UNIVERSITY OF LONDON

BSc and MSci EXAMINATION 2006

For Internal Students of

Royal Holloway

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH2420D: ELECTROMAGNETISM

MT324: ELECTROMAGNETIC THEORY

Time Allowed: TWO hours

Answer **QUESTION ONE** and **TWO** other questions

No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Only CASIO fx85WA Calculators or CASIO fx85MS Calculators are permitted

PH2420D/49

© Royal Holloway and Bedford New College 2006

2005-06

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_0	=	$4\pi \times 10^{-7}$	$H m^{-1}$
Permittivity of vacuum	\mathcal{E}_0	=	8.85×10^{-12}	$F m^{-1}$
	$1/4\pi \varepsilon_0$	=	9.0×10^{9}	m F ⁻¹
Speed of light in vacuum	С	=	3.00×10^{8}	$m s^{-1}$
Elementary charge	е	=	1.60×10^{-19}	С
Electron (rest) mass	m _e	=	9.11 × 10 ⁻³¹	kg
Unified atomic mass constant	m _u	=	1.66×10^{-27}	kg
Proton rest mass	m _p	=	1.67×10^{-27}	kg
Neutron rest mass	m _n	=	1.67×10^{-27}	kg
Ratio of electronic charge to mass	$e/m_{\rm e}$	=	1.76×10^{11}	$C kg^{-1}$
Planck constant	h	=	6.63×10^{-34}	J s
	$\hbar = h/2\pi$	=	1.05×10^{-34}	Js
Boltzmann constant	k	=	1.38×10^{-23}	J K ⁻¹
Stefan-Boltzmann constant	σ	=	5.67×10^{-8}	$W m^{-2} K^{-4}$
Gas constant	R	=	8.31	J mol ⁻¹ K ⁻¹
Avogadro constant	$N_{\rm A}$	=	6.02×10^{23}	mol^{-1}
Gravitational constant	G	=	6.67×10^{-11}	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81	$m s^{-2}$
Volume of one mole of an ideal gas at STP		=	2.24×10^{-2}	m ³
One standard atmosphere	P_0	=	1.01×10^{5}	$N m^{-2}$

MATHEMATICAL CONSTANTS

 $e \simeq 2.718$ $\pi \simeq 3.142$ $\log_e 10 \simeq 2.303$

ANSWER ONLY FIVE sections of *Question One*.

You are advised not to spend more than 40 minutes answering Question One.

1.	(a)	State <i>Faraday's law of electromagnetic induction</i> . Write this as an equation in terms of the curl of E .		

- (b) How is the ampere defined? Show how electric currents may be standardised using the forces they produce. [4]
- (c) Sketch the *B*-*H* curve of a ferromagnetic material. How may this curve be measured? [4]
- (d) The magnetic vector potential **A** is related to the magnetic field through the integral relation

$$\iint_{\text{surface}} \mathbf{B} \cdot \mathbf{da} = \oint_{\substack{\text{perimeter} \\ \text{of surface}}} \mathbf{A} \cdot \mathbf{dl} \,.$$

Express this relation in differential form.

How does the magnetic flux penetrating an area depend on the value of **A** at the area's perimeter? [4]

- (e) Explain when the equation $\mathbf{E} = -\operatorname{grad} V$ is not valid. How is the equation repaired, to be true generally? [4]
- (f) State Kirchhoff's current and voltage laws. What physical principles do they embody? [4]

[2]

2. (a) Ampère's law may be written

$$\oint \mathbf{B} \cdot \mathbf{dl} = \mu_0 I \,.$$

Explain, in words, what this means.

(b) Show that Ampère's law may be expressed in terms of the curl of **B** as

$$\operatorname{curl} \mathbf{B} = \mu_0 \mathbf{J} \,.$$

- (c) Demonstrate that there is an inconsistency in Ampère's law when considering the space between a charging capacitor. [5]
- (d) Since the charge on a capacitor (in a vacuum) may be written as

$$Q = \varepsilon_0 A E$$

where E is the electric field and A is the area of the plates, show that the inconsistency may be removed through the introduction of a fictitious current *i* (the displacement current) given by

$$i = \varepsilon_0 A \frac{\partial E}{\partial t} \,. \tag{5}$$

(e) Show that including the effect of the displacement current, the curl of **B** may be written as

$$\operatorname{curl} \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}.$$
 [4]

- (f) Outline, briefly, how the introduction of the displacement current leads to the possibility of electromagnetic waves. [2]
- 3. (a) Define electric current density **J** and electrical conductivity σ . [2]
 - (b) By considering a cylinder of resistive material of length *L*, cross section *A* and resistance *R*, show that Ohm's law can be written $\mathbf{J} = \sigma \mathbf{E}$. [4]
 - (c) Describe a model by which the resistivity of conductors may be understood and give an expression for the conductivity in terms of the parameters of the model. [10]
 - (d) Explain how the conductivity of *anisotropic* media may be described in terms of a *tensor* conductivity. What is the significance of the principal [4]

[5]

axes of the conductivity tensor?

- 4. (a) What is an electric dipole? Explain the difference between permanent and induced electric dipoles. Give an example of each.
 - (b) An electric dipole is oriented along the x axis. It consists of a charge -Q located at x = -a/2 and a charge +Q located at x = a/2.

Show that the electric potential at a distance *x* along the *x* axis is given by

$$V(x) = \frac{Q}{4\pi\varepsilon_0} \left\{ \frac{1}{x - a/2} - \frac{1}{x + a/2} \right\}.$$
 [3]

(c) Show that for large distances $x \gg a$ the potential may be approximated by

$$V(x) = \frac{1}{4\pi\varepsilon_0} \frac{p}{x^2}$$

where p is the electric dipole moment.

- (d) Given that the electric field on the axis is in the x direction, use the previous result to obtain an expression for the electric field on the axis.
- (e) A positive charge +Q and a negative charge -Q are placed in an electric field *E*. The force on the charges, due to this field, is balanced by the electrostatic attraction of the charges. Show that the electric dipole moment of the assembly is given by

$$p = \frac{Q^{3/2}}{(4\pi\varepsilon_0 E)^{1/2}}.$$
 [3]

(f) Discuss how realistic this picture is for the induced electric polarisation of matter. [3]

~ /~

[3]

[3]

5.

A magnetic field wave propagating with wave vector \mathbf{k} and angular frequency ω may be described by

$$\mathbf{B}(\mathbf{r},t) = \mathbf{B}_0 e^{\mathbf{i}(\mathbf{k}\cdot\mathbf{r}-\omega t)}.$$

(a) By writing **B**, **k** and **r** in terms of their rectangular components, or otherwise, show that

$$\partial \mathbf{B}/\partial t = -i\omega\mathbf{B}, \quad \text{div } \mathbf{B} = i\mathbf{k}\cdot\mathbf{B} \text{ and } \text{curl } \mathbf{B} = i\mathbf{k}\times\mathbf{B}.$$
 [6]

(b) Use this result and the corresponding expressions for the electric field to show that for such wave-like fields the Maxwell equations in empty space:

div
$$\mathbf{E} = 0$$
 curl $\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
div $\mathbf{B} = 0$ curl $\mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$

may be expressed as

$$\mathbf{k} \cdot \mathbf{E} = 0 \qquad \mathbf{k} \times \mathbf{E} = \omega \mathbf{B}$$
$$\mathbf{k} \cdot \mathbf{B} = 0 \qquad \mathbf{k} \times \mathbf{B} = -\frac{1}{c^2} \omega \mathbf{E}.$$
[4]

- (c) Show that the electric field, the magnetic field and the direction of propagation are mutually perpendicular. [5]
- (d) The Poynting vector \mathbf{S} is defined (in free space) to be

$$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \, .$$

Show that **S** points along the propagation of the electromagnetic wave.

What physical property does the Poynting vector represent? [5]