
III VECTORS 
 

3.1  Vector algebra 

3.1.1  Vectors 
The naïve definition of a vector (in three-dimensional space) is ‘a quantity which has 
both magnitude and direction’. While adequate in many cases, this is not strictly 
mathematically correct.  A mathematician might well define a vector as ‘any quantity 
which obeys the laws of vectors’. This definition certainly has the merit that it can’t 
be wrong!  Note that this discussion is not simply irrelevant mathematical rigour.  
Rotation is a quantity which has both a magnitude (the angle of rotation) and a 
direction (the axis of rotation, as specified by the ubiquitous right-handed cork-
screw). However rotations about different axes, as described by vectors in this way, 
are not additive. And furthermore the order or performing the rotations is important. 
 
 The conclusion, for our purposes, is that we shall specify a vector as a quantity 
which a) has magnitude and direction, and b) obeys the ‘parallelogram’ rule of 
addition.  Clearly this second requirement implies the associativity condition: 
 

A B B A+ = + . 
 

 In this course we shall take the laws of vector addition and subtraction as 
known, and proceed directly to the various products of vectors. 
 
 We can express a vector in terms of its components. In rectangular Cartesian 
co-ordinates we write 
 ˆ ˆx y zA A A ˆ= + +A x y z  
where , x̂ ŷ and  are the unit vectors in the x, y and z directions and Aẑ x, Ay and Az are 
the components of A in these directions. 

3.1.2  The dot product 
The dot product, otherwise known as the scalar product, of two vectors P and Q is 
written as P.Q and it is defined as the magnitude of one multiplied by the projection 
of the other upon the first. 
 

Q

P
projection of  on Q P

θ

Dot product of vectors  and .P Q
Since the projection of  on  Q P
is given by cos , the dot productQ θ
is
                =  cos .               (3.1)P.Q PQ θ
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The scalar product of two perpendicular vectors is seen to be zero.  Thus for 
the unit vectors , x̂ ŷ and : ẑ
 
 ˆ ˆ ˆ ˆ ˆ ˆ 0⋅ = ⋅ = ⋅ =x y y z z x  (3.2) 
and 
 ˆ ˆ ˆ ˆ ˆ ˆ 1⋅ = ⋅ = ⋅ =x x y y z z . (3.3) 
 
 
If we express the vectors P and Q in rectangular co-ordinate form: 
 
                    P  =  Px x̂  + Py ŷ  + Pz ẑ ,   and   Q  =  Qx x̂  + Qy ŷ  + Qz ẑ ,  
 
then we find for the dot product, in co-ordinate form 
 
                              P.Q  =  PxQx  +  PyQy  +  PzQz.                                                   (3.4) 
 
Note that from this the dot product is seen to be commutative: 
 
                                             P.Q  =  Q.P.                                                                 (3.5) 
 
 The dot product operates on two vectors to produce a scalar. An example of a 
dot product is the work W done when moving a displacement r in a constant force F: 
 
 W = r.F . 
 

3.1.3  The vector cross product 
The vector cross product of two vectors P and Q is written as P × Q and it is a vector 
perpendicular to both P and Q in the direction of a (right handed) screw turning from 
P to Q.  The magnitude is equal to the product of the length of the vectors multiplied 
by the sine of the angle between them. 
 

n

P Q× = PQsin .θ

Q

P

θ

PQsinθ

P Q PQsin .the vector cross product                  (3.6)

Physically the vector cross product may
be interpreted as the area of a
parallelogram of sides  and .  ThisP Q
vector ‘area’ is pointing normal to the
surface.

Recall we used the idea of vector area in
discussing electric flux in Section 2.4. 

 
  
From the definition of the cross product we see that the order of multiplication is 
important.  The cross product is not commutative; it is anticommutative: 
 
                                                         P Q Q P× = − × .                                              (3.7) 
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From this we see that the various products of the unit vectors in rectangular Cartesian 
co-ordinates are 
 ˆ ˆ ˆ ˆ ˆ ˆ 0× = × = × =x x y y z z  (3.8) 
and 
 ˆ ˆ ˆ ˆ ˆ× = = − ×x y z y x  (3.9) 
and cyclic permutations thereof. 
 
 If P and Q are expressed in terms of their Cartesian co-ordinates then the cross 
product is expressed as 

 
( ) ( )

( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ .

x y z x y z

y z z y z x x z x y y x

P P P Q Q Q

P Q P Q P Q P Q P Q P Q

× = + + × + +

= − + − + −

P Q x y z x y z

x y z
 

This may be written as a determinant, a convenient form to remember the various 
signs in the products 

 
ˆ ˆ ˆ

x y z

x y z

P P P
Q Q Q

× =
x y z

P Q . (3.10) 

 
An example of a cross product is the moment of a force, or torque Γ; this is 

given by 
 
 = ×r FΓ . 
 
This is the torque exerted about a point by a force F applied a distance r from the 
point. 
 

3.1.4  Multiple products 
There are two ways in which three vectors may be multiplied together.  You should 
satisfy yourself as to their validity.  A scalar is formed by the product 
 
                                         A.(B×C)  =  B.(C×A) = C.(A×B)                    
                                                         =  (A×B).C  etc.                                             (3.11) 
 
This is known as the scalar triple product and it has a particularly simple 
interpretation; it is the volume of a parallelepiped of sides A, B and C.    
 
 A vector is formed by the product  A×(B×C).  Here the order of performing 
the products is important.  The vector triple product can be simplified to: 
 
                                           A×(B×C)  =  B(A.C) − C(A.B).                                  (3.12) 
 
This is the so-called ‘bac-cab’ rule. 
 
The product B×C is perpendicular to both B and C. And then the vector product of A 
and B×C is perpendicular to B×C which means it must lie in the plane spanned by B 
and C. Thus the vector triple product must have the form βB + γC and this is indeed 
the structure of Eq. 3.12. 
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3.2  Vector calculus 

3.2.1  Divergence 
Gauss’s law involved the idea of the flux of a vector through a closed surface.  Recall 
that we wrote, in Equation (2.9): 
                                                   0

closed
surface

.d i
i

Q ε= ∑∫∫ E a . 

The flux of a vector out of a closed surface is an important property of the vector 
field; it is related to the ‘production of stuff’ within the enclosed volume – as we shall 
see.  
 
 In this section we introduce a function of a vector field, the divergence, which 
measures the flux emerging through the surface surrounding an infinitesimal volume.  
The divergence of an arbitrary vector E, denoted by divE is defined by 
                                     

                                                 
closed
surface

1div .d
volume

= ∫∫E E a                                       (3.13) 

 
where the limit is taken as the volume shrinks to zero.  The divergence is a scalar 
quantity.  Note that this definition is independent of any co-ordinate system, and that 
it measures a physical property of the vector E. 
  
 We shall now calculate the divergence of a vector in rectangular Cartesian co-
ordinates. 

x

y

z

dx

dy

dz

d /2y

Calculation of the
divergence of vector 
through the cubic
volume d d d .

E

x y z

E

 
       
We shall evaluate the flux of E through each of the six faces of the cube.  Assuming 
the value of E is known at the centre of the cube, we can find the value of the relevant 
components at the centre of each face using a Taylor expansion. Because the cube is 
assumed to be infinitesimally small, we can approximate the value of E over the face 
by the value at the face’s centre. 
 
 Considering the face pointing in the +x direction, here we need to know the 
value E perpendicular to the face, that is, the value of Ex.  Since the face is a distance 
dx/2 from the origin, at the centre of the face we have: 
 

                                                       
2
d0 x

x
EEE x

xx ∂
∂

+= .     
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In a similar way we can evaluate the perpendicular component of E at the centre of 
each face, giving 
 

2
d:face

2
d:face

2
d:face

2
d:face

2
d:face

2
d:face

00

00

00

z
z

EEEzz
z

EEEz

y
y

E
EEyy

y
E

EEy

x
x

EEExx
x

EEEx

z
zz

z
zz

y
yy

y
yy

x
xx

x
xx

∂
∂

−=−
∂

∂
+=+

∂
∂

−=−
∂

∂
+=+

∂
∂

−=−
∂

∂
+=+

 

 
Each of these components of E must be multiplied by the area of the face to give the 
flux E.da through that face. And for each of the three directions we must subtract the 
flux through the − face from that through the + face: we consider the total flux out of 
the surface.  Thus for the x direction we have 
 

                              
.ddd

dd
2
ddd

2
dd 00

zyx
x

E

zyx
x

EEzyx
x

EE

x

x
x

x
x

∂
∂

=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+=aE.
 

                        
observe the occurrence of dxdydz, the volume of the element.  With similar 
calculations in the y and z directions, we find 
 

zyx
z

Ez

zyx
y

E
y

zyx
x

Ex

z

y

x

dddd:direction

dddd:direction

dddd:direction

∂
∂

=

∂

∂
=

∂
∂

=

aE.

aE.

aE.

 
 

so that for the entire closed surface of the elemental cube the sum (integral) of the flux 
of E is given by 

                                     
closed
surface

.d d d dyx zEE E x y z
x y z

∂⎛ ⎞∂ ∂
= + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∫∫ E a                              (3.14) 

 
But since dxdydz is the volume of the element, recalling the definition of the 
divergence of E in Equation (3.13): 

                                                  
closed
surface

1div .d
volume

= ∫∫E E a  

as the volume shrinks to zero, we have, in rectangular co-ordinates, the expression for 
divE as 

                                                  
z

E
y

E
x

E zyx

∂
∂

+
∂

∂
+

∂
∂

=Ediv                                      (3.15) 
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3.2.2  The divergence in electrostatics 
Introduction of the divergence was motivated by the property of the E field which was 
expressed in Gauss’s law, Equation (2.9): 
 
                                                     0

closed
surface

.d i
i

Q ε= ∑∫∫ E a . 

If we divide both sides of this equation by the volume enclosed within the surface, 
then using the definition of the divergence, we may write 
 
                                                            0div ερ=E                                                (3.16) 
 
where ρ is the density of electric charge: 
 
                                                         volumeQ=ρ ,                                              (3.17) 
 
as the volume shrinks to zero. 
 
 We see that Equation (3.16) is another statement of Gauss’s law, this one in a 
slightly more concise form. 

3.2.3  Curl 
We saw that the electric field E is a conservative field, and that that property could be 
expressed mathematically in terms of the line integral property in Equation (2.13): 
 
                                                           0d

loopclosed

=∫ rE. . 

 
The line integral of a vector around a closed loop is another important property of a 
vector field.  We now introduce a function of a vector field, the curl, which measures 
the line integral around a loop bounding an infinitesimal surface area. The curl of an 
arbitrary vector E , denoted by curlE is defined by  
 

                                                     ∫=
loopclosed

d
area

1curl rE.E                                        (3.18) 

 
where the limit is taken as the area shrinks to zero.  The curl is a vector quantity; it 
points in the direction of the surface normal.  Note that just as with the definition of 
the divergence, the curl as defined here is independent of any co-ordinate system, and 
that it measures a physical property of the vector E. 
 
 Our continental brethren sometimes use the designation rotation for the curl 
and you might find books referring to rot E. This is simply another name for curl. 
 
 We shall now calculate the curl of a vector in rectangular Cartesian co-
ordinates. 
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y

dx

dy

Calculation of the curl 
of vector around the
square area d d .

E 
x y

E

x
1

2

3

4

Note that the curl is a vector
quantity.  As the square here
is in the  plane we are 
calculating the  component
of the curl of .

x y
z

−

E
 

 
We shall evaluate the line integral of E along each of the four sides of the square.  
Assuming the value of E is known at the centre of the square, we can find the value of 
the relevant components at the centre of each side using a Taylor expansion. Because 
the square is assumed to be infinitesimally small, we can approximate the value of E 
over the edge by the value at the edge’s centre.  
 

0 0

0 0

d dside 1: d d side 2 : d d
2 2

d dside 3 : d d side 4 : d d
2 2

y x
y x

y x
y x

E x E yE y E
x y
E x E

x

yE y E
x y

∂⎛ ⎞ ⎛ ∂
= + = − +⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

∂⎛ ⎞ ⎛ ∂
= − − = −⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

E. r E. r

E. r E. r x

⎞
⎟
⎠
⎞
⎟
⎠

 

 
The line integral around the loop is found by adding the contribution from the four 
sides: 

                                              
yx

y
E

x
E xy ddd

loopclosed ⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

=∫ rE.
.                                 (3.19) 

 
This line integral was evaluated for a surface in the x−y plane.  The normal to this 
surface points along the z axis (and it is actually the +z direction when the direction of 
the line integral is taken into account).  Thus, recalling the definition of the curl, in 
Equation (3.18), we see that what we are in the process of evaluating is the z 
component of the vector curlE.  For our surface dxdy: 
 

                                      
z

xy

y
E

x
E

ErE. curld
area

1

loopclosed

=
∂

∂
−

∂
∂

=∫
                              (3.20) 

 
In a similar manner we may evaluate the other two components of the curl.  In 
practice these are most simply obtained by cyclically permuting the x, y, z in the 
above expression.  And assembling the three components into the vector 
 
 ˆ ˆcurl curl curl curl

x y
= + +E E x E ˆ

z
y E z , 

  
the curl of E may be expressed in the convenient form  
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ˆ ˆ ˆ

curl

x y z

x y z
E E E

∂ ∂ ∂
=

∂ ∂ ∂

x y z

E  (3.21) 

        
in terms of a determinant.  One should, however, appreciate that this expression is 
essentially an aide-mémoire, strictly speaking the elements of a determinant should all 
be of a similar type.   
 

3.2.4  The curl in electrostatics 
Introduction of the curl was motivated by the conservative property of the E field 
which was expressed in Equation (2.13),  
 
                                                           0d

loopclosed

=∫ rE. . 

 
If we divide both sides of this equation by the area enclosed by the loop, then using 
the definition of the curl we may write 
 
                                                                curlE  =  0                                               (3.22) 
as the area shrinks to zero. 
 
 From this we see that Equation (3.22) is an equivalent statement of the 
conservative character of the E field. 

3.2.5  The gradient 
We have introduced the gradient of a scalar field already when we explored how to 
obtain the value of the electric field E from a knowledge of the electric potential V, 
the result of which was expressed in Equation (2.19) 
 
                                                               Vgrad−=E .   
 
 Here we shall examine the gradient function in a slightly more abstract (and 
therefore more general) manner.  In particular we shall, as we did with the divergence 
and the curl functions, define the gradient in a way that is independent of any 
particular co-ordinate system. 
 
 The gradient turns a scalar into a vector.  To be more precise, it gives a vector 
from a scalar field.  Given an arbitrary scalar field V(r), the gradient of V, denoted by 
grad V is a vector that points in the direction of the most rapid variation of V with 
position. And the magnitude of grad V is the value of the derivative evaluated in this 
direction.  
 
 In rectangular Cartesian co-ordinates we may evaluate the three components 
of the derivative of V with respect to position and then combine them together to form 
a vector. Now 
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direction   theincomponent   theis     

direction   theincomponent   theis     

direction   theincomponent   theis     

z
z
V

y
y
V

x
x
V

∂
∂
∂
∂
∂
∂

 

 
so that we may assemble these into the vector: 
 

 ˆ ˆgrad V V VV ˆ
x y z

∂ ∂ ∂
= + +

∂ ∂ ∂
x y z  (3.23) 

 
And we recognise this to be the Cartesian form of the gradient as used in 
Equation (2.18). 
 

3.2.6  An application of the gradient 
An important example of the use of the gradient, which transcends electromagnetism, 
is in the evaluation of the (infinitesimal) change in a scalar function of position, say 
V(r), as one moves a displacement dr. Essentially this is simply an application of the 
multidimensional form of Taylor’s expansion, expressed succinctly in vector form. 
 
 V is a function of position; in other words, it varies as a function of the co-
ordinates: 
 ( ) ( ), ,V V x y=r z  
 
if we adopt rectangular co-ordinates.  The value of V a small distance along from x, y, 
z, at position x + dx, y + dy, z + dz, is given by the Taylor expression  
 

 ( ) ( )d , d , d , , d d dV V VV x x y y z z V x y z x y z
x y z

∂ ∂ ∂
+ + + = + + +

∂ ∂ ∂
 

 
taken to first order.  But observe that the second part of this expression, representing 
the change in V, may be expressed as the dot product of dr with grad(V): 
 
 ( ) ( ) ( )d d graV V+ = +r r r r. d V  
or simply 
                                                          ( )d d gradV = r . V                                          (3.24) 
 

3.2.7  Summary of vector calculus identities 
We shall first state three important theorems of vector calculus.  Although commonly 
regarded as theorems that must be derived through mathematical manipulations, we 
shall see from our physical definitions of the gradient, curl and divergence, that these 
results follow directly and quite trivially as identities. 
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 Gauss’s (divergence) theorem 
 This follows from the definition of div, Equation (3.13) 
 

                                               
closed
surface

1div .d
volume

= ∫∫E E a

E a

 

 
as the volume shrinks to zero.  If we multiply by the volume enclosed and integrate 
over this we obtain 
                                                

volume bounding
surface

div d .dv =∫∫∫ ∫∫E                                       (3.25) 

and this is referred to Gauss’s theorem in vector calculus. 
 
 Stokes’s (curl) theorem 
 This follows directly from our definition of the curl, Equation (3.18) 
 

∫=
loopclosed

d
area

1curl rE.E  

 
where the limit is taken as the area shrinks to zero.  If we multiply by the area 
(strictly, we take the dot product with the area, since the above definition gives the 
component of the curl in the direction of the surface normal), and integrate over this 
we obtain  
                                               

area perimeter

curl .d .d=∫∫ ∫E a E r                                          (3.26) 

 
and this is referred to as Stokes’s theorem in vector calculus. 

Gradient theorem 
 This follows directly from the ‘chain rule’ expression involving the gradient, 
Equation (3.24): 
                                                    ( )d grad dV V= . r . 
This gives the small increment in the scalar field quantity V in moving a small 
displacement dr. For a general displacement from r1 to r2 the change in V will then be 
found by integrating, so that 

                                                                                (3.27) 

and this is referred to as the gradient theorem of vector calculus. 

( ) ( ) ( )
2

1

2grad dV V V= −∫
r

r

. r r r1

 
 Collection of other identities 
 There follows a collection of identities relating to the operators div, grad and 
curl, most of which we will not prove. Students should, however, be familiar with 
them from their courses in vectors.  This summary is compiled from the book 
“Advanced Electricity and Magnetism” by W. Duffin and elsewhere. First we 
consider operations on the products of two vectors. 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 grad grad grad (3.28)
2 grad grad grad curl curl
3 div div grad (3.29)
4 div curl curl (3.30)
5 curl curl grad (3.31)
6 curl grad grad div div

UV U V V U

V V V

V V V

= +
⋅ = ⋅ + ⋅ + +

= + ⋅
× = ⋅ − ⋅

= − ×
× = ⋅ − ⋅ − +

A B A B B A A× B B× A
A A A

A B B A A B
A A A

A B B A A B B A A B

 

 
The operator A·grad in the second and fifth are given, in Cartesian co-ordinates by 

 ( )grad x x
x x y z

xB B BB A A A
x y z

∂ ∂ ∂
⋅ = + +

∂ ∂ ∂
A  

 
Next we consider the successive application of two vector differential operations. 

( )
( )
( )
( ) ( )

2

2

7 curl grad 0 (3.32)
8 div curl 0 (3.33)
9 div grad = (3.34)

10 curl curl grad div (3.35)

V

V V

=
=

∇
= − ∇

A

A A A

 

 
Of these, the seventh and ninth are particularly important; they will be proved below.  

  
The tenth result is slightly odd since it involves 2∇  of a vector quantity. In 

rectangular Cartesian co-ordinates this is simply the vector whose x component is  
of the x, and similarly for the y and the z components. In other, general, co-ordinate 
systems the curl curl expression may be taken as the definition of  

2∇

2∇  of the vector. 
 
 The following two proofs are established using rectangular Cartesian co-
ordinates.  Since the div, grad and curl have been defined independently of any co-
ordinate system, it follows that any convenient co-ordinate system can be used and the 
result will be true in the general case.   
 
 Proof of   ( )curl grad 0V =
 Let us evaluate the x co-ordinate of curl grad(V).  Denoting the vector grad(V) 
by A, the x component of the curl is given by 
 

 ( )curl y z
x

A A
z y

∂ ∂
= −

∂ ∂
A . 

 
But since A is given by grad(V), the components Ay and Az are given by 
 

 ,y z
V VA A
y z

∂ ∂
= =

∂ ∂  
 
from which we see that the x component of the curl is  
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 ( )
2 2

curl
x

V V
z y y z

∂ ∂
= −

∂ ∂ ∂ ∂
A . 

 
The two second derivatives in this equation differ solely in the order of 
differentiation. However we know that it is a general rule of calculus that for 
differentiable functions the order of differentiation is unimportant.  Thus the two 
terms in the above equation cancel, so that the x component of curl grad vanishes.  
And so in general any component will vanish by a similar argument, leading us to the 
general conclusion that for an arbitrary differentiable scalar function of position V(r), 
 

( )curl grad 0V =  
the result we required to prove.  
 
 Proof of ( ) 2div grad V V= ∇  
 The derivation of this is quite straightforward.  Writing, as above, the vector 
grad(V) as A, the components of A are 
 

 , ,x y z
V VA A A V
x y z

∂ ∂
= =

∂ ∂
∂

=
∂

. 

Then taking the divergence, 

 
2 2 2

2 2

div yx zA

2

A A
x y z
V V V
x y z

∂∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂

A

 
and we recognise the second line as the Laplacian, 2∇ , so that 
 
 ( ) 2div grad V V= ∇  
which is the result we required to prove. 

3.2.8  Nabla – or Del notation 
The operations of grad, div and curl have been related to different ways of 
differentiating vectors.  We now introduce a general vector differentiation operator ∇, 
called del (or nabla in old English), in terms of which these three vector calculus 
functions can be expressed in a unified manner.  The del operator is defined by 

 ˆ ˆ ˆ
x y z

∂ ∂
∇ = + +

∂
∂ ∂ ∂

x y z  (3.36) 

 
Observe that ∇ is a vector; it has components, here, in the x, y and the z direction.  
Also, note that it is an operator.  The derivatives are ‘open’; they are waiting for 
something to operate on.  
 
 Del applied to a scalar function, say V(r), will give a vector: 
 

 ( ) ˆ ˆ ˆV VV V
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
r x y z  
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which we immediately recognise as the gradient of V: 
 
                                                      ( ) ( )gradV V∇ ≡r r .                                         (3.37) 
 
 If we apply del to a vector function then we must ask how to do the vector 
multiplication.  Since del is a vector we can dot it onto a vector to give a scalar, or we 
can cross it onto a vector to give another vector.  Let us examine the dot product first. 
 
 Let us apply del to the vector E as a dot product.  Thus we want to evaluate 
 

 ˆ ˆ ˆ ˆ ˆ ˆx y zE E E
x y z

⎛ ⎞∂ ∂ ∂ ⎛ ⎞
∇ = + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠

.E x y z . x y z  

 
In accordance with the rules for the dot product, the x component of the first term 
goes with the x component of the second term, and similarly for y and z.  This gives 
 

 yx zEE E
x y z

∂∂ ∂
∇ = + +

∂ ∂ ∂
.E  

which we recognise as the divergence of the vector E: 
 
                                                      ( ) ( )div∇ ≡.E r E r                                             (3.38) 
  
 If we apply del to the vector E as a cross product,  
 

 ˆ ˆ ˆ ˆ ˆ ˆx y zE E E
x y z

⎛ ⎞∂ ∂ ∂ ⎛ ⎞
∇× = + + × + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠

E x y z x y z  

 
we may evaluate this using the determinant mnemonic for the vector cross product: 
 

 

ˆ ˆ ˆ

x y z

x y z
E E E

∂ ∂ ∂
∇× =

∂ ∂ ∂

x y z

Ε  

This, we immediately recognise, is the expression for the curl of the vector E, 
expressed in rectangular co-ordinates: 
                                                     ( ) ( )curl∇ × ≡E r E r .                                      (3.39) 
  

We now consider a double application of the del operator.  Del operating on a 
scalar function V(r) gives the gradient of V, a vector.  We shall convert this back to a 
scalar by dotting a further del onto this, that is, taking the divergence: 
 

 ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆdivgradV V
x y z x y z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + + × + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

r x y z x y z r . 
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The two brackets may be regarded as a scalar operator, produced by dotting del onto 
itself.  Thus we may write 
                                                   2div grad = ∇ ∇ = ∇. ,                                           (3.40) 
where  

                                                   
2 2

2
2 2

2

2x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

.                                         (3.41) 

 
This is known as the Laplacian operator, or simply just “del squared”.  In some books 
it is denoted by the symbol ∆. 
 
 Finally we examine another double application of the del operator.  This time 
we will take the curl of the gradient of a scalar: 
 
 ( ) ( )curlgradV V= ∇ ∇r × r  
which may be written as 

 ˆ ˆV V V ˆ
x y z

⎛ ⎞∂ ∂ ∂
∇ + +⎜ ⎟∂ ∂ ∂⎝ ⎠

× x y z  

or, in determinant form: 

 ( )

ˆ ˆ ˆ

0Vx y z

x y z

∂ ∂ ∂
=∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

x y z

r  

 
This expression is zero because we observe that two rows of the determinant are 
identical. Recall that particular property of determinants. Actually, we are being a 
little sloppy here. Think this one through. 
 
Thus we conclude that the curl of the gradient of any scalar function is zero. 
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3.3  Vector Differential Operators in Various Co-ordinate Systems 
 

3.3.1 Cartesian co-ordinates 

        

x
y

z

x

z

y

volume element  d  = d d dv x y z
length element d d d dx y zl x y z

 

 

( )

( )

( )

( )

( )

2 2 2
2

2 2 2

2 2

ˆ ˆ ˆgrad , , .

div , , .

ˆ ˆ ˆcurl , , ,

ˆ ˆ ˆ

.

, , .

ˆ, ,

yx z

y yz x z

x y z

x

x y z
x y z

AA Ax y z
x y z

A AA A A Ax y z
y z z x x y

x y z
A A A

x y z
x y z

x y z A

x

ψ ψ ψψ

ψ ψ ψψ

∂ ∂ ∂
= + +

∂ ∂ ∂

∂∂ ∂
= + +

∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝

∂ ∂ ∂
=

∂ ∂ ∂

∂ ∂ ∂
∇ = + +

∂ ∂ ∂

∇ = ∇ +

x y z

A

A x y z

x y z

A x

⎞
⎟
⎠

2 2

2 2 22 2 2

2 2 2 2 2 2

2 2 2

2 2 2

ˆ ˆ ,

ˆ ˆ

ˆ .

y z

y y yx x x

z z z

A A

A A AA A A
x y z x y z

A A A
x y z

∇ + ∇

⎛ ⎞∂ ∂ ∂⎛ ⎞∂ ∂ ∂
= + + + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ + +⎜ ⎟∂ ∂ ∂⎝ ⎠

y z

x y

z
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3.3.2 Cylindrical polar co-ordinates 

z

φ

ρ

x

y

z

       

cos
sin

unit vectors:
ˆ ˆ ˆcos sin
ˆ ˆ ˆsin cos
ˆ ˆ

ˆ ˆ ˆlength element    d d d d
volume element  d d d d

x
y
z z

z
v z

ρ ϕ
ρ ϕ

ϕ ϕ
ϕ ϕ

ρ ρ ϕ
ρ ρ ϕ

=
=
=

+
− +

=

= + +
=

x y
x y

z z

l z

ρ =
ϕ =

ρ ϕ

 

 

( )

( ) ( )

( ) ( )

( )2
2

1ˆ ˆ ˆgrad , , .

1 1div , , .

1ˆ ˆ ˆcurl , , ,

ˆ ˆ ˆ
1 .

1 1, ,

z

z z

z

z
z

A Az A
z

A A AA Az A
z z

z
A A A

z

ϕ
ρ

ϕ ρ ρ
ϕ

ρ ϕ

ψ ψ ψψ ρ ϕ
ρ ρ ϕ

ρ ϕ ρ
ρ ρ ρ ϕ

ρ ϕ ρ
ρ ϕ ρ ρ ρ ϕ

ρ

ρ ρ ϕ
ρ

ψψ ρ ϕ ρ
ρ ρ ρ ρ

∂ ∂ ∂
= + +

∂ ∂ ∂

∂∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛∂ ∂ ∂
= − − −⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝

∂ ∂ ∂
=

∂ ∂ ∂

⎛ ⎞∂ ∂ ∂
∇ = +⎜ ⎟∂ ∂⎝ ⎠

z

A

A z

z

ρ ϕ

1
ρ + ϕ +

ρ ϕ

⎞
⎟
⎠

( )

2 2

2 2

2 2 2
2 2 2 2

2 2 2

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

.

2 2ˆ ˆ ˆ, , ,

1 1 2ˆ

1 1 2ˆ

ˆ

z

z

A A A A
z A A

A A A A A A
z

A A A A A A
z

ϕ ρ ρ ϕ
ρ ϕ

ρ ρ ρ ρ ϕ ρ

ϕ ϕ ϕ ϕ ρ ϕ

ψ ψ
ϕ

ρ ϕ
ρ ϕ ρ ρ ϕ ρ

ρ ρ ϕ ρ ρ ρ ϕ ρ

ρ ρ ϕ ρ ρ ρ ϕ ρ

∂
+

∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞
∇ = ∇ − − ∇ + − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂
= + + + − −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

A z

z

ρ + ϕ

ρ

+ϕ

+

2 A∇

2 2

2 2 2

1 1 .z z zA A A
z

ρ
ρ ρ ρ ρ ϕ

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
+ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
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3.3.3 Spherical polar co-ordinates 

φ

θ

r

x

z

       

2

sin cos
sin sin
cos

unit vectors:
ˆ ˆ ˆ ˆsin cos sin sin cos
ˆ ˆ ˆ ˆcos cos cos cos sin
ˆ ˆ ˆsin cos

ˆˆ ˆlength element    d d d sin d
volume element  d sin d d d

x r
y r
z r

r r r
v r r

θ ϕ
θ ϕ
θ

θ ϕ θ ϕ θ

θ ϕ θ ϕ θ
ϕ ϕ

θ θ ϕ

θ θ ϕ

=
=
=

= + +

= + −
= − +

= + +

=

r x y z

x y z
x y

l r

θ
ϕ

θ ϕ

 

 

( )

( ) ( ) ( )

( ) ( )

( ) ( )

2
2

2

1 1ˆˆ ˆgrad , , .
sin

1 1 1div , , sin .
sin sin

1ˆcurl , , sin
sin

1 1 1ˆ ˆ ,
sin

ˆˆ sin
1
sin

r

r r

r
r r r

A
r r A A

r r r r

Ar A
r

A ArA rA
r r r r r

r r

r

ϕ
θ

θ
ϕ

ϕ θ

ψ ψ ψψ θ ϕ
θ θ ϕ

θ ϕ θ
θ θ θ ϕ

θ ϕ θ
θ θ ϕ

θ ϕ θ

θ

∂ ∂ ∂
= + +

∂ ∂ ∂

∂∂ ∂
= + +

∂ ∂ ∂

⎡ ⎤∂ ∂
= − +⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤+ − −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

=

r

A

A r

r

θ ϕ

θ + ϕ

θ

( )

( )

( ) ( )

2
2

2 2 2 2

2
2

2 2

2
2 2 2

2

ˆ

.

sin

1 1 1, , sin .
sin sin

1 1Note that 

2 2 2ˆ, , sin
sin sin

ˆ

r

r r

r
A rA r A

r r
r r r r r

r r
r r r r r

A
r A A A

r r r

A

θ ϕ

ϕ
θ

θ

θ ϕ
θ

2

ψ ψ ψψ θ ϕ θ
θ θ θ θ

ψ ψ

θ ϕ θ
θ θ θ ϕ

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤∂ ∂ ∂⎛ ⎞ ≡⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
∂⎛ ⎞∂

∇ = ∇ − − −⎜ ⎟∂ ∂⎝ ⎠

∇

A r

2

2

ϕ

+θ

ϕ

2 2 2 2 2

2
2 2 2 2 2

2 2cos
sin sin

2 2cosˆ .
sin sin sin

r

r

AA A
r r r

A A AA
r r r

ϕθ
θ

ϕ θ
ϕ

θ
θ ϕ θ ϕ

θ
θ θ ϕ θ ϕ

∂⎛ ⎞∂
− + −⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
+ ∇ − + +⎜ ⎟∂ ∂⎝ ⎠

ϕ
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When you have completed this chapter you should:  
 
• understand the distinction between scalars and vectors; 

 
• know the meaning of the vector dot product; 

 
• be able to manipulate expressions involving dot products; 

 
• know the meaning of the vector cross product and appreciate that it is an 

anticommutative operation; 
 

• be able to manipulate expressions involving cross products; 
 

• understand the scalar triple product of vectors and interpret as the volume of a 
parallelepiped;  
 

• be aware of the vector triple product and its expansion; 
 

• understand the divergence of a vector and its interpretation in terms of the flux 
through a closed surface; 
 

• know the expression for the divergence in rectangular Cartesian co-ordinates; 
 

• understand the curl of a vector and its interpretation in terms of a closed loop line 
integral; 
 

• know the expression for the curl in rectangular Cartesian co-ordinates; 
 

• understand the gradient of a scalar field function and its meaning as a vector; 
 

• know the expression for the gradient in rectangular Cartesian co-ordinates; 
 

• understand the use of the divergence in electrostatics and its connection with 
Gauss’s law. 
 

• understand the various possible double applications of the above vector calculus 
functions, including div grad = ∇2 and curl grad = 0; 
 

• be familiar with the ∇ operator, known as ‘del’ or ‘nabla’ and its connection with 
div, grad and curl; 
 

• be able to manipulate expressions using ∇; 
 

• relate the functions div, grad and curl to the properties of the electric field and 
electric potential already encountered. 
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