UNIVERSITY OF LONDON

BSc and MSci EXAMINATION 2001

For Internal Students of

Royal Holloway

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH2420C: ELECTROMAGNETISM

Time Allowed: TWO hours

Answer QUESTION ONE and TWO other questions

No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Only CASIO fx85WA Calculators ARE permitted

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_0	=	$4\pi \times 10^{-7}$	$H m^{-1}$
Permittivity of vacuum	\mathcal{E}_0	=	8.85×10^{-12}	$F m^{-1}$
	$1/4\pi\varepsilon_0$	=	9.0×10^{9}	$m F^{-1}$
Speed of light in vacuum	С	=	3.00×10^{8}	$m s^{-1}$
Elementary charge	е	=	1.60×10^{-19}	С
Electron (rest) mass	me	=	9.11×10^{-31}	kg
Unified atomic mass constant	m _u	=	1.66×10^{-27}	kg
Proton rest mass	$m_{ m p}$	=	1.67×10^{-27}	kg
Neutron rest mass	m _n	=	1.67×10^{-27}	kg
Ratio of electronic charge to mass	$e/m_{\rm e}$	=	1.76×10^{11}	$C kg^{-1}$
Planck constant	h	=	6.63×10^{-34}	Js
	$\hbar = h/2\pi$	=	1.05×10^{-34}	J s
Boltzmann constant	k	=	1.38×10^{-23}	J K ⁻¹
Stefan-Boltzmann constant	σ	=	5.67×10^{-8}	$W m^{-2} K^{-4}$
Gas constant	R	=	8.31	J mol ⁻¹ K ⁻¹
Avogadro constant	$N_{ m A}$	=	6.02×10^{23}	mol^{-1}
Gravitational constant	G	=	6.67×10^{-11}	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81	$m s^{-2}$
Volume of one mole of an ideal gas at STP		=	2.24×10^{-2}	m ³
One standard atmosphere	P_0	=	1.01×10^{5}	$N m^{-2}$

MATHEMATICAL CONSTANTS

 $e \cong 2.718$ $\pi \cong 3.142$ $\log_e 10 \cong 2.303$

ANSWER ONLY FIVE sections of Question One.

You are advised not to spend more than 40 minutes answering Question One.

- 1. (a) A square of side a has a charge +Q placed at each corner. Calculate the electric potential V at the centre of the square. Where is the zero of electric potential? What is the electric field at the centre of the square? Explain your answer.
 - (b) Show that the tangential component of the electric field E and the normal [4] component of the field D are continuous at the boundary between a dielectric and free space.
 - (c) Describe and explain qualitatively the mechanism for the electrical [4] resistivity of metallic conductors.
 - (d) Show how the equations $\operatorname{curl} \mathbf{E} = -\partial \mathbf{B}/\partial t$ and $\operatorname{curl} \mathbf{B} = \mu_0 \varepsilon_0 \partial \mathbf{E}/\partial t$ (where [4] the symbols have their conventional meanings) lead to a wave equation for the electric field \mathbf{E} . What are these waves and what is their speed? [You may use the identity $\operatorname{curl} \operatorname{curl} = \operatorname{grad} \operatorname{div} - \nabla^2$]
 - (e) Write down the relation between electric field and electric current density [4] for a linear, *an*isotropic, homogeneous conductor. Explain, briefly, the meaning of the term *tensor*.
 - (f) From the relation $\mathbf{B} = \operatorname{curl} \mathbf{A}$, where the symbols have their conventional [4] meanings, deduce the relation between the flux contained within a closed loop and the line integral of \mathbf{A} round that loop.

[3]

2. (a) Ampère's law, $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I$ relates the line integral of the magnetic field **B** around a closed loop to the current *I* passing through the loop, in free space.

Show that this law may be expressed in terms of the curl of **B** as [3] curl $\mathbf{B} = \mu_0 \mathbf{J}$ where **J** is the current density.

- (b) Demonstrate that there is an inconsistency in Ampère's law when [5] considering the space between the plates of a capacitor.
- (c) The charge on a parallel plate capacitor (in a vacuum) may be written as

$$Q = \varepsilon_0 A E$$

where E is the electric field and A is the area of the plates. Use this relation to show that the inconsistency referred to in (b) above may be removed through the introduction of a fictitious current i given by

$$i = \varepsilon_0 A \frac{\partial E}{\partial t}.$$
 [5]

- (d) Why is *i* called the *displacement current*?
- (e) Show that including the effect of the displacement current, the curl of **B** may be written as

$$\operatorname{curl} \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}.$$
 [4]

- 3. (a) Write down the formula for the force exerted on a charged particle [3] moving in an electromagnetic field.
 - (b) With the help of the above expression show that the potential difference [6] developed across the ends of a straight conductor of vector length \mathbf{l} in a magnetic field \mathbf{B} and moving with velocity \mathbf{v} is given by $V = \mathbf{B} \cdot \mathbf{l} \times \mathbf{v}$.
 - (c) By use of a suitable diagram, show that this result leads to Faraday's law [7] of electromagnetic induction $V = -\partial \Phi / \partial t$.
 - (d) An aeroplane has a wingspan of 10m. What potential difference would be [4] generated between the wing tips when it is travelling at a speed of 100 ms^{-1} ? Assume the vertical component of the earth's magnetic field is 10^{-4} T. Discuss briefly whether this is measurable.

4. The magnetic field at a point \mathbf{r} away from an element dl of a wire carrying a current I is given by

$$d\mathbf{B} = \frac{\mu_0 I}{4\pi} \frac{d\mathbf{l} \times \mathbf{r}}{r^3}.$$

- (a) What is the direction of **B** for a long straight wire? Show this on a suitable [4] sketch.
- (b) Using the relations given below, show that **B** may be written as the curl of the vector potential **A**, where

$$d\mathbf{A} = \frac{\mu_0 I}{4\pi} \frac{d\mathbf{l}}{r} \,. \tag{7}$$

- (c) What is the direction of **A** for a long straight wire? Show this on a suitable [4] sketch.
- (d) A long straight wire carries a current of 1 ampère. What is the magnitude [5] of **B** and **A** a distance 1m away from the wire?

Useful relations:

$$\frac{\mathbf{r}}{r^3} = -\operatorname{grad} \frac{1}{r}$$
$$\operatorname{curl}(a\mathbf{b}) = a\operatorname{curl}\mathbf{b} - \mathbf{b} \times \operatorname{grad} a.$$

- 5. (a) Assuming the Poisson equation $\nabla^2 V = -\rho/\varepsilon_0$, show that the electric field [6] within a cavity in a conductor is zero.
 - (b) Explain how this result may be used as the basis for a test of the *inverse* [5] *square law* of the Coulomb force.
 - (c) Describe an experiment to verify the Coulomb inverse square law to a [6] very high accuracy. Pay particular attention to the methods whereby this high accuracy is obtained and errors minimised.
 - (d) Discuss a possible explanation *if* it were to be discovered that the inverse [3] square law were not quite correct.