PH2420 Lecture Contents

 

Lec 1

1.1

Overview

 

1.2

History of ideas of electromagnetism

 

1.3

Structure of the course

Lec 2

2.1

Coulomb’s law

 

2.2

The electric field

 

2.3

Linearity and superposition

 

2.4

Lines of force – electric flux

 

2.5

Gauss’s law

Lec 3

2.6

Work in an electric field

 

2.7

Electric potential

 

2.8

Calculation of E from V

 

2.9

The capacitor

 

2.10

Electric field energy

Lec 4

3.1

Vector algebra

 

3.1.1

Vectors

 

3.1.2

Dot product

 

3.1.3

Cross product

 

3.1.4

Multiple products

 

3.2

Vector calculus

 

3.2.1

Divergence

 

3.2.2

The divergence in electrostatics

Lec 5

3.2.3

Curl

 

3.2.4

The curl in electrostatics

 

3.2.5

The gradient

 

3.2.6

An application of the gradient

 

3.2.7

Summary of vector calculus identities

 

3.2.8

Nabla or del notation

Lec 6

4.1

Summary of properties of E

 

4.2

The equations of Poisson and Laplace

 

4.3

Not done as covered in PH2130

 

4.4

Properties of conductors

 

4.5

Validity of the inverse square law

 

4.6

Summary of electrostatics results

Lec 7

5.1

Current density vector

 

5.2

Equation of continuity

 

5.3

Conductivity

 

5.4

Ohm’s law

 

5.5

Power dissipation

Lec 8

5.6

Kirchhoff’s laws

 

5.6.1

Current law

 

5.6.2

Voltage law

 

5.7

Laplace’s equation in conductors

 

5.8

Anisotropic media and tensors

Lec 9

6.1

Ampère’s investigations

 

6.2

Magnetic field

 

6.3

Field of a long wire

 

6.4

Force between two long parallel wires

Lec 10

6.5

The Lorentz force

 

6.6

Ampère’s law

 

6.7

The curl of B

 

6.8

The divergence of B

Lec 11

7.1

The story so far

 

7.2

Faraday’s law

 

7.3

Displacement current

 

7.4

Maxwell’s equations

Lec 12

7.5

EM waves in free space

 

7.6

Poynting’s theorem – energy transport

Lec 13

7.7

Incompatibility with Newton’s laws

 

7.7.1

Transformation of co-ordinates and fields

 

7.7.2

Transformation of a Maxwell equation

 

7.7.3

The Lorentz transformatiom

 

 

 

 

 

Section 8 to be studied independently

 

 

 

Lec 14

9.1

Field in a solenoid

 

9.2

Magnetic vector potential

 

9.3

Fields from potentials

Lec 15

9.4

Self inductance

 

9.5

Mutual inductance

 

9.6

Coupling coefficient & matrix representn

 

9.7

Energy of a magnetic field

Lec 16

9.8

Finding the potentials

 

 

Gauge matters

 

9.9

Summary of magnetostatics

Lec 17

10.1

Dielectrics and dipoles

 

10.2

Electric potential of a dipole

 

10.3

Electric field of a dipole

 

 

Brief discussion of quadrupoles & higher

Lec 18

10.4

Dipole in a uniform field

 

10.5

Dipole in a non-uniform field

Lec 19

10.6

Free and bound charges

 

10.7

Bound surface charge density

 

10.8

Bound volume charge density

 

10.9

Gauss’s law including dielectrics

 

10.10

Fields in matter

 

10.11

Dielectric constant & electric susceptibility

Lec 20

10.12

Fields at boundaries

 

10.13

Coulomb’s law revisited

 

10.14

Comparison of dielectrics and free space

Lec 21

11.1

Magnetic media and magnetic dipoles

 

11.2

Diamagnetism and paramagnetism

 

11.3

Ferromagnetism

 

11.4

Bound surface current

 

11.5

Bound volume current

 

11.6

Ampère’s law including magnetics

Lec 22

11.7

Displacement current

 

11.8

Macroscopic Maxwell equations

 

11.9

Magnetic susceptibility and permeability

 

11.10

Measuring B and H

Lec 23

11.11

Properties of ferromagnets

 

11.12

Boundary conditions

 

11.13

EM waves in matter

 

11.14

Macroscopic and microscopic fields

 

 

 

Lec 24

 

Sp. topic 1  Quantum connections

Lec 25

 

Sp. topic 2  The Hall effect

Lec 26

 

Sp. topic 3  Skin depth

Lec 27

 

Sp. topic 4  Superconductivity