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V  STEADY CURRENTS

5.1  Current density vector
If N is the number of charges (of charge q) per unit volume moving with (mean) velocity v,
then the charge crossing unit area per second is given by Nqv.  This leads us to the definition
of the current density vector j:

                                                                   j  =  Nqv.                                                            (5.1)
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In other words j is the current crossing unit area.  In the general case the charge crossing unit
area per second is given by
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The total current I flowing is found by integrating over the
surface:
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and of course the units of j and I are given by:

                     [ j ]  =  amps per square metre
                     [ I ]  =  amps  (coulombs per second).

5.2  Equation of continuity
It is an experimentally observed fact that electric charge is conserved.  This means that if we

consider a closed volume, then the rate of decrease of charge in
the volume must be balanced by the rate of flow of charge
across the bounding surface.  This may be expressed
mathematically by
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where the right hand side has been transformed using Gauss’s theorem (– our definition of
div).  Now since this result must be true for all volumes, it follows that we may remove the
volume integral, to give

                                                                 div
t

ρ∂− =
∂

j                                                          (5.3)

which is known as the Equation of continuity.  This is another one of those equations which
has a very broad area of applicability.  Any quantity that can flow and is conserved will obey
a similar equation.

5.3  Conductivity
It is an experimentally observed fact that when a current is flowing in a (linear isotropic
homogeneous) conductor, the current density j is proportional to the electric field E.  This
observation is equivalent to Ohm’s law, as we shall see in the next section.  Introducing the
constant of proportionality σ, we may write

                                                                    j  =  σ E                                                             (5.4)

where σ is the electrical conductivity.  For a material which is not linear, higher powers of E
will appear; for a material which is not isotropic, the conductivity σ is a tensor (Section 5.8);
and for a material which is not homogeneous, the conductivity will vary with position.

Please don’t confuse the conductivity with the other use of σ, namely the surface
charge density.  Unfortunately both σ and ρ are used in two contexts in electromagnetism –
watch out!

At first glance it is a little difficult to understand the origin of the phenomenon of
resistivity.  After all, one would expect the acceleration of the charges to be proportional to
the force or electric field; this is what Newton’s laws tell us.  However the physical content of
Equation (5.4) is that the velocity of the charges is proportional to the electric field.  The best
mechanical analogy here is the terminal velocity of an object moving in a viscous fluid.

The fact is that in a conductor the charges are not completely free to move.  They
keep on bumping into things: other charges, lattice vibrations, crystal imperfections,
impurities etc.  We can model the effect of these various scattering events by saying that the
charges move freely for a given time τ, after which the motion is randomised by a collision.
Thus in a field E a charge starts from zero velocity and it accelerates for a time τ.  Then there
is a collision, the velocity becomes zero and the process starts all over again.  The maximum
velocity is aτ  where a is the acceleration:

                                                                   a  =    qE/m,

where m is the mass of the charge.  The mean velocity is half the maximum velocity, giving

2

qE
v

m

τ=

and since the current density is
                                                                   j Nq v=
we may write the (mean) value of j as:
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so that we find (according to this very simple model) that j is proportional to E and that the
conductivity is given by

                                                                  
2
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m

τσ =                                                            (5.6)

This expression shows, within the limitations of this simple model, how the conductivity
depends on the concentration of charge carriers, their electric charge, the collision time and
the mass of the carriers.

This simple model of the mechanism for resistivity is sometimes referred to as the
Drude model.

5.4  Ohm’s law
If we now consider a uniform current density j in a conductor, then the current I is given by

                   I  =  jA.

But we know that the current density j is related to
the electric field E through Equation (5.4) above:

                                                                j  =  σE,

so that we may write I as

                                                             I  =  σEA.

Observe that the two ends of the conductor are indicated as having potentials V1 and V2.  The
electric field may be expressed in terms of the difference between the potentials V:

                                                            E  =  V/l,
so that

                                                           
A

I V
l

σ= .                                                                  (5.7)

In other words, we see that the current flowing in a conductor is proportional to the potential
difference between its ends – Ohm’s law.  We denote the constant of proportionality by 1/R,
where R is the resistance

                                                            
A

R
l

σ=                                                                     (5.8)

which is measured in ohms.

The reciprocal of the conductivity σ is called the resistivity, denoted by ρ.  In terms of
the resistivity, the resistance of a conductor is given by
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5.5  Power dissipation
Consider an electric charge q which is moving with velocity v in an electric field E.  The

force on the charge is qE so that the rate of doing work by the field is

                                           qE.v .

Then with N charges per unit volume, the power dissipated per unit
volume is:

                                          power per unit volume  =  NqE.v
                                                                                =   j.E .                                                  (5.9)

Let us now apply these arguments to a cylindrical conductor (or wire!) of length l and
cross section area A.  The total power dissipated P is given by the power per unit volume, j.E
multiplied by the volume:

                                                                      P  =  Al j.E

but since the current I is given by jA, and E = V/l, we obtain for the power dissipated:

                                                                    P  =  I V.                                                          (5.10)

The units of P are watts or joules per second.

5.6  Kirchhoff’s laws
Kirchhoff’s laws follow from the application of the above-established results for
electrostatics to voltages and currents in electric circuits.  An important idea here is that of
the steady state.  A steady state involving flowing currents is one for which there is no charge
build-up.  In other words

                                                                    0
t

ρ∂ =
∂

.                                                           (5.11)

This is the condition for the steady state.

5.6.1  Current law
This law follows from the application of the continuity equation, Equation (5.3).  However,
since we know that 0tρ∂ ∂ =  in the steady state, the equation of continuity gives:

                                                                     div j  =  0

or, writing this in integral form:

closed
surface

d 0=∫∫ j. a�

F E  =   q

v
q
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This is telling us that the total current leaving a point in a circuit (called a node), is zero.

Applying this to the region enclosed by the dotted line, the
implication is that:
                                  I1 = I2 + I3                                   (5.12)

Obviously it is important to take account of the direction of
the current.  This result is known as Kirchhoff’s current
law.

5.6.2  Voltage law
Kirchhoff’s voltage law follows directly from the fact that the E field is conservative.  Recall
that we saw the work done in moving a charge around a closed loop was zero, and that this
led us to the concept of the electric potential V, a single-valued function of position.  The
change in V in traversing a closed circuit is thus zero, and that is the essence of Kirchhoff’s
voltage law.

As an exercise in manipulating vector expressions we shall derive the result in reverse
order starting from the curl expression for E, namely curlE = 0.  In integral form this
becomes

closed loop

d 0=∫ E. l�

But we can write E as −gradV, so that

closed loop

grad d 0V =∫ . l� .

However we have encountered an expression like gradV.dl before.  In Equation (3.24) we
saw that this gives the small change in a quantity V when one moves through a displacement
dl, that is:
                                                            gradV.dl  =  dV.

Thus our integral expression, following from curlE = 0, gives us

                                                         
closed loop

d 0V =∫�                                                             (5.13)

or, the change in V in going around a closed loop is zero.

In a circuit V can change for a number of different reasons.  If a current is flowing
across a resistive component then there will be a difference of potential between its terminals.
This may be referred to as a voltage drop.  Considering an electric cell, or a battery of cells,
the internal chemical processes result in a force on charges, called an electromotive force,
abbreviated EMF.  This will also cause a difference of potentials between the terminals of the
cell or battery.

I 1

I 2

I 3
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Kirchhoff’s voltage law states that the sum of voltage drops
and EMFs around a closed loop is zero.  In this circuit this
means that

                                �  −  IR  =  0.

The generalisation to more complex circuits is quite obvious.

5.7  Laplace’s equation (in conductors)
When there are currents flowing in a conductor then the electric field (and the electric

potential) within the conductor will be determined partly by the external conditions - which
cause the currents to flow in the first place - and partly by the flowing charges themselves.
We shall see that under certain conditions the electric potential in a conductor nevertheless
still obeys Laplace’s equation.

We are restricting our consideration to what we have already specified as the steady
state.  In that case, from the equation of continuity, we know that j has zero divergence:

                                                                  div j  =  0.

If we now also restrict consideration to linear, isotropic, homogeneous conductors then we
can express j in terms of E as:

                                                                   j  =  σ E ,

from which it follows that the divergence of E in this case is zero,

                                                               divE  =  0.

And then, just as in the case of free space, since E may be written as

                                                           E  =  −grad V,

we have
                                                       div grad V  =  0
or
                                                             2 0V∇ =                                                                  (5.14)

Thus we see that Laplace’s equation is obeyed in conductors if the above-mentioned set of
conditions is satisfied.

It is important to appreciate the status of this result.  The fact that Laplace’s equation
(or Poisson’s equation) is obeyed in free space in the presence of fixed charges, is a
fundamentally true result.  But the derivation of Laplace’s equation in conductors relies on
the phenomenological result that the current density is proportional to the E field; this is only
true for LIH systems.  It is not a fundamental result.

�
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5.8  Anisotropic media and tensors
In an anisotropic substance there are properties which depend on orientation.  We are

considering properties of crystalline materials; clearly amorphous and polycrystalline
materials are isotropic.  In the case of anisotropic conductivity one finds, in general, that the
current density j is not along the same direction as the applied electric field E.  We are,
however, still considering the system to be linear so that the components of the current
density and the electric field must be related by an expression of the form:

                                           
x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

j E E E

j E E E

j E E E

σ σ σ
σ σ σ
σ σ σ

= + +
= + +
= + +

                                   (5.15)

where the αβσ  are the elements of the conductivity tensor.  Since this tensor has two indices

it is referred to as a tensor of rank two.  The above relation may be written

=j Eσ

Many other physical quantities can be represented as rank two tensors, such as electric
susceptibility, magnetic susceptibility, elasticity, etc. etc.  Other quantities may be
represented by higher order tensors.  A vector may be regarded as a rank one tensor; a scalar
has rank zero.

A vector, or rank one tensor, is a physical quantity that may be represented by a
column vector: a (3 × 1) matrix, once a coordinate system has been chosen.  Thus, for
example, we would write

x
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z
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j

j
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j

If we change to a different rectangular cartesian coordinate system (by rotation) then the
components of the vector j will be different. The components of j in the new frame are found
by the matrix product
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z z
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or
                                                                    j'  =  X j

where X is a real matrix whose elements are the direction cosines connecting the coordinate
frames. The vector E will transform according to the same transformation rule

                                                                    ′ =E EX

and from this we may find how the conductivity tensor transforms.

In the transformed frame the relation between j and E is given by
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                                                                ′ ′ ′=j Eσ

so using the expressions for the transformed j and E, we write this as

                                                            ′=j EσX X ,
or
                                                            ′=j Eσ-1X X .

But the proportionality between j and E gives the un-transformed conductivity tensor

                                                              ′=σ σ-1X X
so that σ transforms as
                                                               ′ =σ σ -1X X .

A rank two tensor is a physical quantity that can be represented as a two-dimensional matrix
(3 × 3) and which transforms according to the above rules. A scalar is a rank zero tensor; its
value is independent of the coordinate system used. For this reason scalars, such as the
electric potential V, are so convenient to work with.
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When you have completed this chapter you should:

• appreciate that moving charges give rise to electric currents;

• understand that electric current density is a vector whereas electric current is a scalar;

• know how the equation of continuity applies to charge and current and appreciate the
general nature of this equation – that it applies to any conserved quantity;

• know that many materials (conductors) have the property of conductivity and that they
are observed to obey the phenomenological Ohm’s law;

• understand the concepts of linear, isotropic and homogeneous;

• know of the quantities conductivity, resistivity, conductance and resistance;

• appreciate that the conductivity of a LIH system is a scalar;

• understand the Drude model for resistivity;

• realise that the work done when charges move in an electric field involves the dissipation
of power and be able to calculate the power;

• understand how Kirchhoff’s current law follows from the conservation of charge;

• understand how Kirchhoff’s voltage law follows from the conservative nature of the
electric field;

• appreciate how Laplace’s equation applies to conductors, but that here it is a
phenomenological result reliant upon Ohm’s law;

• understand that in an anisotropic material the conductivity must be described by a
(rank 2) tensor;

• have an elementary understanding of the properties of tensors and vectors and their
transformation properties.


