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VIII  ELEMENTARY ELECTRODYNAMICS

8.1  Motion of a charge in an electric field
The force on a particle of charge q in an electric field is given by the electric part of the
Lorentz force:
                                                                    F  =  qE ,                                                           (8.1)

and from Newton’s second law, this is equal to the mass of the particle times its acceleration.
Thus
                                                                  m q=r E�� ,                                                             (8.2)
so that the acceleration is given by

                                                                    
q

m
=r E�� .                                                            (8.3)

We will encounter the ratio q/m quite frequently, and one should appreciate why q and m
occur together in this way. The equation analogous to Equation (8.2) for the gravitational
interaction would be

m m=r g��

where g is the gravitational field.  Observe that here we have the mass of the particle m on
both sides of the equation.  On the left side it represents the inertial aspect of mass, while on
the right side it is the gravitational aspect of mass.  It was Newton who first realised that
mass had this dual manifestation, although we had to wait for Einstein to elevate this
experimentally observed phenomenon to a fundamental principle, the equivalence principle.

When we come to the electric force, when Equation (8.2) describes the situation, then
the charge q takes the place of the gravitational mass.  Then it is the ratio q/m that appears
and it no longer cancels; this ratio will be different for different objects.

Since a charged particle in a constant electric field will be subject to a constant
acceleration, it is a simple matter to solve the (second order) equation of motion to yield
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This is the way a charged particle would behave in a constant electric field.  It is different
from the motion of a charge in a conductor, as we studied using the Drude model of
Section (5.3). There we were dealing with the flow of charge carriers in matter, and we saw
that the collisions of the carriers resulted in a ‘terminal velocity’ which was proportional to
the electric field.

8.2  Motion of a charge in a magnetic field
The force on a charged particle here is the magnetic part of the Lorentz force:

                                                                F  =  qv × B.                                                          (8.5)



VIII  Elementary Electrodynamics

PH2420 / BPC                                                8.2

In this case the force is perpendicular to the velocity, the condition for circular motion.  Let
us write the central force as
                                                                 F  =  qvB⊥ ,

where B⊥ is the component of the magnetic field perpendicular to the velocity.

The equation for circular motion may be written as

                                                                 F  =  mv2/r
so that
                                                           qvB⊥   =  mv2/r .                                                         (8.6)

The radius of the circular motion is then

                                                               r  =  mv/qB⊥.                                                          (8.7)

Again observe that q and m appear only as a quotient.

The angular velocity ω is the time derivative of the (radian) angle. This may be
expressed as
                                                                     ω  =  v/r
so that we obtain
                                                                ω  =  (q/m)B⊥,                                                       (8.8)

the angular velocity is independent of the speed of the particle and the radius of the circle.
The angular velocity is only proportional to the (perpendicular component) of the magnetic
field and the familiar ratio q/m.

8.3  The cyclotron
The cyclotron is a device that exploits the behaviour of charged particles in a magnetic field,
to accelerate them to very high speeds. The cyclotron was pioneered by Ernest O. Lawrence.
He started by making models that sat on a table, and he progressed to machines the size of
buildings. As we shall see, the efficacy of the cyclotron depends on the fact that the angular
velocity of the particle is independent of the speed of the particles.  Lawrence believed that

he could continue to make bigger and
better cyclotrons capable of faster and
faster speeds.  In fact special relativity
tells us that at high very speeds, since
the mass increases, the angular
velocity decreases.  This would reduce
the efficiency of the cyclotron.
Lawrence did not really believe in
relativity and he wanted to spend
millions of dollars on a gigantic
cyclotron.  It took all the persuasive
powers of J. Robert Oppenheimer to
convince Lawrence that it would be a
waste of money.
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The layout of a cyclotron is shown in the diagram. There is a magnetic field pointing
into the sheet and the motion of the charged particles is therefore a circle in the plane. The
clever part is the two D-shaped conductors. The high voltage oscillating supply creates an
oscillating electric field in the space between the Ds. If the frequency is arranged to be equal
to the cyclotron frequency, then as the charges move in the top space they will be accelerated
towards the right and when they are in the bottom space they will be accelerated towards the
left. Thus the oscillating electric field is feeding energy into the particles, making them move
faster.  As their speed increases the radius of the circular motion will increase.  At a certain
radius the magnetic field abruptly stops and the charges continue to move in a straight line at
their final velocity.  This velocity depends on the exit radius

                                                    vfinal  =  ωrexit  =  (q/m) B⊥rexit .                                         (8.9)

Observe that the exit velocity or energy of the particles depends only on two variables over
which one has experimental control: the strength of the magnetic field and the radius of the
orbit.

8.4  The magnetron
The magnetron is a thermionic vacuum device for generating microwaves; it is the essential

component of microwave
cookers. The magnetron utilises
both electric and magnetic fields,
and it has a cylindrical geometry
with concentric anode and
cathode. The anode is held at a
positive potential with respect to
the cathode. So when heated, the
electrons emitted from the
cathode will travel towards the
anode. However the
perpendicular magnetic field will
also alter the motion.

Qualitatively, it is clear that the
trajectory of an electron will be a curve. The larger the magnetic field, the more curved the
path. For sufficiently large magnetic fields or sufficiently small electric fields the motion will
be essentially circular, with the electrons missing the anode and returning to the cathode.
Thus at a critical value of the electric field or the magnetic field no current will flow from
anode to cathode. Since, as we have seen, the equation of motion for an electron will depend
on the q/m ratio, it follows that the cut-off condition for the current will depend on q/m.
Knowing the value of the magnetic field and the electric field thus permits a determination of
the q/m ratio of the electron.

Without solving the full equation of motion for an electron in a combined electric and
magnetic field, we may obtain an order of magnitude estimation in the following way. The
critical condition is when the electron orbit just grazes the surface of the anode, when the
radius of the circular motion is r.  From Equation (8.7) this means that the speed v of the
electron will be
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so that its kinetic energy 21

2
mv is

2 2 2
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.

But this energy comes from the electric field, which may be expressed in terms of the
potential difference V between the anode and cathode:

2 2 2

2

B r q
qV

m
= .

Here the extra factor of q cancels, so that the ratio q/m for the electron is

                                                                 2 2

2q V

m B r
= .                                                         (8.10)

An exact solution to the electron equation of motion, taking account of the correct
variation of the electric field for the cylindrical geometry will lead to an expression similar,
but having a different numerical coefficient.

One of the original uses of the magnetron was as a magnetically controlled switch.
Although it is used for the measurement of the electronic q/m ratio, the main use is in the
generation of microwaves, particularly in microwave cookers.

8.5  Velocity selector
If there is an electric field and a magnetic field oriented perpendicularly, and a charged

particle moves perpendicular to both then it will
experience a magnetic force and a magnetic force in
opposite directions. The magnetic force depends on
the velocity of the particle whereas the electric force
does not. It therefore follows that for one particular
velocity the electric force will exactly balance the
magnetic force. And if there is no net force on such
a particle then it will move in a straight line.

The forces balance when

                                                                  qE  =  qvB ,

in other words for the motion of the particles to be not deflected,

                                                                   v  =  E/B ,                                                         (8.11)

independent of the charge (and the mass) of the particle.

This provides a means for selecting those particles moving with a specified velocity.
The technique is used in various instruments including mass spectrographs.
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8.6  Flux encircled by a trajectory
The path of a charged particle in a magnetic field is a circle. More precisely, the path
projected in the plane perpendicular to the magnetic field is a circle. In Equation (8.7) we saw
that the radius of the circle was given by

                                                                r  =  mv/qB��

We shall express this behaviour in terms of the angular momentum of the particle, and then
explore the consequence of the conservation of angular momentum.

The angular momentum (along the direction of the field) may be expressed as

                                                                 L  =  mvr ,

from which the velocity can be eliminated,  so that

                                                                 L  =  qr2B.                                                          (8.12)

This is a suggestive expression. Firstly, note that r2 is proportional to the area of the circular
trajectory, and secondly note that the area multiplied by B is the magnetic flux Φ contained
within the orbit:
                                                                Φ  =  πr2B.

Thus in terms of the angular momentum, the flux is given by

                                                                Φ  =  πL/q.                                                          (8.13)

We see that for a given charge the flux enclosed by the trajectory depends only on the angular
momentum of the particle. And then the conservation of angular momentum implies that the
enclosed flux is constant.

Now let us consider the more general case where the trajectory of the charged particle
is a spiral in the magnetic field. So long as the field varies slowly over each turn of the spiral

we may apply the above result that the enclosed flux is
constant. This means that if the lines of flux follow some
curved path, for instance inside a bent solenoid, then the
charged particles will continue to spiral around the flux
along the path of the solenoid. This provides a means for
piping beams of electrons or positrons from one place to
another.  This is also the explanation of why charged
particles emitted from the sun travel along (while spiralling
around) the lines of B in the magnetosphere.

If we consider the case where the intensity of the magnetic field varies with position
then the radius of the spiral will vary with the intensity of the field. The radius will be greater
in regions of low field and smaller in regions of high field. When energy conservation is
considered this leads to the possibility of confining the particles to a given region of space:
the magnetic mirror.
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8.7  The magnetic mirror
Conservation of angular momentum determines the motion of the charged particles in the
plane perpendicular to the direction of the magnetic field. In a larger field, where the radius
of the motion is smaller, the tangential speed is thus greater. The total kinetic energy may be
expressed as the sum of contributions from the circular motion and the velocity along the
lines.  And it is the total energy that is conserved. We therefore write

                                                            E  =  Erot  +  Etr

where the  rotational energy is given by

                                                 
2

2
rot 2

1
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L LqB
E mv

mr m
= = =                                               (8.14)

and vt is the tangential speed.  The translational energy is given by

                             21

2trE mv=
&

                                     (8.15)

where v& is the velocity along the direction of B.

Conservation of energy implies that as the charged particle
moves to regions of higher field, where its rotational speed
increases, the velocity along the field direction must

correspondingly increase.

This means that there will be a maximum field Bmax for which the parallel velocity is
zero. As the particle approaches this field it slows down to zero (parallel) velocity, changes
direction, and returns in the opposite direction: as if it has hit a mirror.  The velocity along the
field is given from the energy expression

                                                             21
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LqB
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m
= −

&
.                                                 (8.16)

The maximum field is then given by 2mE/qB and we can then express the velocity as

                                                          max

Lq
v B B

m
= −

&
.                                                (8.17)

The accompanying graph shows how the velocity
along the field varies with the magnitude of the
field. We see that if there are regions of low field
surrounded by regions of high field, then charged
particles will be confined to regions below the
maximum field. In other words, it is as if the
charged particles are confined between two
mirrors.
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When you have completed this chapter you should:

• be able to calculate the motion in static electric and magnetic fields;

• appreciate that a charge cam move in a circular orbit in a uniform magnetic field;

• be able to calculate the properties of this circular motion;

• understand the principles of operation of the cyclotron and appreciate the limitations on
its behaviour set by special relativity;

• understand the principles of operation of the magnetron and how it can be used to
determine the e/m ratio of the electron;

• understand the principles of operation of the velocity selector and that its behaviour is
independent of the charge and mass of the particles;

• be able to calculate the magnetic flux contained within a circular trajectory of a charged
particle;

• understand how this may be used to make a ‘magnetic pipe’;

• understand the operation of a ‘magnetic mirror’.


