UNIVERSITY OF LONDON

BSc and MSci EXAMINATION 2005

For Internal Students of

Royal Holloway

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH2420D: ELECTROMAGNETISM

PH2420D R: ELECTROMAGNETISM - PAPER FOR RESIT CANDIDATES

MT324: ELECTROMAGNETIC THEORY

Time Allowed: **TWO** hours

Answer **QUESTION ONE** and **TWO** other questions

No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Only CASIO fx85WA Calculators or CASIO fx85MS Calculators are permitted

PH2420D/46 © Royal Holloway and Bedford New College 2005

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_0	=	$4\pi \times 10^{-7}$	$H m^{-1}$
Permittivity of vacuum	\mathcal{E}_0	=	8.85×10^{-12}	$F m^{-1}$
	$1/4\pi\varepsilon_0$	=	9.0×10^{9}	$m F^{-1}$
Speed of light in vacuum	С	=	3.00×10^{8}	m s ⁻¹
Elementary charge	е	=	1.60×10^{-19}	С
Electron (rest) mass	m _e	=	9.11 × 10 ⁻³¹	kg
Unified atomic mass constant	m _u	=	1.66×10^{-27}	kg
Proton rest mass	m _p	=	1.67×10^{-27}	kg
Neutron rest mass	m _n	=	1.67×10^{-27}	kg
Ratio of electronic charge to mass	$e/m_{\rm e}$	=	$1.76 imes 10^{11}$	C kg ⁻¹
Planck constant	h	=	6.63×10^{-34}	Js
	$\hbar = h/2\pi$	=	1.05×10^{-34}	Js
Boltzmann constant	k	=	1.38×10^{-23}	J K ⁻¹
Stefan-Boltzmann constant	σ	=	5.67×10^{-8}	$W m^{-2} K^{-4}$
Gas constant	R	=	8.31	$J \text{ mol}^{-1} \text{ K}^{-1}$
Avogadro constant	$N_{\rm A}$	=	6.02×10^{23}	mol ⁻¹
Gravitational constant	G	=	6.67×10^{-11}	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81	$m s^{-2}$
Volume of one mole of an ideal gas at STP		=	2.24×10^{-2}	m ³
One standard atmosphere	P_0	=	1.01×10^{5}	$N m^{-2}$

MATHEMATICAL CONSTANTS

 $e \cong 2.718$ $\pi \cong 3.142$ $\log_e 10 \cong 2.303$

ANSWER ONLY FIVE sections of *Question One*.

You are advised not to spend more than 40 minutes answering Question One.

1.	(a)	Calculate the ratio of the electrostatic force to the gravitational force between a proton and an electron. How does this ratio depend on separation?	[4]
	(b)	Explain the meaning of the statement that an electric field is conservative. When is an electric field not conservative?	[4]
	(c)	Write down the expression for the force on a particle of charge q which is moving with velocity v through an electric field E and a magnetic field B . Hence show that if E , B and v are mutually perpendicular then it is possible for particles to move with a constant velocity in a straight line. What determines the magnitude of this velocity?	[4]
	(d)	Show carefully that, in the absence of any surface charge, the normal component of \mathbf{D} and the tangential component of \mathbf{E} are continuous at the boundary between free space and a dielectric material.	[4]
	(e)	Describe and explain qualitatively a possible mechanism for the finite electrical conductivity of metals.	[4]
	(f)	Assuming the Poisson equation $\nabla^2 V = -\rho/\varepsilon_0$, show that the electric field in a cavity within a conductor is zero.	[4]

2.

 $\mathbf{p} = 4\pi\varepsilon_0 a^3 \mathbf{E} \ . \tag{3}$

(g) Comment on the linearity of this expression. [2]

[5]

[5]

div
$$\mathbf{E} = \rho / \varepsilon_0$$
 curl $\mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$
div $\mathbf{B} = 0$ curl $\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

where the symbols have their usual meaning. Explain what is meant by the displacement current and identify it in the above equations.

- (b) By considering Ampere's law and the magnetic field in the vicinity of a charging capacitor, show that there is a need to introduce the displacement current.
- (c) Show that the displacement current is essential for the derivation of the propagation of electromagnetic waves by demonstrating that, in free space, **E** obeys the wave equation:

$$\nabla^2 \mathbf{E} - \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0.$$
 [5]

(d) A capacitor made from two parallel circular plates of radius a and separation d is charged by a current I. Calculate the magnetic field midway between the plates at a radial distance r (r << a) from the centre while the capacitor is being charged.

Useful information:

$$\operatorname{curl}\operatorname{curl}\mathbf{E} = \operatorname{grad}\operatorname{div}\mathbf{E} - \nabla^2\mathbf{E}.$$

[6]

4. The magnetic field at a point \mathbf{r} away from an element dl of a wire carrying a current *I* is given by

$$\mathbf{dB} = \frac{\mu_0 I}{4\pi} \frac{\mathbf{dI} \times \mathbf{r}}{r^3} \,.$$

- (a) What is the direction of **B** for a long straight wire? Sketch this. [4]
- (b) Using the relations at the end of this question, show that **B** may be written as the curl of the vector potential **A**, where

$$d\mathbf{A} = \frac{\mu_0 I}{4\pi} \frac{d\mathbf{l}}{r} \,. \tag{10}$$

- (c) What is the direction of **A** for a long straight wire? Sketch this. [2]
- (d) Find the magnetic field corresponding to the vector potential given by $\mathbf{A} = \frac{1}{2} (\mathbf{K} \times \mathbf{r})$ where **K** is a constant vector in the *x* direction and **r** is the position vector. [4]

Useful formulae:

$$\operatorname{grad}\left(\frac{1}{r}\right) = -\frac{\mathbf{r}}{r^3}$$

 $\operatorname{curl}(a \mathbf{b}) = a \operatorname{curl} \mathbf{b} - \mathbf{b} \times \operatorname{grad} a$

- 5. (a) Define the magnetisation \mathbf{M} and the magnetic susceptibility χ of a magnetic material and state a relationship between \mathbf{B} , \mathbf{H} and \mathbf{M} . [3]
 - (b) Discuss briefly what is meant by *diamagnetic*, *paramagnetic* and *ferromagnetic* as applied to the magnetic properties of materials.
 - (c) Sketch a *B*-*H* curve for a ferromagnetic material and hence explain why such materials can be used as permanent magnets. Why is the area enclosed by the curve of relevance to the design of transformers? [6]
 - (d) An iron compass needle of length 10 mm and cross section 1.0 mm² produces a *B* field of 0.01 T at the surface of its poles. Why is the magnetisation of the needle related to the *B* field by $\mathbf{M} = \mathbf{B}/\mu_0$? [2]
 - (e) The compass needle is placed at an angle of 30° to the earth's magnetic field of 4×10^{-5} T. Calculate the torque acting on the needle. [3]