UNIVERSITY OF LONDON

BSc EXAMINATION 1998

For Internal Students of Royal Holloway

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH2420A: ELECTROMAGNETISM

PH242R: ELECTROMAGNETISM PAPER FOR RESIT CANDIDATES

Time Allowed: TWO hours

Answer QUESTION ONE and TWO other questions

No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Calculators ARE permitted

1. ANSWER **ONLY FIVE** sections of *Question One*

You are advised not to spend more than 40 Minutes answering Question One

(a) Coulomb's law is:

$$\boldsymbol{E} = \frac{Q}{4\pi\epsilon_0} \frac{\hat{\boldsymbol{r}}}{r^2}$$

Define the terms in this equation. A charge +Q is placed at the point (R,0,0) and a second charge -Q is placed at the point (-R,0,0). Calculate the electric field vector at the point (0,R,0).

[4]

[4]

- (b) Define the capacitance C of an isolated conductor. Show that, when such a conductor is at an electric potential V, its electrostatic energy is $\frac{1}{2}CV^2$.
- (c) Ampère's circuital law is given by:

$$\oint \boldsymbol{B} \cdot \boldsymbol{dl} = \mu_0 I$$

Define carefully the terms in this equation. Use this law to derive the magnetic field at a distance R from a straight, infinitely long current-carrying wire.

[4]

(d) Discuss *briefly* what is meant by hysteresis in relation to ferromagnetic materials. Include in your discussion a labelled sketch of a hysteresis curve.

(e) What is meant by *self inductance* and *mutual inductance*? Explain *briefly* the relevance of these phenomena to the working of a transformer.

[4]

[4]

- (f) A charged particle with charge q, mass m and initial velocity v is moving in a region with an electric field E. Describe the motion (without detailed proofs) for the cases when
 - (i) \boldsymbol{v} is parallel to \boldsymbol{E}
 - (ii) \boldsymbol{v} is perpendicular to \boldsymbol{E} .

[4]

2. Define current density, J, conductivity σ and electric field E. By considering the case of a cylindrical resistor of length L, cross-sectional area A and resistance R, show that Ohm's Law can be written in terms of these variables as: $J = \sigma E$

[6]

Show carefully that the velocity v of a particle with charge q and mass m, moving under the influence of an electric field E within a solid satisfies the following differential equation:

$$m\frac{d\boldsymbol{v}}{dt} + \frac{2m}{\tau}\boldsymbol{v} = q\boldsymbol{E}$$

where τ is the relaxation time.

[6]

Hence show that the d.c. conductivity of a solid conductor may be written as

$$\sigma = \frac{Nq^2\tau}{2m}$$

where N is the number of carriers per unit volume.

[5]

An a.c. electric field $E = E_0 e^{i\omega t}$ is now applied to the conductor. Derive and sketch an expression for how the amplitude of the resulting a.c. current varies as a function of ω .

[3]

3. What is meant by an electric dipole moment p? Define the polarization P of a dielectric and discuss briefly its origins at an atomic level when an external electric field is present.

6

Explain qualitatively how and why the Maxwell equation in vacuum:

$$abla \cdot oldsymbol{E} = rac{
ho}{\epsilon_0}$$

is modified in a dielectric with relative permittivity ϵ_r .

[6]

Derive the boundary conditions for E-fields perpendicular to the boundary between two dielectrics with relative permittivities ϵ_{r1} and ϵ_{r2} . Derive a corresponding boundary condition for the parallel E-fields. Which of these boundary conditions would be affected by a uniform surface charge density on the boundary?

[5]

A small thin electrically neutral glass rod of length a, volume V and relative permittivity ϵ_r is placed with its centre on the x-axis at x=D where D>>a and with its length along the x-axis. If a charge Q is fixed at the origin, calculate any force or torque acting on the rod.

[3]

4. Show how Ampère's circuital law leads directly to the time independent equation:

$$rac{1}{\mu_0}
abla\wedgeoldsymbol{B}=oldsymbol{J}$$

[5]

The Maxwell equation:

$$rac{1}{\mu_0}
abla\wedgeoldsymbol{B}=\epsilon_0rac{\partialoldsymbol{E}}{\partial t}+oldsymbol{J}$$

implies that the term $\epsilon_0 \frac{\partial}{\partial t} \mathbf{E}$ has the properties of an electric current density and is called the "displacement current". By considering an imaginary surface which passes between the plates of a parallel plate capacitor and which closes on an imaginary loop around one of the wires to the capacitor, show that the displacement current is necessary to ensure a consistent treatment of the electric and magnetic fields in the vicinity of the capacitor while it is charging up.

[6]

Draw a sketch showing the electric and magnetic fields within the plates of the capacitor when it is being charged up by a continuous steady current. Label carefully the fields and their directions and indicate qualitatively how the fields vary with time and position. Ignore any edge effects.

[6]

Given that the vector $\frac{1}{\mu_0} \mathbf{E} \wedge \mathbf{B}$ gives the flux of energy, what do your diagrams tell you about the flow of energy and the distribution of the energy stored in the capacitor during charging and discharging?

[3]

5. Faraday's law of electromagnetic induction can be written as:

$$V = -\frac{d\Phi}{dt}$$

Define all the terms in this expression and explain the origin of the minus sign. [5] Show carefully that Faraday's law leads to the Maxwell equation

$$\nabla \wedge \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

[6]

A uniform magnetic field \boldsymbol{B} is set up in the z-direction where \boldsymbol{B} varies linearly with time t according to:

$$\boldsymbol{B} = \beta t \boldsymbol{k}$$

where β is a constant and k is the unit vector in the z-direction. By considering the emf generated in a circular loop of wire of radius R lying in the xy-plane, show that the electric field vector at any point (x, y, z) is given by:

$$\boldsymbol{E} = \frac{\beta}{2} \left(y \boldsymbol{i} - x \boldsymbol{j} \right)$$

[6]

Hence verify that the above Maxwell equation is satisfied in this case.

[3]

END