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VI  MAGNETIC EFFECTS OF CURRENTS

6.1  Ampère’s investigations
It was Ampère who first established and quantified the force that occurs between two current-
carrying conductors. This is not quite as simple as the Coulomb law for the force between
charges as there are more directions to consider. As well as the separation of the force-
producing objects (the current elements), in this case the directions of the two currents are
important.

Here dF1 is the contribution to the force on the element dl1

of loop 1 from the element dl2 of loop 2.

If θ1 is the angle between dl1 and the normal to the plane
spanned by r21 and dl2, and θ2 is the angle between dl2 and
r21, then the conclusion of Ampère was that the magnitude
of the force dF1 behaved as:

1 2 1 2 1 2
1 2

12

d d sin sin
d

I I l l

r

θ θ∝F

The observation is that the magnetic force between two current-carrying elements dl1 and dl2

varies inversely as the square of their separation – once again we have an inverse square law.

Introducing the constant of proportionality 0 4µ π , and taking account of the

direction of the force by writing things in vector form we have
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and the expression for dF2 is obtained by swapping the 1 and 2 in the expression.

The constant µ0 is referred to as the permeability of free space.  Its value is defined to
be
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       or     henries / metre.
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It might seem surprising that the value of µ0 is defined rather than being determined
experimentally.  The reason is that the magnetic force formula is actually used as the
definition of the ampère, the unit in terms of which I is measured.  (And in fact the coulomb
then follows as the charge transferred when a current of one ampère flows for one second).
The numerical value chosen for µ0 allows the traditional electrical units (actually predating
the metric system) to be incorporated into the SI scheme.
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You might think that a more straightforward way of introducing magnetic forces would be to
start immediately with moving point charges instead of elements of current-carrying
conductors. Indeed the results of Ampère quoted above could be re-expressed by saying that
a charge Q2 moving with velocity v2 will exert a force F1 on a charge Q1 moving with
velocity v1 given by
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This force (which only occurs when both charges are moving) is in addition to the Coulomb
force, which applies even when the charges are stationary.

There is a distinction between this approach and that of Ampère. Ampère’s results apply to
elements of conductors carrying currents. These are electrically neutral since the background
positive stationary charge cancels the negative charge of the carriers. In that case there is no
Coulomb force and only the magnetic force is observed.

Although this approach might seem more straightforward, we have preferred to follow the
historical argumentation of Ampère.

It is also of interest to note that the above equation for the (extra) force between moving
charges could be derived from the Coulomb force using special relativity on the assumption
that electric charge is invariant. However, again we have opted to follow the historical route
whereby the Coulomb force together with the Ampère formula may be regarded as separate
experimental observations leading, ultimately, to special relativity.                                         

6.2  Magnetic field
In an analogous manner to our introduction of the electric field, we shall break the symmetry
of the magnetic force law and interpret it as one current producing a magnetic field B and the
other current responding by experiencing a force in the field. Accordingly, we split
Equation (6.1) as
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and
                                                              1 1 1 2d d dI=F l × B                                                       (6.4)

where B2 is the magnetic field produced by loop 2.

Thus Equation (6.3) describes the active aspect of a current element, while
Equation (6.4) describes the passive aspect.
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6.3  Field of a long wire
We shall calculate the magnetic field produced by a long straight wire carrying a current of I

amperes. Let us first consider the direction of the magnetic field
at the point P. From Equation (6.3) we see that the direction
information is contained in dl × r , which points into the page.
Thus the lines of B form concentric circles around the wire. Since
all contributions to the magnetic field at P point in the same
direction, only this component need be considered. We then find
the value of B by integrating the contributions from along the
length of the wire.

The contribution dB, from the element dl of the wire is
given, from Equation (6.3), by
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It is convenient to express everything in terms of the angle φ and the perpendicular distance
a:
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6.4  Force between two long parallel wires
The magnetic force between two long parallel wires each carrying a current I could be

calculated directly from the force expression, Equation (6.1).
However, since this case has a particularly simple geometry, it is
more convenient to obtain the force from the magnetic field
calculated in the previous section. The magnetic field B at wire 2 due
to wire 1 is given, from Equation (6.5) by
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Thus the force on unit length of wire 2 is given by
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This expression is the basis of the definition of the Ampère.  Recall that the numerical value
of µ0 is 4π×10−7. The force between two long wires, one metre apart, carrying one Ampère,
will be 2×10−7 Newtons per metre of length; this defines the Ampère.

We now consider the direction of the force.  From the previous section we saw that
the B field at 2 pointed into the page.  Now the direction of the force goes as l × B, which
points to the left. Thus the force between wires carrying current in the same direction pushes
them together.  One concludes: like currents attract, unlike currents repel. This is the
converse of the rule for charges.

6.5  The Lorentz force
Thus far, in treating magnetic effects, we have considered the force on an electric current.
Now we shall examine the force on a single electric charge moving in a magnetic field.

The force on the element of wire due to the applied
magnetic field B is, from Equation (6.4)

                          d dI=F l × B .

Now we can write the current I as j . da or, from
the expression for j,  Nqv . da.  The force dF is

then

                                                       dF  =  Nq(v . da) dl × B.

Note that v and dl are parallel, so that they may swapped in the above equation, giving

                                                       dF  =  Nq(dl . da) v × B.

But dl . da is the volume of the element of wire, and N is the number of charges per unit
volume and since q is the magnitude of each charge, it follows that Nq(dl . da) is the total
charge Q in the element.  Thus we conclude that a charge Q moving with a velocity v in a
magnetic field B experiences a force F given by

                                                            F  =  Q v × B.                                                            (6.7)

We know that a charge in an electric field E experiences a force

                                                             F  =  Q E,

and now we have seen that if the charge is moving and if there is a magnetic field, then there
will be a magnetic force given by Equation (6.7).  In the presence of both an electric field and
a magnetic field, it follows that a charge q moving with a velocity v will experience a total
force given by
                                                     F  =  q{E + v × B}.                                                          (6.8)

This force is called the Lorentz force.

I

B

d l

a rea  da



VI  Magnetic Effects of Currents

PH2420 / BPC                                                6.5

6.6  Ampère’s law
Ampère’s law deals with the line integral of B around a closed loop.  There are essentially
two reasons for being interested in this. Firstly it will provide a means for calculating
magnetic fields, although only in cases of high symmetry.  Secondly, from the line integral of
B we will be able to evaluate its curl: part of our programme of obtaining Maxwell’s
equations.

Let us evaluate the line integral of B around the indicated circular loop.
In Equation (6.5) we saw that the magnitude of the field a distance a
from a wire carrying a current I is
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And we saw that the direction of B is along the loop. Since B is constant
around the circular loop, whose length is 2πa, the line integral is given

by

                                                        0

closed loop

d Iµ=∫ B. l� .                                                        (6.9)

Observe that the a, the radius of the loop, has vanished. This indicates that the radius of the
circle for evaluating the line integral is not important. But more significant than this, we can
deform the contour of the integral just as we did in evaluating the curl of E from which we
conclude that the result of Equation (6.9) holds for a closed loop of arbitrary shape.

The above result is known as Ampère’s law, which may be stated as: The line integral
of  B around an arbitrary closed loop is given by µ0 times the total current through the
enclosed area.

6.7  The curl of B
The curl of B follows immediately from Equation (6.9) above, using the definition of the
curl:

closed loop

1
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= ∫B B. l�

as the area shrinks to zero.  From Equation (6.9) the curl of B is thus given by µ0I/area, and
the direction is along the current flow. Now let us consider a distributed distribution of
current, described by a current density j. We know that the total current threading a
(perpendicularly oriented) loop of area a is given by ja, from which it follows that curlB is
given by

                                                               curlB  =  µ0j.                                                        (6.10)

This is almost a Maxwell equation.  It was Maxwell’s genius that led him to realise that this
equation was incomplete, and he made a crucial modification, which we will encounter
shortly.
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6.8  The divergence of B
There is a practical aspect and a philosophical aspect to the question of the divergence of B.
The magnetic flux Φ penetrating a surface is defined as the integral of the normal component
of B over the surface:

                                                             
surface

dΦ = ∫∫ B. a .                                                       (6.11)

This definition is similar to that for the electric flux ΦE in Equation (2.6). The magnetic flux
does not need a subscript; whenever Φ is written it is understood that it refers to magnetic
flux.

The divergence of B is related to the flux of B through a closed surface enclosing a
given volume. It is convenient to choose a shape that reflects the symmetry of our system. So

let us take a cylinder around a straight wire carrying a
current I. Since the lines of B form concentric circles, B is
normal to the enclosing surface everywhere: on the curved
side and on the ends. Thus there is no flux of B through a

closed surface.  This argument clearly generalises to arbitrary geometry.

From the definition of the divergence it then follows directly that the divergence of B
(the flux through a closed surface divided by the enclosed volume) is zero:

                                                                  divB  =  0.                                                         (6.12)

The philosophical question relates to what the source of a magnetic field might be.
The conclusion of Equation (6.12) above is that for magnetic fields produced by moving
electric charges the divergence is zero.  But are there any other sources of magnetic fields?
In particular, is it possible to have a magnetic monopole, a magnetic charge: an isolated north
or south pole. In the early days of electromagnetism, there was a branch called
magnetostatics which parallelled electrostatics. In terms of this, if ρm is the density of
magnetic charge then there would be an analogue of the divE equation stating:

                                                              divB  =   µ0ρm .

The existence of magnetic monopoles is still an open question.  They are required by the
Grand Unified theories, but thus far there has been no convincing evidence of their existence.
There is also a theory due to Dirac whereby the discrete nature of electric charge is connected
to the existence of magnetic charge. If  e is the fundamental entity of electric charge and g is
the fundamental entity of magnetic charge then Dirac found the relation

                                                                    eg = h
where h is Planck’s constant.

The equation divB = 0, which is one of the Maxwell equations, is often interpreted as
being equivalent to the statement that magnetic monopoles do not exist. Of more practical
importance, however, is the point that lines of B have no beginning or end; they close on
themselves.
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When you have completed this chapter you should:

• know the physical phenomena contained in Ampère’s formula;

• know the units of the physical quantities in Ampère’s formula;

• be familiar with idea of the magnetic field;

• appreciate the active and passive aspects of electric currents;

• be able to calculate magnetic field of a long straight wire and an arrangement of currents;

• be able to calculate the force between two long parallel wires and relate this to the
definition of the ampere;

• be able to calculate force on a moving charge in a given magnetic field;

• calculate the force on a moving charge in an arbitrary combination of electric and
magnetic fields;

• be familiar with Ampère’s law for the line integral of B around a current-carrying wire.

• understand how Ampère’s law relates to the curl of B;

• be familiar with concept of magnetic flux and the connection with the divergence of B;

• understand that divB = 0 implies there are no magnetic monopoles.


