric is given by 
 
                                                                   F  =  qE, 
 
so that we have to find the E field corresponding to the value of D given above.  We have 
already assumed the dielectric is isotropic, to obtain the expression for D. Making the further 
assumptions of linearity and homogeneity allows us to relate E to D through the permittivity 
or dielectric constant: 
                                                           E  =  D/ε  =  D/ε0εr
 
so that the force is given by 

                                                              2
04 r

qQF
rπε ε

= . 

This is identical to the original Coulomb’s law, except that now we have the absolute 
permittivity ε = ε0εr rather than the free space value ε0. Thus the force is simply reduced, in 
inverse proportion to the relative permittivity. Note, however, that the simplicity of the 
analogy is somewhat illusory; the result is only valid for LIH dielectrics. 
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10.14  Comparison of dielectrics and free-space 
Where necessary we assume LIH materials. 
 
                                       Free space                                         Dielectrics 

1)                                   0div ρ ε=E                                   free

free 0 r

div
div

ρ
ρ ε ε

=
=

D
E

 

                                                           

2)                                   2
0

ˆ
4

Q
rπε

=
rE                                     free

2
0

ˆ
4 r

Q
rπε ε

=
rE  

 
3)                                      F  =  qE                                             F  =  qE 
 

4)                                   2
0

ˆ
4
qQ

rπε
=

rF                                      2
0

ˆ
4 r

qQ
rπε ε

=
rF  

 

σ

εEn =  σ / 0

dielectric
conductor

ε r

σ

εEn =  σ / 0

free space
conductor

 
 
5) 
 
 
 
6)                                   2

0V ρ ε∇ = −                                    2
0 rV ρ ε ε∇ = −             

 

εEn =  σ / 0ε r
 
7)                                 εEn =  σ / 0       
  
                                     C  =  ε0A/d                                             C  =  ε0 εr A/d 
 

It is appropriate to make a number of observations about the above table of results.  
The left hand column, referring to ‘free space’ describes the behaviour of the microscopic 
field E in terms of the sources, which are all the charges present. In contrast to this, the right 
hand column, referring to dielectrics, is describing the macroscopic or spatially averaged 
fields E and now D as well. The sources are now the (spatially averaged) free charges alone.  
The bound charges are accounted for in the polarisation P, which contributes to the D field. 
 
 Of particular importance is the expression for the electric force 
 
                                                                      F  =  qE . 
 
This is true in both the microscopic and the macroscopic picture, although the interpretation 
is different in the two cases. From the microscopic point of view both E and F may be very 
rapidly varying quantities (in the vicinity of the elementary charges which constitute matter).  
However, from the macroscopic point of view both the force F and the electric field E are 
regarded as spatial averages and they have negligible variation on the atomic scale. 
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When you have completed this chapter you should:  
 
• understand that a dielectric increases the capacitance of a capacitor 

 
• appreciate that this is related to polarisation of the dielectric; 

 
• understand the distinction between permanent and induced electric dipoles; 

 
• appreciate that most of the electrical properties of insulator can be understood in terms of 

dipoles; 
 

• understand the definition of electric dipole moment; 
 

• appreciate that the field of a dipole results from the almost cancellation of the fields of the 
positive and negative charges of the dipole; 
 

• be able to calculate the electric potential of a dipole; 
 

• be able to calculate the electric field of a dipole; 
 

• understand that in a uniform electric field a dipole experiences a torque but no force; 
 

• understand the expression for the energy of an electric dipole in an electric field; 
 

• understand that in a non-uniform electric field the dipole will experience a force and be 
able to calculate this force; 
 

• appreciate the distinction between free and bound charge; 
 

• understand the definition of polarisation of a macroscopic body; 
 

• understand that a polarised body has an equivalent bound surface charge density; 
 

• understand that in a body with non-uniform polarisation, there is an equivalent bound 
volume charge density; 
 

• be able to calculate the bound volume charge density in terms of the divergence of the 
polarisation; 
 

• appreciate how Gauss’s law may be re-expressed in the presence of dielectrics and the 
electric displacement; 
 

• be familiar with and understand the definition of the D field; 
 

• understand the distinction between microscopic and macroscopic electric fields; 
 

• understand the distinction between the microscopic and the macroscopic field equations; 
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• know of the definitions of dielectric constant and electric susceptibility; 
 

• understand the concept of a constitutive relation; 
 

• know the meaning of polarisibility; 
 

• understand and be able to perform calculations on the change in E and D at boundaries 
between dielectrics; 
 

• know how Coulomb’s law is modified in the presence of (LIH) dielectrics; 
 

• appreciate the various modifications of the properties of free space in the presence of 
dielectrics. 
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