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II  ELECTROSTATICS I

2.1  Coulomb’s law
In 1785 Coulomb completed a series of experiments which encapsulated the laws
governing the forces between stationary point electric charges. He concluded that for
two charges Q1 and Q2:

i) the force between them is proportional to the product of the magnitude
of the charges,

ii) the force is inversely proportional to the square of the separation of the
charges and directed along the line joining them,

iii) the force is repulsive for like charges and attractive for unlike charges.

These statements may be summarised by:
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In the SI (Système Internationale) system of measurement, which uses the
metre, kilogram and second as its fundamental units (with the ampère as its basic
electrical unit), the electrostatic force is written as
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– the constant of proportionality is 1 4 0πε .  The 1 4π will be seen to make sense
later.  r1 2, is a unit vector pointing from Q1 to Q2.

F is  m easu red  in  n e w to n s
r is  m easu red  in  m e tre s

Q is  m easu red  in  c o u lo m b s

m ech a n ic a l u n its

e lec tr ica l u n it.

The constant ε 0 is known as the permitivity of free space, and it has the units of
coulombs2 metres−2 newtons−2 or farads metres−1.

Once the coulomb is defined (it is specified as a current of one ampère flowing
for one second) then the value of ε0 may be determined experimentally.  It is found to
be
                                                   ε 0

12 18 85 10= × − −. f m .                                           (2.2)

But from Maxwell’s equations / relativity, one finds the direct result that numerically:
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where c is the velocity of light: 3.0×108 ms-1.

2.2  The electric field
From Coulomb’s law, we know that a test charge q in the neighbourhood of a charge
Q, will experience a force F:
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force on a test charge q

The force on the test object is proportional to its charge q; if we were to sample the
field with a larger charge ′q then there would be a correspondingly larger force F'
produced. Similarly, a vanishingly small test charge would experience a vanishingly
small force. And even in the absence of the test charge there is “something” in the
space produced by the source charge – we define the electric field intensity E as the
force at a point in space which would be experienced by a unit test charge q.
                                                                E F= q                                                     (2.4)

Mathematically, nothing new has been introduced in using the idea of the
electric field.  But physically this represents a change in one’s view of the Coulomb
interaction.  Coulomb’s law treats the two charges, Q1 and Q2 or Q and q in a
completely symmetric way; the force is proportional to their product.  But with the
introduction of the electric field, two different aspects of charge are seen.  The force is
seen as the result of a two-step process.  The source charge Q acts to produce an
electric field, while the test charge q responds to the field by experiencing a force.
There is thus an active and a passive aspect to electric charge.
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Is the electric field anything more than a mathematical convenience? Does it
have a real existence? We shall see (from the energy stored in a capacitor) that one
can regard energy as being contained in an electric field. Thus corresponding to a
field distribution in space there should be an energy distribution. Is there really this
energy in otherwise empty space?  That would give definite support for the physical
(as opposed to the mathematical) reality of the electric field.  Feynman (in Lectures
on Physics, vol. 2) states that the only way to demonstrate this would be by observing
the gravitational effect of the energy – which, as yet, remains beyond the bounds of
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experimental possibility. However when charges accelerate, some electric field
detaches itself from the charge and travels away (at the speed of light). This can be
detected at a distance from the source and it can, for instance, do work on charges far
from the source. Thus when the electric field travels, its associated energy travels with
it. In this sense the electric field certainly is real.

2.3  Linearity and superposition
The force, on a charge, produced by a number of other charges is the sum of the
forces that would be produced by the individual charges separately. Clearly the
electric fields are additive in the same way.
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Principle of Superposition

The fact that the forces, or equivalently the electric fields, may be added in this way is
an experimental observation. It tells us:

i) that electric fields may be added according to the usual rules of vector
addition, and

ii) that the field distribution produced by one charge is not changed by the
presence of other charges.

The rule that the fields may be added as independent vectors is known as the
Principle of Superposition.  It follows from the linearity of the equations of
electromagnetism.  Obviously it makes life very much easier; complex problems may
be split up into smaller, simpler parts.

2.4  Lines of force – Electric flux
This is a pictorial representation of E.  Lines of force start on positive charges and
terminate on negative charges.  They point in a direction parallel to E and the density
of the lines is proportional to the magnitude of E.  They are analogous to the stream
lines of fluid flow.

+ Q -Q

lines of force
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Lines of force were first used seriously by Faraday, and they helped him visualise
electric (and magnetic) fields; he was a very non-mathematical person. Note that there
is an undetermined constant in the specification of the density of lines of force.

The concept of lines of force is useful because (as we shall see) the lines are
conserved.  This is a direct consequence of Coulomb’s inverse square law, and it is
formalised in Gauss’s law.  Here let us take a sneak preview.

We first define the concept of electric flux ΦE . This is a scalar quantity,
essentially the number of lines of electric force passing perpendicularly through an
area, given by

E normal surface area

ˆ times area

Φ =
=

E.

E.n

where n̂  is the unit vector pointing normal to the surface. This involves the vector dot
product. A slight simplification follows if we introduce the idea of vector area. We
define the vector area a as the (scalar) area a multiplied by the unit vector pointing
normal to the surface:
                                                            ˆa=a n .

Then the electric flux is simply
                                                           EΦ = E.a .

The above expression applies for a constant electric field E. In general, where E
varies from place to place, for an infinitesimal vector area da, the element of electric
flux through this surface is given by

                                                          Ed dΦ = E. a .                                                  (2.6)

Vector area is an important concept in electromagnetism. You should appreciate that
there is an ambiguity in the specification of the direction of the surface. For a closed
surface we adopt the convention that the normal vector points outward.

Let us take a point charge Q.  At a distance r away the magnitude of the
electric field intensity is
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and the lines of force are radial.  In other words, they cut the surface of the sphere
perpendicularly.

The electric flux through the sphere is given by
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and note that the 4 2πr cancels out, leaving:

                                                           ΦE = Q ε 0 .                                                   (2.7)

We see that the total number of lines of force is independent of r, and proportional to
the charge Q.  Thus we can interpret ΦE  as the number of lines of force emanating
from the charge Q. And therefore it is a useful concept: all as a consequence of the
inverse square law.

Another way of regarding this result is to take the conservation of the number
of lines of force as fundamental.  Then the inverse square law follows as a
consequence of the geometry of three-dimensional space.  From this point of view the
electric field E is interpreted as the density of electric flux.

We also observe that the 4π  has vanished in the expression for ΦE .  If there
had been no 4π in the original Coulomb’s law expression then these factors would
have cropped up in all sorts of places where they had no business.

2.5  Gauss’s law
Gauss’s law is essentially the extension of the result of the previous section to a more
general situation.  There are two aspects to the generalisation:

i) the volume surrounding the charge is not restricted to being spherical,
and

ii) an arbitrary distribution of charges must be allowed within the volume.

We shall see that once i) is accomplished, then ii) follows from the linearity condition.

The result of the previous section was that the electric flux through a spherical
surface surrounding a charge Q was given by Q ε 0 , independent of the radius of the
sphere. Any sphere centred on Q will do.  Furthermore, one could imagine an
assembly of spherical elements connected by planes in the radial direction.
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If a general volume is constructed in this way then no lines of E penetrate the flat
areas; there is flux only through the spherical surfaces.  And thus the flux through the
constructed surface is the same Q ε 0 . As in the usual procedures of calculus, we may
build the surface of a larger number of surfaces with smaller steps, and in this way
approach the limit of an arbitrary given shape.  So we conclude that the electric flux
through an arbitrary closed surface is given by Q ε 0 .

Since Coulomb’s law is linear, it follows that we can add the effects of a
number of charges, giving the final result

                                                          ΦE = ∑Qi
i

ε 0                                                 (2.8)

where the sum is over all charges enclosed by the volume.  Alternatively, recalling the
definition of ΦE , we may write this result directly as an integral over the closed
surface:

                                                  0

closed
surface

d i
i

Q ε= ∑∫∫ E. a�                                               (2.9)

We see that we have succeeded in making the two generalisations required. The result
is Gauss’s law, expressed here in one of its forms.  In words: the electric flux through
a closed surface is given by the total charge enclosed divided by 0ε .

There are two main uses for Gauss’s law. It may be used in the calculation of
electric fields, but only for systems which have a high degree of symmetry.  Secondly,
Gauss’s law is one of the direct ingredients of Maxwell’s equations. The differential
form of the above Equation (2.9) is actually one of the four Maxwell equations.

2.6  Work in an electric field
The work done by a constant force F when moving a distance l in the direction of the
force is given by

W = F l.

If the applied force varies with position, and if the direction of the motion is
not parallel to the force then the work done in moving an infinitesimal displacement
dl is given by the vector dot product
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where � is the angle between the direction of the force and the displacement.

To calculate the work done in moving a test charge q in the electric field of a
source charge Q we may use a procedure similar to that in the previous section (but
applied to a line rather than to a surface).

Q

d r
Fq

p 1

p 2

calculation of work in an electric field

The path is decomposed into elements radial and tangential with respect to the source
charge Q.  As the test charge q moves between the two points indicated, only the
radial element of the motion works against the force: the (scalar) distance dr.

The force applied must be such as to counterbalance the electrostatic force: it
is therefore in the opposite direction to the electric force, thus the work done in this
infinitesimal displacement is

                                                      d dW
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                                            (2.11)

that may immediately be integrated to give the work done in traversing a finite path:
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We shall investigate the numerical aspects of this result shortly.  However it
should be recognised, from the above derivation, that only the initial and the final
position are of consequence, and the actual path the test charge moves through is
irrelevant.  In particular, this means that if a charge is taken through an arbitrary path
and then returned to its initial position the work done will be zero.  The work done
may be expressed in terms of the line integral of E:

0d
loopclosed

=−= ∫ rE.qW .

Thus we conclude that the closed loop line integral of E is necessarily zero
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                                                            0d
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=∫ rE. .                                              (2.13)

Since the physical content of this equation is that energy is conserved when a charge
traverses a closed loop in an electric field, the E field is referred to as a conservative
field.

Here, then, we have another property of the electric field, also expressed in
integral form.  Gauss’s law is valid very generally for electromagnetic systems.  By
contrast the above property of the E field, while it is an important element of another
of Maxwell’s equations, will need to be modified when moving charges and electric
currents are considered.

2.7  Electric potential
If we take a test charge q starting from some fixed position r0 then it requires a certain
amount of energy to move it to another point r in an electric field E. From the
previous section we know that the amount of energy is independent of the actual path
taken.  This means that every point in space may be characterised by a scalar quantity:
the energy it took to get the charge there.  The electric potential V at a point p is
defined as the energy required to bring a unit charge to that point. Clearly there is an
arbitrary additive constant which depends on the initial position.

Considering the electric potential in the electric field of a point charge Q, we
may take over the result of the previous section.  If the initial position r0 is taken to be
at infinity (so that 1 00r = ) then the electric potential at a displacement r from Q is
given by

                                                           V
Q

r
r� 	 =

4 0πε
                                               (2.14)

The electric potential has two main uses.  It corresponds to the voltage of an
electric circuit: the work done is equal to the charge times the potential difference
through which it has been moved.  However V is also particularly useful, in
electrostatics, as an auxiliary quantity in the calculation of electric fields.  From a
given charge distribution it is easier to calculate the scalar V than to calculate the
vector E.  When V is found, it then remains to evaluate E, which is a relatively easy
procedure.

2.8  Calculation of E from V
Recall that V is defined in terms of the work done in moving a unit charge.  If the
charge is moved through an infinitesimal displacement dr then the change in potential
dV is given by
                                                           d dV = −E r. .                                                (2.15)

This can be expressed in terms of rectangular Cartesian coordinates as

d d d dV x y z E x E y E zx y z, ,� 	 
 �= − + + ,

where the position dependence of V is explicitly indicated.  From this expression the
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components of E are immediately recognised as the various partial derivatives of V:
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These components may be assembled together to recover the electric field vector:
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The expression for E in terms of V involves the gradient function of vector calculus:

                                               grad V
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i j k                                  (2.18)

(in rectangular cartesian coordinates), so that the electric field may be expressed as
                                                         E = −grad V� 	 .                                                (2.19)

This will be investigated further when we have the full machinery of vector
calculus at our disposal.

2.9  The capacitor
We now consider extended charge distributions on conductors rather than the point
charges of the previous sections.  Note that in a future section we shall examine the
properties of conductors in some detail; for the present we will not be too pedantic
except to note that the electric field is zero inside a conductor (Section 4.4.1).

Two conductors containing charge will produce an electric field in the space
between.  We consider the practically important case where the charge has been
transferred from one conductor to the other: one conductor has a charge +Q and the
other −Q . The difference in electric potential between the conductors is proportional
to the transferred charge, the constant of proportionality depending on geometric
factors.  (The constant also depends on the material in the space between the
conductors, but recall our statement of philosophy on material media; at this stage we
are only interested in the vacuum and not in material media.)

+ + + + + + + + + + + + + + + + + + + + + + + + + + +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p o ten tia l V 1

p o ten tia l V 2

ch a rg e  + Q

ch a rg e  −Q

a rea  d a

a rea  A

d E

a prototypical capacitor
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We shall start by calculating the electric field intensity between the plates.  To
do this we utilise the device of the “Gaussian pill box” drawn on the top plate.
Neglecting edge effects the lines of E will be normal to the plates, piercing only the
bottom of the pill box. The area of this is da, so using Gauss’s law we have

                                                         E a Qd d= ε 0 ,                                               (2.20)
which may be written as

E a ad d= σ ε 0

where � is the surface density of charge, Q A .

Thus we have found that the electric field between the plates of the capacitor
can be written as
                                                     E Q A= =σ ε ε0 0 .                                          (2.21)

This expression is independent of position within the volume of the capacitor,
indicating that the electric field within a parallel plate capacitor is uniform (neglecting
edge effects).

Now let us consider the potential difference between the two conductors.  The
separation between the plates is d.  Moving a unit charge a distance d parallel to a
uniform electric field E will take an energy Ed. This is the difference in potential
between the conductors:
                                                              V Ed= ,                                                    (2.22)

from which we see that the potential difference is proportional to the charge

                                                            V Q
d

A
=

ε 0

.                                                 (2.23)

The constant of proportionality between Q and V is known as the capacitance; its
symbol is C and it is measured in Farads.

In general we have
                                                               V Q C=                                                   (2.24)
where, for the parallel plate capacitor

                                                            C A d= ε 0 .                                                (2.25)

2.10  Electric field energy
It is necessary to perform work in the establishment of an electric field.  To calculate
the work done in creating a field E we shall imagine charging a capacitor by the
successive transfer of charge from one plate to the other.  If the present charge on the
capacitor is q then the work done in moving an infinitesimal charge dq from one plate
to the other, a distance d apart, is given by

                                                           d dW q E d= .                                               (2.26)
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But since the electric field E is given by q Aε 0 , we can write

                                                         d dW
d

A
q q=

ε 0

                                              (2.27)

so that in building up the charge from nothing to Q the work done is

                                                            
W
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                                              (2.28)

which, incidentally, can also be written as CV 2 2 .  These are all expressions for the
energy stored in a capacitor.  But our particular interest is in an expression involving
the electric field.

Using the result from Equation (2.28), W Q C= 2 2 , and the expression of
Equation (2.21) for the charge, Q AE= ε 0 , we obtain
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2
volume.

                                         (2.29)

The underlying idea here is that the work done in charging the capacitor is the
energy contained in the capacitor.  And then if that energy is considered to reside in
the electric field, then the magnitude of that energy is ε 0

2 2E  per unit volume. In

other words, ε 0
2 2E  is the electric field energy density, which we denote by UE :

                                                           
2

0
E 2

E
U

ε=                                                 (2.30)

When you have completed this chapter you should:

• know the physical phenomena contained in Coulomb’s law;

• know the units of the physical quantities in the Coulomb’s law formula;

• be able to calculate the force on a stationary charge due to other static charges;

• be familiar with idea of the electric field;

• appreciate the active and passive aspects of electric charge;
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• be able to calculate electric field of an arrangement of charges;

• be able to calculate force on a charge in a given electric field;

• understand that the linearity of the Coulomb force permits electric forces and
electric fields to be combined according to the usual rules for vectors;

• be familiar with concept of electric flux and its connection with the charge
contained in a volume;

• know the meaning of vector area and be able to perform related calculations;

• be happy with the formalisation of the ideas of flux and enclosed charge in terms
of Gauss’s law

• understand that the inverse square law leads to conservation of lines of flux;

• be able to calculate total flux emerging from arbitrary charge distributions;

• be able to calculate the work done when a charge is moved in an electric field
(produced by other charges)

• understand that the electric field is conservative and how this leads to the idea of
the electric or electrostatic potential;

• be able to calculate the potential for given charge distributions;

• be able to calculate the electric field from a given potential;

• be familiar with the capacitor and its electrical properties;

• be able to utilise the artifice of the Gaussian ‘pill box’;

• understand that E is uniform in a parallel plate capacitor;

• be able to calculate the work done in charging a capacitor;

• interpret the work done in charging a capacitor in terms of electric field energy.


