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Abstract
We enumerate sets of n non-intersecting, t-step paths on the directed square
lattice which are excluded from the region below the surface y = 0 to which
they are initially attached. In particular we obtain a product formula for the
number of star configurations in which the paths have arbitrary fixed endpoints.
We also consider the ‘return’ polynomial, ŔW

t (y; κ) =
∑

m�0 ŕ
W
t (y;m)κm

where ŕWt (y;m) is the number of n-path configurations of watermelon type
having deviation y for which the path closest to the surface returns to the
surface m times. The ‘marked return’ polynomial is defined by úWt (y; κ1) ≡
ŔW
t (y; κ1 +1) =∑

m�0 ú
W
t (y;m)κm1 where úWt (y;m) is the number of marked

configurations having at least m returns, just m of which are marked. Both
ŕWt (y;m) and úWt (y;m) are expressed in terms of the numbers of paths ignoring
returns but introducing a suitably modified endpoint condition. This enables
úWt (y;m) to be written in product form for arbitrary y, but for ŕWt (y;m) this
can only be done in the case y = 0.

PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e

1. Introduction

The problem considered here is of interest in many different contexts, the simplest of which is
random walk theory. n random lock-step walkers in one dimension initially occupy the even
sites of a semi-infinite lattice and at each tick of a clock move, with equal probability, to one
of the adjacent sites subject to the condition that only one walker can be at a given site at any
time. Such walkers have been called vicious [1] and are unable to pass one another. In this
context our results relate to the probability that the walker closest to the boundary is to be
found on the boundary site.
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The spacetime trajectories of the random walkers are paths on a fully directed square
lattice which is semi-infinite in the space direction. Lattice path problems (as opposed to
their continuous analogues) are of considerable significance in enumerative and constructive
combinatorics [2, 3]. Here we show that exact recurrence relations and product formulae
may be obtained for the number of path configurations of given length and number of surface
contacts.

In polymer physics the paths represent networks of non-intersecting directed polymer
chains interacting with a surface via contact interactions. The partition function of this system
is a sum over network configurations and the Boltzmann weight for a given configuration has a
factor κ for each contact the closest chain makes with the surface. This is a non-trivial example
of a statistical mechanical system showing an adsorption phase transition which we have found
to be exactly solvable for finite size as well as in the thermodynamic limit. The transition takes
place at a critical value of κ = κc = 2. The scaling behaviour near this transition is expected
to be universal and to be found in real polymer networks. Two types of polymer network are
normally considered; stars and watermelons [1]. The scaling analysis for watermelons is the
subject of a separate paper [4] and here we present only the combinatorial arguments. The
partition function in the combinatorial context is known as the return polynomial since for
fixed length it is a polynomial in κ and contacts occur when the walk returns to the boundary.
For all boundary conditions considered here the first walker starts on the boundary and no κ
factor is associated with the initial contact.

For n = 1 and n = 2 exact expressions for the partition functions of fixed length chains,
with various standard end-point conditions, have been found for arbitrary κ [5]. The case
when all configurations are given equal weight (κ = 1), and contacts are not counted is
known as the non-interacting case and the bulk case is when no wall is present. The critical
exponents describing the asymptotic behaviour of the number of configurations as the chain
length approaches infinity have been found in both the non-interacting case [6] and the bulk
case [1] for arbitrary n.

In the bulk case the number of star configurations was subsequently expressed exactly
for arbitrary fixed length and both free and fixed endpoint conditions in the form of products
of ratios of factorials (‘product forms’) [7, 8]. The formula for fixed endpoints was proved
in [8] by evaluation of a Gessel–Viennot determinant [9, 10] and yields as a special case the
formula for watermelons with fixed endpoint deviation. The far more difficult proof of the
formula for stars with free endpoints was given in [11] and uses a mapping to Young tableaux
for which the appropriate sum of Schur functions was known. The numbers of watermelons
with free endpoints and n � 5 were proven to satisfy homogeneous linear recurrence relations
with polynomial coefficients using Zeilberger’s algorithm [12]. For n = 2 the relation is of
first order yielding a product form but the order increases at odd values of n and the partition
functions are generalized hypergeometric functions. For n= 3 the partition function is a Heun
function.

Product forms have deep combinatorial significance and as such are a major focus of
this paper. They can also be readily analysed for their asymptotic behaviour. In the non-
interacting surface case our product form (2.7) for fixed endpoint stars is reported in [13]
where an alternative proof using knowledge of symplectic characters is given. In the same
paper a product formula for stars with free end points is derived by relating it to a problem of
enumerating symplectic tableaux previously solved by Proctor [14].

The main result of this paper is a product form for the number of fixed endpoint
watermelons having n chains and m contacts (returns). This result is restricted to the case when
the endpoint is on the surface. However, for arbitrary deviation a product form is found for the
number of configurations with a given number of marked returns. By inclusion and exclusion,
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the coefficients in the return polynomial are then finite sums of product forms with binomial
weights. Alternatively, the numbers of configurations with a given number of marked returns
are the coefficients in the partition function when expanded in the variable κ1= κ − 1. These
results may have significance in symplectic tableaux enumerations.

The calculation is basically the evaluation of the Gessel–Viennot determinant for lattice
paths when a weight κ is attached to the surface sites. The elements of this n× n determinant
are single walk partition functions each of which involves κ . It is shown in section 3 that the
single walk functions satisfy a recurrence relation which is then used in section 4 to eliminate
the dependence on κ from the first n − 1 columns of the determinant. Using an expansion
formula, derived in section 3, for the elements of the last column yields a determinant which
is recognized as a special case of the number of stars with fixed end points and is hence of
product form.

The results in this paper follow previous work on single paths on the half plane directed
square lattice [5], as well as n non-intersecting paths [15, 16] and their connection with the
Bethe ansatz of statistical mechanics [17].

2. Primary definitions and summary of results

The lattice paths are restricted to the upper half plane, 
 = {(t, y)| t ∈ Z, y ∈ Z
+ and t + y

even}, where Z (resp.Z+) is the set of integers (resp. non-negative integers). A single such
path is a Ballot path defined below.

Definition 1 (Ballot and Dyck paths). A Ballot path of length t with deviation y is a sequence
of vertices (v0, v1, . . . , vt ), vi ∈ 
, with vi − vi−1 = (1, 1) (an up step) or (1, −1) (a down
step), i = 1 . . . t, v0 = (0, 0) and vt = (t, y). Denote the set of Ballot paths of length t, ending
at height y by { }t,y . Ballot paths with zero deviation are known as Dyck paths and the set
of Dyck paths of length 2d will be denoted by { }2d .

The number of Ballot paths is well known to be the Ballot number Bt,y:

|{ }t,y | ≡ Bt,y = (y + 1)t!(
1
2 (t + y) + 1

)
!
(

1
2 (t − y)

)
!
. (2.1)

These numbers are normally indexed by the numbers of down and up steps d = 1
2 (t − y) and

e = 1
2 (t + y) so

be,d ≡ Be+d,e−d = (e − d + 1)

e + 1

(
e + d

e

)
. (2.2)

The case y = 0 gives the number of Dyck paths

|{ }2d | ≡ Cd = B2d,0 = 1

d + 1

(
2d

d

)
. (2.3)

which is the dth Catalan number.

Definition 2 (Surface, contacts and returns). The line y = 0 will be called the surface. Any
vertex of a Ballot path in common with the surface, is called a contact. Contacts other than
the initial contact, which is always present, will be known as returns. The edge of the path
immediately to the left of a return will be known as its return edge.

In this paper we enumerate the number of configurations of n non-intersecting paths
having a given number, m, of returns.
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Figure 1. An example of (a) a star and (b) a watermelon.

Denote the set of Ballot paths of length t with exactly m returns by { }mt,y and the Ballot
path return polynomial by

ŔS
t (y, κ) ≡

∑
m�0

∣∣{ }mt,y
∣∣ κm. (2.4)

It has been shown that∣∣{ }mt,y
∣∣ = Bt−m−1,y+m−1 (2.5)

(see for example [5] equation (3.11), replacing m by m − 1 since in [5] m was the number of
contacts). In section 3 this is rederived from a simple bijection which we extend to n paths in
section 4.

In the case n > 1 we consider two special configurations of non-intersecting paths; ‘stars’
and ‘watermelons’ [1].

Definition 3 (Star). A star configuration of length t is a set of n non-intersecting paths (i.e. no
pair of paths has any vertices in common) on
 which are indexed by α ∈ {1, . . . , n}. The path
α begins at viα = (0, 2(α − 1)) and ends at vfα = (t, yα), see figure 1(a). The number of such
configurations whose lowest path makes m returns will be denoted by ŕ∗t (y1, y2, . . . , yn;m)
and the return polynomial is defined as

Ŕ∗t (y1, y2, . . . , yn; κ) =
∑
m�0

ŕ∗t (y1, y2, . . . , yn;m)κm. (2.6)

It is shown in section 4 that the total number of star configurations is given by the product
formula

Ŕ∗t (y1, y2, . . . , yn; 1) =
∏

1�α<β�n

[
1

2
(yβ − yα)

(
1

2
(yα + yβ) + 1

)]

×
n∏

α=1

[
(t + 2α − 2)!(yα + 1)(

1
2 (t + yα) + n

)
!
(

1
2 (t − yα) + n− 1)!

)
]
. (2.7)

Definition 4 (Watermelon). A watermelon configuration of length t and deviation y is a star
configuration with yα = y + 2(α − 1), see figure 1(b). The number of these watermelon
configurations having m returns will be denoted by ŕWt (y;m) and the return polynomial is

ŔW
t (y ; κ) =

∑
m�0

ŕWt (y;m)κm. (2.8)

From (2.7) we get the total number of watermelons with fixed deviation y.

ŔW
t (y; 1) =

∏
1�α<β�n

[(β − α)(y + α + β − 1)]
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×
n∏

α=1

[
(t + 2α − 2)!(y + 2α − 1)(

1
2 (t + y) + α + n− 1

)
!
(

1
2 (t − y)− α + n

)
!
)
]

=
n∏

α=1

[
(t + 2α − 2)!(α − 1)!(y + α)α(

1
2 (t + y) + α + n− 1

)
!
(

1
2 (t − y) + α − 1

)
!
)
]
. (2.9)

In a parallel work Krattenthaler et al [20] derived a product formula for the total numbers
of stars which do not go below the surface:

∑
0�y1<y2<···<yn

Ŕ∗t (y1, y2, . . . , yn; 1) =
n∏

α=1

(t+s)/2∏
β=1

(t−s)/2∏
γ=1

α + β + γ − 1

α + β + γ − 2

=
n∏

α=1

(α − 1)!(t + α − 1)!(
1
2 (t + s) + α − 1

)
!
(

1
2 (t − s) + α − 1

)
!

(2.10)

where s ≡ t (mod 2). They also gave asymptotic forms for this and the number of watermelons
with free end condition (i.e. no fixed deviation) for which no product form was found.

Definition 5 (Marked-return stars). A marked-return star is a star with some subset of its
returns marked.

In the case n = 1 we denote the set of all Ballot paths of length t ending at height y with
exactly m marked returns by { }mt,y .

Substituting κ = 1 + κ1 in a star return polynomial and expanding in powers of κ1 gives
2m terms for each star configuration having m returns, since a given return may either be
associated with a factor 1 or κ1. There is a clear bijection between the terms having m′ factors
of κ1 and stars having a subset of m′ returns marked. We therefore call the polynomial in κ1

a ‘marked return polynomial’ since it is the generating function for the enumeration of stars
with a given number of marked returns. For a single Ballot path the marked return polynomial
is

ÚS
t (y, κ1) =

∑
m�0

∣∣{ }mt,y
∣∣ κm1 . (2.11)

In the case of watermelons, which are the main subject of this paper,

ÚW
t (y; κ1) ≡ ŔW

t (y; 1 + κ1) =
∑
m′�0

úWt (y;m′)κm
′

1 (2.12)

where úWt (y;m′) is the number of watermelon configurations in which the path nearest to the
surface has m′ marked returns and is related to ŕWt (y;m) by

úWt (y;m′) =
∑
m�m′

(
m

m′

)
ŕWt (y;m) (2.13)

and conversely

ŕWt (y;m) =
∑
m′�m

(−1)m
′−m

(
m′

m

)
úWt (y;m′). (2.14)

One reason for introducing the marked return polynomial is that we have found a product
form for the coefficient úWt (y;m′) which is given in theorem 5. For the return polynomial
we have only found a product form for ŕWt (0;m), the number of watermelons attached to the
surface at both ends having m returns; see theorem 6. For y > 0, ŕWt (0;m) factorizes to some
extent but there is a residual polynomial in t, y and m of degree n− 1 in each of these variables.
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Figure 2. An example of a height 3 terrace showing the terrace rise and terrace vertex.

Figure 3. An example (a) of the use of terraces to uniquely factorize the Ballot path into
D-factors (b).

A second reason is that in case n = 1 it was shown in [5] that the number of Ballot paths
with deviation y and m marked returns is given by∣∣{ }mt,y

∣∣ = Bt,y+2m. (2.15)

Here we show that this follows from a simple bijection between Ballot paths with m marked
returns and the set of all Ballot paths of the same length which terminate at a distance 2m
further away from the surface (see section 3). The corresponding bijection in the case of
unmarked returns, which gave rise to (2.5), is between paths of different lengths.

3. Combinatorial enumeration of Ballot paths with fixed numbers of returns
and marked returns

Definition 6 (Terraces and terrace rises). A terrace of height h � 0 is a horizontal line at
height y = h. For a Ballot path with deviation y > h we call the rightmost intersection with
the terrace, the terrace vertex and the up step immediately to the right of the terrace vertex we
call the height h the terrace rise (see figure 2).

Definition 7 (Dyck factor). Consider a Ballot path of length 2d + y and height y and draw
terraces at heights 0, 1, 2, . . . , y−1. The y terrace rises partition the rest of the path into y +1
(possibly empty) sub-paths, the first of which is a Dyck path and the other y sub-paths are
Dyck paths relative to the terraces, see figure 3. We refer to each Dyck sub-path as a Dyck
factor or D-factor.

This factorization into D-factors gives the following well-known lemma [18] by summing
over the possible lengths of the sub-paths.

Lemma 1. The number of Ballot paths of length 2d + y ending at height y is given in terms of
a convolution of y + 1 Catalan numbers by

B2d+y,y ≡ |{ }2d+y,y | =
∑
d1�0

∑
d2�0

· · ·
′∑

dy+1�0

y+1∏
α=1

Cdα (3.1)

where the ′ on the last sum denotes the restriction
∑y+1

α=1 dα = d .
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Figure 4. A schematic illustration (a) of a Ballot path of length 2d + y (with m = 4 returns) and
height y= 3 and its bijection (b) to Ballot path of length 2d +y−m−1 ending at height y +m−1.

The following enumerations of Ballot paths with fixed numbers of returns and marked
returns may therefore also be expressed in terms of convolutions of Catalan numbers.

3.1. The number of Ballot paths with fixed deviation and a given number of returns

A bijection between Ballot paths with exactly m returns and Ballot paths which are m + 1
steps shorter but have final deviation increased by m− 1 units, illustrated in figure 4, gives the
following lemma. A similar construction will be used when we consider the n-path extension
later in the paper.

Lemma 2. The number of Ballot paths of length 2d + y ending at height y with exactly m
returns is equal to the total number of Ballot paths of length 2d + y − m − 1 and height
y + m− 1 and hence∣∣{ }m2d+y,y

∣∣ = B2d+y−m−1,y+m−1 . (3.2)

Proof (Bijection �κ ). The lemma is proved by a simple bijection, �κ : B↔ B′ where B is the
set of Ballot paths of length 2d + y and height y with exactly m returns, and B′ is the set of all
Ballot paths of length 2d + y −m− 1 and height y + m− 1.

First�κ : B→ B′: GivenB ∈ B contract (i.e. delete the edge and reconnect the path) each
of the m return edges, and contract the leftmost edge. Each of the m return edge contractions
increases the end height of the path by 1 and moves the end back one unit, whilst the contraction
of the first edge shortens the path by 1 further edge and decreases its height by 1, giving a path
in B′.

Second �κ : B ← B′: Given B ′ ∈ B′ draw m terraces at heights y = 0, 1, . . . ,m − 1.
Insert a down edge immediately before each of the m terrace rises and insert an up edge at the
initial vertex of the path. This results in a Ballot path m + 1 steps longer ending m− 1 units
lower. Each inserted edge (except the first) corresponds to a return edge of the resulting path
and no other return edges are created, thus we have a path in B. �

Remark 1. The number of Ballot paths of length 2d + y ending at height y with exactly m
returns is also in bijection to the number of Ballot paths of length 2d + y − m and height
y + m with no returns. This is observed by modifying figure 4 so that the leftmost edge is not
contracted/inserted.

3.2. The number of Ballot paths with fixed deviation and a given number of marked returns

We now give the combinatorial interpretation of (2.15) which is equivalent to our next lemma.
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Figure 5. (a) A schematic illustration of a Ballot path of length 2d + y with m = 2 (i.e. two of the
six returns marked) and (b) a re-factorization showing only the marked return edges which makes
it easier to see that the final path (in (d)) is a Ballot path. (c) The bijection to a Ballot path (d) of
length 2d + y ending at height y + 2m.

Lemma 3
({ }m2d+y,y

biject←→{ }2d+y,y+2m
)
. The number of Ballot paths of length 2d + y with

m marked returns ending at height y is equal to the number of unmarked Ballot paths of the
same length ending at height y + 2m:

∣∣{ }m2d+y,y

∣∣ = B2d+y,y+2m. (3.3)

Proof (Bijection �κ1 ). The required bijection, �κ1 , is defined as follows:
Rotate each return edge incident on a marked return counterclockwise by 90◦ (equivalent

to replacement by an up step). As illustrated in figure 5, this produces a Ballot path of the
same length, but ending at height y + 2m. Each rotated return edge becomes a terrace rise
since the vertices of the sub-path to the right of the return vertex map to vertices at least as
high as the mapped return vertex.

To go from a Ballot path of length 2d + y ending at height y + 2m to that ending at height
y, draw m terraces at odd heights, y = 1, 3, . . . , 2m − 1, then rotate each terrace rise 90◦

clockwise (equivalent to replacement by a down step). Each rotated terrace rise becomes a
return edge of the resulting Ballot path which should be marked to distinguish it from other
return edges present or created. �

4. Simplification of the Gessel–Viennot determinant for the watermelon return
and marked return polynomials

For n > 1 we take as our starting point the following theorem:

Theorem 1. [10]. Let Z(vi, vf) be a weighted sum over configurations of n non-intersecting
paths, in which path α starts at viα =

(
t iα, y

i
α

)
and ends at vfα =

(
t
f
α , y

f
α

)
. Suppose that the

weight attached to a given path is a product of weights associated with vertices and arcs visited
by the paths. If there is at least one non-intersecting configuration and all path configurations
connecting the initial vertices to any permutation of the terminal vertices (other than the
identity) have at least one intersection then
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Figure 6. An example of a star with initial vertices extended backwards.

Z(vi, vf) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z
(
vi1, v

f

1

)
Z

(
vi1, v

f

2

)
. . . Z

(
vi1, v

f
n

)
Z

(
vi2, v

f

1

)
Z

(
vi2, v

f

2

)
. . . Z

(
vi2, v

f
n

)
. . . .

. . . .

. . . .

Z
(
vin, v

f

1

)
Z

(
vin, v

f

2

)
. . . Z

(
vin, v

f
n

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.1)

where Z
(
viα, v

f

β

)
is the weighted sum over configurations of a single path starting at vertex viα

and ending at vertex vfβ .

In applying this theorem to the derivation of return (marked return) polynomials for stars
(and in particular watermelons) we extend the paths backwards by the least number of steps
required to reach the t-axis so that the initial vertex (0, 2(α− 1)) becomes viα = (−2(α−1), 0)
(see figure 6). We call the resulting configurations ‘grounded stars’. The operation may be
uniquely reversed so that the numbers of stars and grounded stars are equal and in what
follows we enumerate grounded stars (watermelons) having m returns (marked returns). The
individual paths of a grounded star are Ballot paths for which the return (marked return)
polynomials are known from the previous section. In the case of the return (marked return)
polynomials, ŔW

t (y; κ)
(
ÚW
t (y; κ1)

)
is determined by expressing Z

(
viα, v

f

β

)
in terms of the

single path polynomials ŔS
t (y; κ)

(
ÚS
t (y; κ1)

)
.

For marked return polynomials we use a recurrence relation relating elements in adjacent
columns in order to show that it is possible to set κ1 = 0 (or κ = 1) in all but the last column
without changing the value of the determinant. This enables the number of watermelons with
a given number of marked returns to be expressed in terms of the total number of stars which
is given by (2.7).

For return polynomials the situation is more complicated. First, the corresponding
recurrence relation relates the polynomials for Ballot paths ending at (t, y) to those for paths
ending at (t − 1, y + 1). To obtain the formula for watermelon polynomials it is therefore
necessary to further extend the paths forward by the least number of steps to reach the line L
through (t, y + 2n− 2) having slope−1 ( see figure 7(a)). We call the resulting configurations
‘extended grounded watermelons’. Second, the resulting determinant has κ = 0 in all but the
last column and the number of watermelons with a given number of returns is related to the
the total number of n-path configurations with no returns that end on L and are therefore not
stars.



10772 R Brak and J W Essam

Figure 7. (a) An example of a watermelon with m= 4 returns (black dots) with the initial vertices
extended south-west backwards and final vertices extended in the north-east direction to the slope
−1 line. (b) A combinatorial proof shows that the configurations in (a) are equinumerous with
watermelons whose uppermost path ends m higher up the slope−1 line and the lowest path has no
returns.

In addition to the derivation using recurrence relations, the simplified determinants are
also obtained by combinatorial methods. The starting point for these methods is the expansion
of the Gessel–Viennot determinant

Z(vi, vf) =
∑
σ∈Pn

εσ

n∏
β=1

Z
(
viσβ

, v
f

β

)
(4.2)

where Pn is the set of permutations of {1, 2, . . . , n} and σβ is the image of β under the
permutation σ. If

Z
(
viσβ

, v
f

β

)
=

∑
mβ�0

zmβ

(
viσβ

, v
f

β

)
xmβ (4.3)

then

[xm]Z(vi, vf) =
∑
σ∈Pn

εσ
∑

mn∈Km
n

n∏
β=1

zmβ

(
viσβ

, v
f

β

)
(4.4)

where K
m
n is the set of compositions of m into exactly n parts, i.e. the set of n-tuples,

mn = (m1,m2, . . . ,mn), mα � 0, such that
∑n

α=1 mα = m. Given k � n − 1, we may
partition K

m
n as K

m
n = Km

n,k ∪ K̄m
n,k where Km

n,k is the set of compositions in which mβ > 0
for at least one β ∈ {1, 2, . . . , k}. Note, Km

n,k ∩ K̄m
n,k = φ. In the next two sections it will be

shown that ifZ
(
viα, v

f

β

)
is a Ballot path return (marked return) polynomial and x = κ (x = κ1)

then with the above boundary conditions the sum over mn ∈ Km
n,k is zero. This is achieved

by constructing a bijection which connects configurations corresponding to permutations of
opposite parity resulting in cancellation. Hence, the sum over compositions in (4.4) may be
restricted to K̄m

n,k which is equivalent to setting x = 0 in the first k columns of the Gessel–
Viennot determinant.

4.1. Return polynomial for watermelon configurations attached to a surface with fixed
endpoint deviation

The return polynomial for watermelons with fixed deviation y is equal to that for extended
grounded watermelons, for which path α starts at viα = (−2(α − 1), 0) and ends at
v
f
α = (t + n− α, y + n + α − 2) on the above line L. Thus theorem 1 gives

ŔW
t (y, κ) = det(ŔS

t+n+2α−β−2(y + n + β − 2; κ))α,β=1···n. (4.5)
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The following theorem shows that for 1 � k � n − 1 we may set κ = 0 in the first k
columns of (4.5) without changing the value of the determinant.

Theorem 2. For any k such that 1 � k � n− 1 we have

ŔS
t (y, κ) = det(Mαβ(k))α,β=1...n (4.6)

where

Mαβ(k) =
{
ŔS
t+n+2α−β−2(y + n + β − 2, 0) for β � k

ŔS
t+n+2α−β−2(y + n + β − 2, κ) for β > k

(4.7)

and y � 0. In particular when k = n − 1

ŔW
t (y, κ) =

∣∣∣∣∣∣∣∣∣∣

ŔS
t+n−1(y + n− 1, 0) . . . ŔS

t+1(y + 2n− 3, 0) ŔS
t (y + 2(n− 1), κ)

ŔS
t+n+1(y + n− 1, 0) . . . ŔS

t+3(y + 2n− 3, 0) ŔS
t+2(y + 2(n− 1), κ)

...
...

...
...

ŔS
t+3(n−1)(y + n−1, 0) . . . ŔS

t+2n−1(y + 2n−3, 0) ŔS
t+2(n−1)(y + 2(n−1), κ)

∣∣∣∣∣∣∣∣∣∣
.

(4.8)

Algebraic proof. We show that while k< n− 1, increasing k leaves the determinant unchanged
and the result follows by induction since it is true for k = 0. Combining (2.4) and (2.5) gives

ŔS
t (y; κ) =

∑
m�0

Bt−m−1,y+m−1κ
m (4.9)

separating off the first term gives the recurrence relation

ŔS
t (y; κ) = Bt−1,y−1 + κŔS

t−1(y + 1; κ) (4.10)

and applying this to column k + 1 of determinant (4.5)

Ŕt+n+2α−k−3(y + n + k − 1, κ) = Bt+n+2α−k−4,y+n+k−2 + κŔS
t+n+2α−k−4(y + n + k, κ). (4.11)

Hence det(M(k)) is the sum of two determinants the first of which is det(M(k + 1))(
sinceBt−1,y−1 = ŔS

t (y; 0)
)

and the second evaluates to zero since it has two proportional
columns

(
ŔS
t+n+2α−k−4(y + n + k, κ) is column k + 2

)
.

Combinatorial proof. Let { }m
viα,v

f

β

be the set of all paths on 
 from vertex viα to vertex vfβ
with exactly m returns. Further define the n-path, A to be the n-tuple of paths (A1, A2, . . . , An),
Ai ∈ { }m

viα,v
f
β

and the sets

*±k =
{
(σ,A)|σ ∈ P±n ,mn ∈ Km

n,k, Aβ ∈ { }m
viσβ

,v
f
β

}
and *k = *+

k ∪*−k (4.12)

where P±n is the set of even/odd permutations of {1, 2, . . . , n}.
If we use (4.4) with Z(vi, vf) = ŔS

t (y, κ) and zmβ

(
viσβ

,v
f

β

) = ∣∣{ }mβ

viσβ
,v
f

β

∣∣ then in the

theorem, (4.6) is equivalent to

[κm]ŔW
t (y, κ) =

∑
σ∈Pn

εσ
∑

mn∈K̄m
n,k

n∏
β=1

∣∣∣∣{ }mβ

viσβ
,v
f
β

∣∣∣∣ (4.13)
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Figure 8. Bijection for n-path return polynomials (see proof of theorem 2).

(since in (4.7) with β � k, [κmβ ]ŔS
t (y; κ) = 0 for mβ > 0). The left-hand side of (4.6) is

given by (4.5) and using (4.4) gives the latter as

∑
σ∈Pn

εσ
∑

mn∈Km
n

n∏
β=1

∣∣∣∣{ }mβ

viσβ
,v
f

β

∣∣∣∣ = ∑
σ∈Pn

εσ
∑

mn∈Km
n,k

n∏
β=1

∣∣∣∣{ }mβ

viσβ
,v
f

β

∣∣∣∣
+

∑
σ∈Pn

εσ
∑

mn∈K̄m
n,k

n∏
β=1

∣∣∣∣{ }mβ

viσβ
,v
f
β

∣∣∣∣ . (4.14)

Thus, (4.13) is proven (and hence the theorem), if

∑
σ∈Pn

εσ
∑

mn∈Km
n,k

n∏
β=1

∣∣∣∣{ }mβ

viσβ
,v
f

β

∣∣∣∣ = 0. (4.15)

Using the sets (4.12) shows that the left-hand side of (4.15) is equal to |*+
k | − |*−k |. Thus if

we show that |*+
k | = |*−k | for k < n, then theorem 2 is proven. We do this using a bijection

+κ :*+
k ↔ *−k , k < n.

Definition of +κ : If *k = φ, then the result is trivial, thus consider the case
*k �= φ ⇒ ∃mα, 1 � α � k s.t. mα > 0 ⇒ ∃αmin = min{α |mα > 0} � κ < n ⇒ ∃
rightmost return edge, E2 ∈ Aαmin (see figure 8). Since αmin < n ⇒ ∃Aαmin+1, v

f

αmin+1 has
height coordinate, yαmin+1 � y + 1 and sinceAαmin starts on the surface and ends at y > 0, ⇒ ∃
a terrace rise edge E1 ∈ Aαmin+1 of height 0. The pair (σ′,A′) = +κ((σ,A)) is constructed by

• A′α = Aα, for α �= αmin, αmin + 1,
• A′αmin

is the path Aαmin+1 but with a down edge E4 inserted immediately after the edge E1

(this adds a return to the path),
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• A′αmin+1 is the path Aαmin but with the edge E2 contracted (this removes a return from the
path and creates a terrace rise E3),
• σ ′α = σα , α �= αmin, αmin + 1, σ ′αmin

= σαmin+1 and σ ′αmin+1 = σαmin

(Note, this is a transposition hence εσ′ = −εσ)

Since a return is removed from one path (Aαmin) and added to another (Aαmin+1) (i.e.
m′n = (0, . . . , 0,m′αmin

,m′αmin+1, . . .) with m′αmin
= mαmin+1 + 1 and m′αmin+1 = mαmin − 1)

thus the total number of returns is unchanged. Also, since A′αmin
terminates at vfαmin+1, A′αmin+1

terminates at vfαmin and m′αmin
> 0 ⇒ (σ′,A′) ∈ *k. Also, if (σ,A) ∈ *±k then (σ′,A′) ∈ *∓k

(since εσ′ = −εσ).
Is +2

κ = 1? Let (σ′′,A′′) = +κ((σ
′,A′)). Since m′α = 0 for α < αmin and

m′αmin
= mαmin+1 + 1 > 0 ⇒ α′min = αmin. The rightmost return edge, E4 on A′α′min

,
is immediately after E1 and hence A′′αmin+1 = Aαmin+1. The height 0 terrace rise edge on
A′αmin+1 is E3 and hence A′′αmin

= Aαmin . Furthermore, since α′min = αmin ⇒ σ′′ = σ, thus
(σ′′,A′′) = (σ,A) and hence+2

κ = 1. Thus +κ is a bijection and hence |*+
k | = |*−k |, k < n.

�

The case k = n − 1 has an alternative combinatorial interpretation which arises by using
the bijection of lemma 2. The coefficient, [κm]ŔW

t (y, κ) may be found using the theorem by
expanding the elements of the last column of (4.8) using lemma 2 and (4.9). Thus the element
on row α becomes [κm]ŔS

t+2(α−1)(y + 2(n− 1), κ) = ŔS
t+2(α−1)−m(y + 2(n− 1) +m, 0). Using

the Gessel–Viennot theorem on the resulting determinant, and since (4.6) is independent of k,
gives the following corollary.

Corollary 1. The non-intersecting n-paths starting at vi = (
vi1, . . . , v

i
n

)
with viα =

(−2(α − 1), 0) and ending at vf = (
v
f

1 , v
f

2 , . . . , v
f
n

)
with vfα = (t + n − α, y + n + α − 2)

(i.e. extended grounded watermelons) where the path adjacent to the surface has exactly m
returns, are equinumerous with the non-intersecting n-paths with no returns, starting at vi

and ending at
(
v
f

1 , . . . , v
f

n−1, v
′f
n

)
, where v′fn = (t −m− 1, y + 2(n− 1) +m− 1). Both are

equal in number to watermelons having deviation y and m returns (see figure 9).

It would be interesting to find a bijection between these two sets.

4.2. Marked-return polynomial for watermelon configurations attached to a surface with
fixed endpoint deviation

The marked return polynomial for watermelons with fixed deviation y is equal to that
for grounded watermelons for which path α starts at viα = (−2(α − 1), 0) and ends at
v
f
α = (t, y + 2(α − 1)). Thus theorem 1 gives

ÚW
t (y, κ1) = det

(
ÚS
t+2α−2(y + 2β − 2; κ1)

)
α,β=1···n (4.16)

The following theorem shows that for 1 � k � n − 1 we may set κ1= 0 in the first k columns
of (4.16) without changing the value of the determinant.

Theorem 3. For any k such that 1 � k � n − 1 we have

ÚW
t (y, κ1) = det(M(k)) (4.17)

where M(k) is the matrix whose α − βth element is

Mαβ(k) =
{
ÚS
t+2(α−1)(y + 2(β − 1), 0) for β � k

ÚS
t+2(α−1)(y + 2(β − 1), κ1) for β > k

(4.18)
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Figure 9. (a) An example of a watermelon with m marked returns (solid circles) with the initial
vertices extended backwards. (b) A combinatorial proof shows that the configurations in (a) are
equinumerous with watermelons with no marked returns and whose uppermost paths end 2m higher
than in (a).

and y � 0. In particular when k = n − 1

ÚW
t (y, κ1) =

∣∣∣∣∣∣∣∣∣∣∣∣

ÚS
t (y, 0) . . . ÚS

t (y + 2(n− 2), 0) ÚS
t (y + 2(n− 1), κ1)

ÚS
t+2(y, 0) . . . ÚS

t+2(y + 2(n− 2), 0) ÚS
t+2(y + 2(n− 1), κ1)

ÚS
t+4(y, 0) . . . ÚS

t+4(y + 2(n− 2), 0) ÚS
t+4(y + 2(n− 1), κ1)

...
...

...
...

ÚS
t+2(n−1)(y, 0) . . . ÚS

t+2(n−2)(y + 2(n− 2), 0) ÚS
t+2(n−1)(y + 2(n− 1), κ1)

∣∣∣∣∣∣∣∣∣∣∣∣
(4.19)

Algebraic proof. We show that while k< n− 1, increasing k leaves the determinant unchanged
and the result follows by induction since it is true for k = 0.

Combining (2.11) and (2.15)

ÚS
t (y, κ1) =

∑
m�0

Bt,y+2m κ
m
1 (4.20)

from which we obtain the recurrence relation

ÚS
t (y; κ1) = Bt,y + κ1Ú

S
t (y + 2; κ1) (4.21)

and applying this to column k + 1 of (4.18)

ÚS
t+2(α−1)(y + 2k, κ1) = Bt+2(α−1),y+2k + κ1Ú

S
t+2(α−1)(y + 2(k + 1), κ1). (4.22)

Hence det (M(k)) is the sum of two determinants. The first is det (M(k + 1) since
Bt+2(α−1),y+2k = ÚS

t+2(α−1)(y + 2k, 0) and the second evaluates to zero since ÚS
t+2(α−1)(y +

2(k + 1), κ1) is column k + 2.

Combinatorial proof. This proof follows closely that of theorem 2. Apart from the bijection
only the following changes are required. vfβ becomes (t, y + 2β), R becomes U and ‘return’
becomes ‘marked return’. The required bijection is defined as follows.

Definition of +κ1: If *k = φ, then the theorem follows directly, thus consider the case
*k �= φ ⇒ ∃mα, 1 � α � k s.t. mα > 0 ⇒ ∃αmin = min{α |mα > 0} � k < n ⇒ ∃
rightmost return edge, E2 ∈ Aαmin (see figure 10). Since αmin < n ⇒ ∃Aαmin+1 and
v
f

αmin+1 = (t, yα) with yα � y + 2 ⇒ ∃ a terrace rise E1 ∈ Aαmin+1 of height 1. The
pair (σ′,A′) = +κ1((σ,A)) is constructed by
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Figure 10. Bijection for κ1 coefficients.

• A′α = Aα, for α �= αmin, αmin + 1,
• A′αmin

is the path Aαmin+1 but with the edge E1 replaced by a down edge E4, and a mark is
inserted on the right adjacent vertex of E4,
• A′αmin+1 is the path Aαmin but with the edge E2 replaced by an up edge E3, and the rightmost

mark on Aαmin removed,
• σ ′α = σα , α �= αmin, αmin + 1, σ ′αmin

= σαmin+1 and σ ′αmin+1 = σαmin

(Note, this is a transposition hence εσ′ = −εσ .)

Since a mark is removed from one path and added to another (i.e. m′n = (0, . . . , 0,
m′αmin

,m′αmin+1, . . .) withm′αmin
= mαmin+1+1 andm′αmin+1 = mαmin−1) the total number of marks is

unchanged. Also, since A′αmin
terminates at vfαmin+1, A′αmin+1 terminates at vfαmin and m′αmin

> 0,
⇒ (σ′,A′) ∈ *k. Since εσ′ = −εσ ⇒ , if (σ,A) ∈ *±k , then (σ′,A′) ∈ *∓k .

Is +2
κ1
= 1? Let (σ′′,A′′) = +κ1((σ

′,A′)). Since m′α = 0 for α < αmin and
m′αmin

= mαmin+1 + 1 > 0 ⇒ α′min = αmin. The rightmost mark on A′α′min
is adjacent to

E4 and hence A′′αmin+1 = Aαmin+1. The height 1 terrace rise edge on A′αmin+1 is E3 and hence
A′′αmin

= Aαmin . Furthermore, since α′min = αmin ⇒ σ′′ = σ, thus (σ′′,A′′) = (σ,A) and
hence +2

κ1
= 1 �[

κm1
]
ÚW
t (y, κ1) may be found using the theorem by expanding the elements of the

last column of (4.19) using lemma 3 and (4.20). Thus the element on row α becomes[
κm1

]
Û

S
t+2(α−1)(y + 2(n−1), κ1) = ÛS

t+2(α−1)(y + 2(n−1)+ 2m, 0). Using the Gessel–Viennot
theorem on the resulting determinant gives the following corollary.

Corollary 2. The non-intersecting n-paths starting at vi = (
vi1, . . . , v

i
n

)
with viα =

(−2(α − 1), 0) and ending at
(
v
f

1 , v
f

2 , . . . , v
f
n

)
with vfα = (t, y + 2(α − 1)) (i.e. grounded

watermelons), where the path adjacent to the surface has m marked returns, are equinumerous
with the the non-intersecting n-paths with no marked returns, starting at vi and ending at(
v
f

1 , . . . , v
f

n−1, v
′f
n

)
, where v′fn = (t, y + 2(n − 1) + 2m). Both are equal in number to

watermelons with deviation y and m marked returns.

It would be interesting to find a bijection between these two sets.
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4.3. Recurrence relations

In order to make the n dependence explicit let Ŕ(n)
t (y, κ1) ≡ ŔW

t (y, κ1). Expanding the
determinant (4.8) using Dodgson’s condensation formula [19] gives the recurrence relation

Ŕ
(n−2)
t+3 (y + 3; 0)Ŕ(n)

t (y; κ) = Ŕ(n−1)
t+1 (y + 1; 0)Ŕ(n−1)

t+2 (y + 2; κ)
− Ŕ(n−1)

t+3 (y + 1; 0)Ŕ(n−1)
t (y + 2; κ) (4.23)

and similarly expanding (4.19)

Ú
(n−2)
t+2 (y + 2; 0)Ú (n)

t (y; κ1)= Ú (n−1)
t (y; 0)Ú (n−1)

t+2 (y + 2; κ1)− Ú (n−1)
t+2 (y; 0)Ú (n−1)

t (y + 2; κ1).

(4.24)

The following further recurrence relation will be required in proving theorem 6 which
gives the product form for watermelons with zero deviation:

Ŕ
(n−2)
2d+4 (0; 1)Ŕ(n)

2d (0; κ) = κ−2
[
Ŕ
(n−1)
2d (0; 1)Ŕ(n−1)

2d+4 (0; κ)− Ŕ(n−1)
2d+2 (0; 1)Ŕ(n−1)

2d+2 (0; κ)
]
.

(4.25)

Proof. Watermelons with zero deviation can be grounded at both ends by extending each path
in both the backward and forward directions by the least number of steps required to reach the
t-axis. Again this operation is reversible and so we may count doubly grounded watermelons
instead of watermelons. The paths which occur in the Gessel–Viennot theorem are then Dyck
paths and path α begins at (−2(α − 1), 0) and ends at (t + 2(α − 1), 0). Also substituting
the appropriate Dyck path return polynomials into theorem 1 will give the watermelon return
polynomial multiplied by a factor κn−1 arising from the additional returns introduced by the
terminal grounding. Thus

Ŕ
(n)

2d (0, κ) = κ−(n−1) det
(
ŔS

2(d+α+β−2)(0; κ)
)
α,β=1···n (4.26)

The proof now follows closely that of theorem 2 and we give only a brief discussion.
Using the recurrence relation

κ2ŔS
2d(0; κ) = κ2ŔS

2d(0; 1) + (κ − 1)ŔS
2d+2(0; κ) (4.27)

which was given in [5] equation (3.29), shows that we may set κ = 1 in the first n − 1
columns of the determinant (4.26) without changing its value. The recurrence relation follows
by applying Dodgson’s formula [19] to the resulting determinant. �

5. Factorization of determinants and product forms

5.1. Product form for the number of stars attached to a surface with fixed endpoint deviations

Applying theorem 1 to the calculation of the number of grounded stars gives the following
formula for the return polynomial of stars of length t where path α has fixed deviation yα.

Ŕ∗t (y1, y2, . . . , yn; κ) =

∣∣∣∣∣∣∣∣∣∣∣

ŔS
t (y1; κ) ŔS

t (y2; κ) . . . ŔS
t (yn; κ)

ŔS
t+2(y1; κ) ŔS

t+2(y2; κ) . . . ŔS
t+2(yn; κ)

ŔS
t+4(y1; κ) ŔS

t+4(y2; κ) . . . ŔS
t+4(yn; κ)

. . . . . . . . . . . .

ŔS
t+2(n−1)(y1; κ) ŔS

t+2(n−1)(y2; κ) . . . ŔS
t+2(n−1)(yn; κ)

∣∣∣∣∣∣∣∣∣∣∣
(5.1)

where ŔS
t (y; κ) ≡ P { }t,y(κ) is the Ballot path return polynomial for a single path.

We evaluate the determinant for κ = 1 which gives the total number of star configurations.
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Theorem 4. The number of non-intersecting star configurations of n paths in which path α
starts at (0, 2(α − 1)) and ends at (t, yα) steps without crossing the wall y = 0 is given by the
product formula

Ŕ∗t (y1, y2, . . . , yn; 1) =
∏

1�α<β�n

[
1

2

(
yβ − yα

) (
1

2

(
yα + yβ

)
+ 1

)]

×
n∏

α=1

[
(t + 2α − 2)!(yα + 1)(

1
2 (t + yα) + n

)
!
(

1
2 (t − yα) + n− 1

)
!)

]
. (5.2)

Proof. With κ = 1 and dβ = 1
2 (t − yβ), the α − β element of the determinant is the Ballot

number

Bt+2α−2,yβ =
(yβ + 1)(t + 2α − 2)!

(dβ + α − 1)!(t − dβ + α)!
(5.3)

and removing common factors from (5.1) gives

Ŕ∗t (y1, y2, . . . , yn; 1) = Dn

n∏
α=1

(t + 2α − 2)!(yα + 1)

(dα + n− 1)!(t − dα + n)!
(5.4)

where Dn is the determinant of the n by n matrix having α − β element (dβ + α)n−α(t − dβ +
α + 1)n−α. The determinant is a polynomial of degree 1

2n(n − 1) in t and degree n − 1 in dβ
which for α �= β vanishes when dβ = dα or dβ = t − dα + 1 and hence by comparing degrees

Dn =
∏

1�α<β�n

(dα − dβ)(t − dα − dβ + 1). (5.5)

�

5.2. Product form for the number of watermelons with exactly m marked returns

Using corollary 2 the number of watermelon configurations with deviation y and m marked
returns is given by

úWt (y,m) = Ŕ∗t (y, y + 2, . . . , y + 2(n− 2), y + 2(n− 1) + 2m; 1) (5.6)

which together with theorem 4 gives the following product formula.

Theorem 5. The number of non-intersecting n-path configurations starting at vi =(
vi1, . . . , v

i
n

)
with viα = (−2(α − 1), 0) and ending at

(
v
f

1 , v
f

2 , . . . , v
f
n

)
with v

f
α =

(t, y + 2(α − 1)) (i.e. grounded watermelons), where the path adjacent to the surface has
exactly m marked returns, is given by

úWt (y,m) = ŔW
t (y; 1)f (n)t (y,m) (5.7)

where

f
(n)
t (y,m) =

(
n +m− 1
m

)
(y + 2n + 2m− 1)(y + n +m)n−1

(
1
2 (t − y)−m + 1

)
m

(y + n)n
(

1
2 (t + y) + 2n

)
m

(5.8)

and ŔW
t (y; 1) is the product form for the total number of watermelons with deviation y given

by (2.9).
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5.3. The number of watermelons with exactly m returns

The following result follows from corollary 1 or by substitution of (4.9) into (4.8).

Corollary 3. The number of n-path watermelon configurations with exactly m returns and
fixed deviation y is

ŕWt (y,m) = det(Bt−m′+n+2α−β−3,y+m′+n+β−3)α,β=1···n (5.9)

with

m′ =
{

0 for β < n

m for β = n. (5.10)

Now

Bt−m′+n+2α−β−3,y+m′+n+β−3 = (y + m′ + n + β − 2)(t −m′ + n + 2α − β − 3)!

(e + n + α − 2)!(d −m′ + α − β)! . (5.11)

Removing common factors from rows and columns reduces the determinant (5.9) to one with
polynomial elements

ŕWt (y,m) = D(n)
t (y,m)

(y +m + 2n− 2)(t −m− 1)!

(e + 2n− 2)!(d −m)!
n−1∏
α=1

(y + n + α − 2)(t + 2α − 2)!

(d + α)!(e + n + α − 2)!

(5.12)

where D(n)
t (y,m) = detA with

Ai,j =



(d + i − j + 1)j−1(t + 2i − 1)n−j−1 i, j < n

(d + 1)i−1(d −m− n + i + 1)n−i(t −m)2i−2(t + 2i − 1)2n−2i−1 i < n, j = n
(d + n− j + 1)j−1(t + 2n− 2)n−j i = n, j < n

(d + 1)n−1(t −m)2n−2 i = n, j = n.
(5.13)

When n= 1, detA= 1 in agreement with lemma 2. Evaluating the determinant for n= 2 and
n = 3 gives

D
(2)
t (y,m) = ((d + 1)m + y(t + 1))(m + 1) (5.14)

and

D
(3)
t (x,m) = ((d + 1)(d + 2)m(m + 3) + 2xm(d + 1)(t + 3) + x(x + 2)(t + 1)(t + 3))

× (y + 1)(m + 1)(m + 2). (5.15)

On further evaluation for increasing values of n it becomes clear thatD(2)
t (y,m) is the product

of the following simple factors and an ‘ugly’ polynomial [20] in the variables t, y and m of
degree n − 1 in each of the variables:
for n even

(m + 1)n−1

n/2−1∏
i=1

(y + 2i − 1)n−1 (5.16)

and for n odd

(m + 1)n−1

(n−1)/2∏
i=1

(y + 2i − 1)n. (5.17)

When y = 0 the ugly polynomial factorizes to give the following theorem.
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Theorem 6. The number of watermelons of length 2d attached to the surface at both ends (i.e.
with zero deviation) and having exactly m returns is given by

ŕ
(n)

2d (0;m) ≡ ŕW2d(0,m) =
(m)2n−1(2d −m− 1)!

∏n−2
i=0 ((2i + 1)!(2d + 2i)!)

(d −m)! ∏2n−2
i=0 (d + i)!

. (5.18)

Proof. Using (2.9) with y = 0 the recurrence relation (4.25) may be written as

Ŕ
(n)

2d (0; κ) = κ−2 (d + 2)d+1

(2n− 2)d+1

[
(d + 1)2n−2

(2d + 1)2n−2
Ŕ
(n−1)
2d+4 (0; κ)− Ŕ(n−1)

2d+2 (0; κ)
]

(5.19)

and equating coefficients

ŕ
(n)
2d (0;m) =

(d + 2)d+1

(2n− 2)d+1

[
(d + 1)2n−2

(2d + 1)2n−2
ŕ
(n−1)
2d+4 (0;m + 2)− ŕ (n−1)

2d+2 (0;m + 2)

]
. (5.20)

The theorem is true for n = 1 and for general n it follows by induction after extensive
manipulation using (5.20). �

6. Conclusion

In this paper we have proved several theorems about non-intersecting lattice paths above a
surface having a given number of contacts with the surface. The proofs are both analytical
and combinatorial (using involutions and bijections).

We have found several new product forms for various special cases, in particular we show
that the coefficients of the return and marked return polynomials for watermelons with fixed
deviation can be expressed in terms of product forms.

Finally, we have derived two partial recurrence relations for particular cases of the n-path
return and marked return polynomials.

Our results are restricted to watermelon configurations with fixed endpoint deviations.
Extension to star configurations with fixed and free end point conditions may be possible in
the future. Product forms for watermelons with free endpoints are unlikely to exist since they
have not been found for the bulk and non-interacting surface cases. Other future work will be
on the introduction of contact interactions between the chains.
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