
IX  INDUCTANCE AND MAGNETIC FIELDS 
 
 

9.1  Field in a solenoid 
A varying current in a conductor will produce a varying magnetic field. And this varying 
magnetic field then has the capability of inducing an EMF or voltage in the conductor.  The 
combination of these is the phenomenon of inductance: a changing current in a conductor 
will cause an EMF. The effect is enhanced considerably if the conductor is in the form of a 
coil or solenoid. Firstly the field produced is proportional to the number of turns, since what 

matters is the total current flowing through an area. And 
secondly, the voltage is induced in each loop so that the 
contributions from each turn add together. 
 
We start with the first part of the problem: calculating the 
magnetic field produced by a current flowing in a solenoid. 
The picture shows a coil of n turns per unit length, carrying a 
current of I amperes. Although we do not need it 

immediately, we shall specify the cross section area of the coil as a. 

d 1

2

  
 Calculation of the magnetic field of the solenoid may be done using Ampère’s law 
(exploiting the symmetry of the system). Thus we use 
 
  0

closed loop

d Iµ=∫ B. l

                   
with an appropriately chosen closed path of integration. 
  
 We first show that the magnetic field outside a very long solenoid is zero (except, 
obviously, at the ends).  Consider the loop labelled 1.  By the symmetry of the system, and 
since the magnetic field must be perpendicular to the direction of flow of the current, the 
magnetic field must point parallel to the axis of the coil. Then only the two horizontal 
elements of the loop make a contribution to B.  There can be no contribution from the upper 
element since it may be placed as far away as we like.  So the only contribution comes from 
the lower element.  The field along this element multiplied by its length is proportional to the 
current threading the loop.  This is zero as the loop does not intersect the coil. Since the 
length of the element is arbitrary, it follows that the field must be zero. Thus there can be no 
magnetic field outside a long solenoid. 
 
 Turning to the field inside the coil, consider loop 2 in the figure.  We have just 
established that the field outside the solenoid is zero.  Thus only the line integral along the 
internal horizontal element of the loop contributes to the Ampère’s law integral.  If the length 
of the element is d and if there are N turns contained within the loop then Ampère’s law gives 
 
                                                                    Bd  =  µ0NI. 
 
But since there are n turns per unit length, the number of turns in the loop of length d is nd.  
Then 
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                                                                    Bd  =  µ0ndI  
or 
                                                                    B  =  µ0nI.                                                          (9.1) 
 

This is the expression for the field inside a long solenoid. The field is independent of 
the position along the coil. This is because we are considering a very long coil, which results 
in translational invariance. Note also, that the field is independent of the radial position in the 
coil; another consequence of symmetry. We thus conclude that the field in a long solenoid is 
uniform or homogeneous. This is a good way of producing a uniform magnetic field. 
 

9.2  Magnetic vector potential 
We have seen that we can obtain the electric field E from the scalar potential V as 
 

E = −gradV  
 

in the electrostatic case.  Recall that the possibility for doing this relied on the fact that in 
electrostatics the curl of E is zero. Note, however, that in the presence of varying magnetic 
fields the above equation does not hold since then curlE is no longer zero.   
 
 In the presence of sources of B, that is, electric currents, we cannot express B as the 
gradient of a scalar potential since the curl of B is then non-zero: 
 

curlB j= µ 0 . 
 
The asymmetry between the treatment of electric and magnetic fields is not so surprising 
since the (static) E field is irrotational whereas the B field is solenoidal. 
 
 While the B field cannot, in general, be expressed as the gradient of a scalar potential, 
it can be written as the curl of a vector potential: 
 
                                                                   .                                                         (9.2) B = curlA
 
Here A is called the magnetic vector potential. There is no immediately obvious advantage of 
this quantity since we have simply replaced one vector by another. However we will see that 
the use of the vector potential will help with a number of issues. Although not of direct 
relevance to this course, the magnetic vector potential goes together with the scalar electric 
potential to make a relativistic four-vector. And using the magnetic vector potential will 
facilitate a correction to E = −gradV, to make it generally true.   
 

We shall start this discussion of the magnetic vector potential by showing that the 
magnetic field can be expressed as the curl of another field and we will then investigate some 
of the consequences and related matters. In the interests of simplicity we shall consider the 
field produced by an element  of a conducting wire. The field of the entire wire can then be 
obtained by integration over its path. 
 

The magnetic field at a point r due to a current I flowing in an element dl of a wire 
can be written as 
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. 0
3

dd
4

I
r

µ
π

×
=

l rB

We now use the result 
r
r r3

1
= −grad  

 
to rewrite the magnetic field as 

 

I

dl r

P

0 1d d gr
4

I
r

µ
π

= − ×B l ad

a

. 

 
Next we make use of the vector calculus identity 

 
 curl curl grada a= − ×b b b

to write 

curl d curl d d gradl l l
r r

= − ×
1 1

r
. 

 
Now c since this is like differentiating x with respect to x. Thus the expression for 
dB takes the form 

url dl = 0

0 dcurl .
4

Id
r

µ
π

=
lB  

 
This means that we can write B as the curl of a vector A: 
 

B A= curl  
 

where the contribution to this vector from current flowing in the element dl of the wire is 
given by 

                                                                 0 d
4

I
r

µ
π

=
lAd .                                                       (9.3) 

 
The vector A is known as the magnetic vector potential. 
 

To check for consistency, we can take the divergence of B expressed in terms of A 
 

div divcurlB A= = 0  
 
since div curl is identically zero.  So we see that expressing B in this form automatically 
ensures that divB = 0. In electrostatics we saw that the relation curlE = 0 implied that E could 
be expressed as the gradient of a scalar potential since curl grad is zero. And in the magnetic 
case we now see that the relation divB = 0 implies that B can be expressed as the curl of a 
vector potential since div curl is zero. 
 
 There is an important connection between the magnetic vector potential and magnetic 
flux. Recall the definition of curl, embodied in Stokes’s theorem 
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area perimeter

curl d d=∫∫ ∫A . a A . r

where we have used the vector argument A. Since B = curlA, the left hand side of this 
equation is simply the magnetic flux through the area. Thus 
 
                                                                ;                                                  (9.4) 

the line integral of A around a closed loop gives the magnetic flux threading the loop. 
perimeter

dΦ = ∫ A . r

 
In regions of space where there are no currents present it is possible to express B as the 
gradient of a scalar potential and that potential will obey a Laplace equation. Then it will be 
easier to use this potential as an intermediary in the calculation of B. The interior of a 
solenoid would be one such example.                                                                                         

9.3  Fields from potentials 
Now let us look at the problem of incorporating electromagnetic induction into the expression 
 

E = −gradV . 
 
As it stands, this expression is incompatible with  
 

curlE B
= −

∂
∂t

 

since curl grad of any scalar is zero. 
 

Let us express the curl E equation in terms of the magnetic vector potential 
 

curl curlE A= −
∂
∂t

. 

This can be written as 

curl E A
+

∂
∂

F
HG

I
KJ =

t
0 . 

 
Now we know that any vector whose curl vanishes can be written as the gradient of a scalar  
since curl grad is identically zero.  From this it follows that 
 

E A
+

∂
∂

=
t

grad of a scalar . 

 
This equation is clearly true in the time-independent case, where we identify the scalar as 
minus the electric potential V  

E = −gradV . 
Thus in the general case we now have 

E A
+

∂
∂

= −
t

Vgrad , 

or 
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                                                             E .                                                   (9.5) A
= − −

∂
∂

gradV
t

 
This is the general result, valid in dynamic as well as static cases. Thus we have succeeded in 
rehabilitating the deficient . We conclude that the electric and magnetic fields 
may be written in terms of the scalar and vector potentials as 
 

E = −gradV

                                                           
E A

B A

= − −
∂
∂

=

U
V|
W|

grad

curl

V
t

.
                                             (9.6) 

9.4  Self inductance 
We now proceed to the discussion of inductance. As we stated above, a changing current will 
produce a varying magnetic field, and the varying magnetic field will induce a voltage.  
Equation (9.1) tells us how a current in a solenoid will produce a magnetic field. And since 
the field was seen to be uniform over the area a of the coil, the magnetic flux through a single 
turn is µ0nIa. If the length of the coil is l, then the number of turns is given by nl. And then 
the total magnetic flux Φ linking the solenoid is  
 
                                                              Φ  =  µ0n2Ial. 
 
We know from Ampère’s law that the flux (linkage) must be proportional to the current. The 
constant of proportionality depends, essentially, on geometrical properties of the conductor. 
Let us denote this quantity by L, so that for the long solenoid 
 
                                                                L  =  µ0n2al                                                            (9.7) 
 
And in general 
                                                                Φ  =  L I.                                                               (9.8) 
 
We shall see that L is what we know as the inductance of the solenoid. 
 

From Faraday’s law we know that a varying flux will cause a voltage: 
 

 d
d

V
t
Φ

= , 

 
ignoring the minus sign since we may choose the direction in which to measure the potential.  
Therefore if the current in the coil is changing, there will be a voltage across the coil given by 
 

                                                                 d
d
I
t

=V L .                                                             (9.9) 

 
This is the conventional expression for (self) inductance. Recall its magnitude for a long coil:  
 
                                                                  L  =  µ0n2la .                                                  
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Observe that L is proportional to the volume la of the coil and the square of the number of 
turns, as hinted at the start of Section (9.1). As you should know, the unit of inductance is the 
henry. 
 
 If the solenoid is not “infinitely” long then there is not total flux linkage with all the 
turns. Then the inductance is somewhat less than that of Equation (9.7). In such cases a 
‘fudge’ factor α (known as Nagaoka’s factor) is introduced. We then write 
 
                                                             L  =  µ0n2laα                                                          (9.10) 
 
where the factor α is a function only of the aspect ratio of the coil: its ratio of radius to 
length.  If the aspect ratio of the solenoid is x then a good approximation to α is 1/(1 + 0.9x). 

9.5  Mutual inductance 
By an extension of the arguments of the previous section, it follows that if two coils are in 

close proximity then a varying current in one coil will induce a voltage 
in the other and vice versa. This effect is known as mutual inductance.  
And such a coupled assembly of coils is known as a transformer.  
 
Let us firstly assume that the two coils occupy the same space so that 
all the flux which links one coil also links the other. We are thus 

assuming here that the lengths and areas are the same for both coils. The only difference we 
permit at this stage is in the number of turns per unit length. We shall specify that coil 1 has 
n1 turns per unit length and coil 2 has n2 turns per unit length. 

coil 2coil 1
I1

I1

V2

 
If there is a current I1 flowing in coil 1 then this will produce a magnetic field  

 
                                                                 B  =  µ0I1n1. 
 
Denoting by l the length, and a the area of the coils, the number of turns in coil 2 is given by 
n2l. Then the magnetic flux linking the turns of coil 2 is given by 
 
                                                               Φ2  =  n2lBa 
                                                                     = µ0n1n2la I1 
 
and the voltage across the second coil is then 
 

                                                      2 1
2 0 1 2

d d
d d

In
t t

µ
Φ

= =V n .                                              (9.11) la

 
The constant of proportionality between the flux in one coil and the current in the other, or 
the voltage in one coil and the rate of change of current in the other is known as the mutual 
inductance, denoted by M.  Thus we write 
 

                                                           
2 21 1

1
2 21

d
d

M I
IV M
t

Φ = 



= 

                                                    (9.12) 

 
where, in this idealised case M is given by 
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                                                           M21  =  µ0n1n2la.                                                       (9.13) 
 
 This expression is symmetric in the indices 1 and 2, demonstrated for the idealised 
case where the coils occupy the same space. This implies that if the current were to flow in 
coil 2 then the same voltage would be induced in coil 1.  This is a very general property, 

independent of the shape and relative locations of the coils, as we 
shall now show. 
 
We calculate the vector potential at loop 2 due to the current I1 
flowing in loop 1. The contribution to the vector potential at the 
position of dl2 due to the current in the element dl1 of loop 1 is, 
Equation (9.3) 

                                                                0 1 1
2

12

d
4

I
r

µ
π

=
lAd . 

Then at this point the total vector potential is given by integrating the expression around the 
whole of loop 1: 

                                                           0 1 1

12loop 1

d
4

I
r

µ
π

= ∫
l

2 2
loop 2

d∫ A . l

2A . 

The magnetic flux threading loop 2 is then found by taking the line integral of A2 around 
loop 2 
                                                           Φ =  

so in this case 

I1

dl1

dl2

r12

loop 1 loop 2

2

                                                    0 1 1 2
2

12loop 2 loop 1

d d
4

I
r

µ
π ∫ ∫

l . l
Φ = . 

This gives a general expression for calculating the mutual inductance 
 

                                                 2 0 1
21

1 1loop 2 loop 1

d d
4

M
I r

µ
π

Φ
= = ∫ ∫

l . l2

2

                                        (9.14) 

but this is seen to be symmetric in the indices 1 and 2; the flux in loop 2 due to a current in 
loop 1 is equal to the flux in loop 1 due to the same current in loop 2. And thus we conclude 
that 
                                                                  M12  =  M21.                                                       (9.15) 

9.6  Coupling coefficient and matrix representation 
We see that for two coils, wound in the same place (including the fudge factor α), we have: 
 

                                                                      
2

1 0 1
2

2 0 2 .

L n la

L n la

µ α

µ α

=

=
 
If we calculate the mutual inductance between the coils, then clearly the same fudge factor 
would apply. In other words we would have  
 
                                                              . 0 1 2M n n laµ α=
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The mutual inductance is thus seen to be equal to the geometric mean of the self inductance 
of the individual coils. 
                                                               1 2M L L= .       
 
If there is not complete coupling between the coils then M would be less than this value. For 
widely separated coils, clearly the mutual inductance would be zero.  To treat the general 
case we introduce a coupling coefficient K, and write  
 
                                                              1 2M K L L= .                                                       (9.16) 
  

We finish this section by writing the equations for the currents and voltages in a 
transformer in the general case. If there is a current in both coils then the voltage in a given 
coil depends on the varying current in that coil and the varying current in the other coil: 

 

                                                           

1 2
1 1

1 2
2 2

d d
d
d d
d d

I IV L M
t
I IV M L
t t

= +

= +

dt                                                 (9.17) 

 
which may be conveniently expressed in matrix form as 
 

                                                      1 1

2 2

d
d

V L M I
V M L It

   
=    

     
1

2

 
  .                                            (9.18) 

9.7  Energy of a magnetic field 
When we evaluated the energy of an electric field we did it in an indirect manner, by 
calculating the work needed to establish a given potential across a capacitor. Then the 
potential was related to the electric field.  The merit of using a capacitor was that within its 
interior the E field is uniform. We now evaluate the energy of a magnetic field in a parallel 
fashion.  We will calculate the work needed to establish a given current in a long inductor.  
The merit of using a long inductor is that within its interior the B field is uniform. 
 
 The defining property of an inductor is Equation (9.9): 
 

                                                                   d
d
I
t

=V L . 

 
So in a small time dt the current will change by a small amount dI: 
 
                                                                     Vdt  =  LdI. 
 
If we multiply both sides of this equation by the current I, giving 
 
                                                                  IVdt  =  L IdI 
 
then on the left hand side IV gives the power, so multiplying this by the time interval dt gives 
the work done during this interval, which we denote by dW.  Thus we have 
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                                                                  dW  =  L IdI,  
 
which we may integrate up from an initial current of zero to a final current I: 
 

                                                                  0

2

d

1 .
2

I

W L i i

LI


= 


= 

∫
                                               (9.19) 

 
This gives the energy stored in an inductor of inductance L carrying a current of I amperes. 
 
 Now the current is related to the magnetic field through Equation (9.1), which we 
write as 

0

BI
nµ

= . 

 
And since L is related to the various geometric factors by Equation (9.10): 
 
                                                                 L  =  µ0n2la, 
 
these may be combined to give 

                                                               2

0

1
2

B
µ

=W                                                       (9.20) la

 
where we see that the n cancels out.  Observe that la is the volume of the region containing 
the magnetic field, which tells us that there is a magnetic energy density UB given by 
 

                                                              2

0

1
2B µ

=U                                                          (9.21) B

 
So in a combined electric and magnetic field, adding the two contributions to the field 
energy, we have 

                                                        20

0

1
2 2
ε

µ
= + 2BU E .                                                   (9.22) 

                    
This is the general expression for the energy density of an electromagnetic field. The field 
energy contained in a region of space is then found by integrating the field energy density 
over the volume of the region. Recall that in Section (7.6) we considered the question of 
energy conservation in an electromagnetic field, where we introduced the Poynting vector. 
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9.8  Finding the potentials 
How are the potentials determined by the sources? We know that in the electrostatic case the 
electric potential obeys the Poisson equation 
 
 2

0V ρ ε∇ = − . 
 
We now ask how the electric scalar potential V and the magnetic vector potential A are 
related to the electric and magnetic sources ρ and j in the general dynamic case.     
 

In the electric case we combine 
 
                                      div and gradE E= = −ρ ε/ 0 V tA− ∂ ∂  
to give 

                                                     2

0

divV
t

ρ
ε

∂
∇ = − −

∂
A                                                    (9.23) 

while in the magnetic case we combine 
 

                                        0 2

1l and curl
c t

µ
∂

= + =
∂
EBcur j B A  

 
to give (recall curl curl = grad div − ∇2) 
 

                                            
2

02 2 grad
c t

µ= − +
AA j2 1 1div∇ − + 2

V
c t

∂ ∂
∂ ∂ 

A 
 .                     (9.24) 

 
Equations (9.23) and (9.24) are differential equations from which the potentials V and 

A may be determined from the sources ρ and j (and the appropriate boundary conditions). 
However the equations do look rather complicated. And simplification is possible. It is only 
the gradient of V that is important so one can add an arbitrary constant to V without changing 
the observable electric field; this we know already. But similarly, since curl grad ≡ 0, we can 
add the gradient of an arbitrary scalar field to A without changing the observable magnetic 
field. It then follows that we can simplify Equations (9.23) and (9.24) through the imposition 
of supplementary restrictions on V and A which have no effect on the observable E and B.  

 
Helmholtz’s theorem tells us that a vector field is determined once its curl and its 

divergence are specified. We have no choice with the curl of A; this must give the correct 
value for the B field. But the divergence of A is another matter; we can choose this to be 
whatever we like; it can even depend on time if we wish. The choice in the precise 
specification of A, for instance stating what its divergence is, is called the choice of gauge. 

 
An elegant choice of gauge is to make the bracket in the right hand side of 

Equation (9.24) to be zero. That is, we choose div A to be 
 

 2

1div V
c t

∂
= −

∂
A . (9.25) 

 
Not only does it remove the grad term in Equation (9.24), it also converts the 
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div t−∂ ∂A term of Equation (9.23) to ( )2 2 21 c V t∂ ∂  
 

2
0

2
0 .

V ρ ε

µ

= −

= −A j

2

2
0 .

V ρ ε

µ

∇ = −

∇ = −A j

ˆzB y= −A

This separates electric and magnetic effects; V is given solely in terms of ρ and A is 
given solely in terms of j. We have two inhomogeneous wave equations; electric and 
magnetic effects are untangled and the vector equation for A is equivalent to three scalar 
equations for the its three components (so long as we are using rectangular Cartesian 
coordinates). 

                                                                 




                                               (9.26) 

 
This is called the Lorentz gauge.  Actually this is named after the wrong Lorentz; it was 
introduced by L. Lorenz, not H. A. Lorentz! 
 

A special case of the Lorentz gauge occurs in the static case: when time derivatives 
are zero. Then div A  =  0; we have the Coulomb gauge.  And we then recover the 
conventional Poisson’s equations 

                                                                  0 



                                             (9.27) 

 
When the magnetic field is uniform there is a special gauge that is particularly 

convenient to use. The Landau gauge is a special case of the Coulomb gauge (which is a 
special case of the Lorentz gauge.) In the Landau gauge the vector potential is specified by 
 
 . (9.28) x
 
The B field is found by taking the curl of A: 
 

 

ˆ ˆ ˆ
curl

0 0
ˆ .

z

z

x y
B y

B

= = ∂ ∂ ∂ ∂ ∂ ∂
−

=

x
z

y z
B A

z

 

 
In other words the vector potential given by the Lorentz gauge Equation (9.28) results in a 
uniform magnetic field pointing in the z direction. This proves useful in many practical 
applications; it is the simplest way of writing a vector potential which gives a uniform 
magnetic field. 
 

The solution of Equations (9.27) are given by: 
 

                                                       
( ) ( )

( ) ( )
0 volume

0

volume

1 d
4

d .
4

V v
r

v
r

ρ
πε

µ
π


= 



= 

∫∫∫

∫∫∫

r
r

j r
A r

                                       (9.29) 
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We shall not consider the solutions in the dynamic case; these are two complex for this 
course. The components of A are expressed in terms of the components of j just at the value 
of V is expressed in terms of the value of ρ (to within a constant factor).  This shows that just 
as V augments A to create a four-vector, so the charge density augments the current density to 
give a four-vector.  
 

It is also worthwhile to point out that while the equation relating A and j is certainly a 
vector equation, the structure of the equation is such that Ax is determined by jx alone, Ay by jy 
and Az by jz. In other words this vector equation is equivalent to three independent scalar 
equations (so long as we are using rectangular Cartesian coordinates). 
 

For completeness we give the expressions for E and B in terms of their sources in the 
static case 

                                                   
( ) ( )

( ) ( )

2
0 volume

0
2

volume

1 ˆ d
4

ˆ d .
4

v
r

v
r

ρ
πε

µ
π


= 



= × 

∫∫∫

∫∫∫

r
E r r

j r
B r r

                                       (9.30) 

 
Observe that the equations for V and A are much simpler. 
 

9.9  Summary of magnetostatic results 
The magnetostatic relations between the three quantities B, A and j are summarised in the 
following diagram, borrowed from Introduction to Electrodynamics by D. J. Griffiths.  This 
parallels the similar diagram for the electrostatic case given in Section (4.6). 
 
 

j

BA
curl=B A

0 vo
lu

m
e

d
4

v
r

µ π
=

∫∫∫
j

A 2

0µ

∇
=

−
A

j
0

curl

; div
0

µ
=

=

B
j

B
0

2

volume ˆ
d

4

v
r

µ
π

=
∫∫∫ j× r

B
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When you have completed this chapter you should:  
 
• be able to calculate B inside a long solenoid; 

 
• be familiar with the concept of magnetic vector potential; 

 
• be able to calculate A from an arbitrary current distribution; 

 
• understand the connection between A and magnetic flux; 

 
• be able to generalise E = −gradV to the case of electromagnetic induction, using A; 

 
• know the meaning of self inductance and be able to calculate L for a long solenoid; 

 
• understand that L is proportional to the volume of a solenoid and the square of the number 

of turns; 
 

• know the meaning of mutual inductance and be able to calculate M for co-positioned long 
solenoids; 
 

• understand why and be able to demonstrate that M12 = M21; 
 

• be familiar with the idea of coupling coefficient; 
 

• be able to write the V – I relation for a transformer in matrix form; 
 

• interpret the work done in establishing a magnetic field in an inductor in terms of 
magnetic field energy; 
 

• be able to calculate the E and B fields from V and A in the general case; 
 

• understand the choice of gauge in the specification of A and be familiar with the Lorentz 
gauge and the Coulomb gauge. 
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