UNIVERSITY OF LONDON

BSc EXAMINATION 1999

For Internal Students of

Royal Holloway

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH2420B: ELECTROMAGNETISM PH2420A(R): ELECTROMAGNETISM - PAPER FOR RESIT CANDIDATES

Time Allowed: TWO hours

Answer QUESTION ONE and TWO other questions

No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Calculators ARE permitted

PH2420B and PH2420a(R)/50 ©Royal Holloway and Bedford New College 1999

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_0	=	$4\pi \times 10^{-7}$	$H m^{-1}$
Permittivity of vacuum	\mathcal{E}_0	=	8.85×10^{-12}	$F m^{-1}$
	$1/4\pi\epsilon_0$	=	9.0×10^{9}	m F ⁻¹
Speed of light in vacuum	С	=	3.00×10^{8}	$m s^{-1}$
Elementary charge	е	=	1.60×10^{-19}	С
Electron (rest) mass	me	=	9.11×10^{-31}	kg
Unified atomic mass constant	m _u	=	1.66×10^{-27}	kg
Proton rest mass	m _p	=	1.67×10^{-27}	kg
Neutron rest mass	m _n	=	1.67×10^{-27}	kg
Ratio of electronic charge to mass	<i>e</i> / <i>m</i> _e	=	1.76×10^{11}	C kg ⁻¹
Planck constant	h	=	6.63×10^{-34}	J s
	$\hbar = h/2\pi$	=	1.05×10^{-34}	J s
Boltzmann constant	k	=	1.38×10^{-23}	J K ⁻¹
Stefan-Boltzmann constant	σ	=	5.67×10^{-8}	$W m^{-2} K^{-4}$
Gas constant	R	=	8.31	J mol ⁻¹ K ⁻¹
Avogadro constant	N_{A}	=	6.02×10^{23}	mol ⁻¹
Gravitational constant	G	=	6.67×10^{-11}	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81	m s ⁻²
Volume of one mole of an ideal gas at STP		=	2.24×10^{-2}	m ³
One standard atmosphere	P_0	=	1.01×10^{5}	N m ⁻²

MATHEMATICAL CONSTANTS

 $e = 2.718 \qquad \pi = 3.142 \qquad \log_e 10 = 2.303$

ANSWER ONLY FIVE sections of *Question One*

You are advised not to spend more than 40 minutes answering Question One

1.	(a)	Calculate the ratio of the electrostatic force to the gravitational force between a proton and an electron. How does this ratio depend on the particle separation?	[4]			
	(b)	Describe and explain qualitatively a possible mechanism for the finite electrical conductivity of metals.	[4]			
	(c)	Explain the meaning of the statement that an electric field is conservative. When is an electric field not conservative?	[4]			
	(d)	Assuming the Poisson equation				
$ abla^2 V = - ho / m{arepsilon}_0$						
		show that the electric field in a cavity within a conductor is zero.	[4]			
	(e)	How is the Ampère defined? Describe how, following from this definition, electric currents can be measured	[4]			
	(f)	Show how an arrangement of electric and magnetic fields can be used to select a beam of charged particles moving with a given velocity.	[4]			

[4]

- 2. (a) State Gauss's law relating the flux of an electric field **E** out of a closed surface to the total electric charge enclosed.
 - (b) A capacitor consists of two parallel conducting plates each of area A separated by a distance d in free space. One plate carries a charge of +Q and the other -Q. By using Gauss's law, or otherwise, show that the electric field between the plates has magnitude

$$E = \frac{Q}{\varepsilon_0 A}.$$
 [5]

- (c) The above result implies that the electric field between the plates is *uniform*. Explain carefully the arguments leading to the uniformity of the field, including a discussion of the limitation of such arguments. [3]
- (d) Define the electric potential *V*. Show that the potential difference between the plates is given by

$$V = Ed .$$
 [3]

(e) Hence demonstrate that the potential difference is proportional to the charge on the plates and show that the capacitance C is given by

$$C = \frac{\varepsilon_0 A}{d}.$$
 [3]

(f) Outline briefly the effect of placing a dielectric material between the plates. [2]

[3]

- 3. (a) Charges +q and -q are separated by a distance 2x. State the magnitude and the direction of the resultant dipole moment **p**.
 - (b) Show that a dipole experiences no force in a uniform electric field. [3]
 - (c) Show that a dipole moment \mathbf{p} experiences a torque given by $\mathbf{p} \times \mathbf{E}$ in a uniform electric field \mathbf{E} . [4]
 - (d) Show that the electric potential at the point P in the figure is given by

(e) Show that for r >> x the electric potential at P may be approximated by

$$V = \frac{p\cos\vartheta}{4\pi\varepsilon_0 r^2}.$$
 [5]

(f) Explain why a dipole experiences no force in a *uniform* electric field, but it does experience a force in a *non-uniform* field. [3]

4. (a) Show that Ampère's law relating the line integral of the magnetic field **B** around a closed loop to the current I passing through the loop,

$$\oint \mathbf{B}.\mathbf{dl} = \mu_0 I$$

may be expressed in terms of the curl of **B** as

$$\operatorname{curl} \mathbf{B} = \mu_0 \mathbf{J} \,.$$

- (b) Demonstrate that there is an inconsistency in Ampère's law when applied to the [5] space between the plates of a capacitor when it is charging up.
- (c) Since the charge on a capacitor *in vacuo* may be written as

$$Q = \varepsilon_0 A E$$

where E is the electric field and A is the area of the plates, show that the inconsistency may be removed through the introduction of a *fictitious current i* given by

$$i = \varepsilon_0 A \frac{\partial E}{\partial t}.$$
 [6]

(d) Show that, including the effect of this current, the curl of **B** may be written as

$$\operatorname{curl} \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}.$$
 [3]

- (e) In terms of the *electric flux* comment on the parallels with Faraday's law of electromagnetic induction. [2]
- (a) Describe an experiment to verify the *inverse square law* of the Coulomb force to the highest possible accuracy. You should give particular attention to the methods whereby this high accuracy is obtained and errors minimised. [17]
 - (b) Discuss a possible explanation *if* it were to be discovered that the inverse square law were not quite correct. [3]