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Abstract

An exact expression is derived for the partition function of a directed vesicle, in the form

of a staircase polygon, when one or both ends are grafted onto an attracting wall. The

method of solution involves solving a set of partial difference equations with a Bethe Ansatz.

The solution is expressed as a “constant term” formula which evaluates to sums of products

of binomial coefficients. The major advantage of this method is that it, unlike many other

single walker methods, generalises to an arbitrary number of walkers.

The vesicle critical temperature is found, at which a binding transition takes place, and

the asymptotic forms of the associated partition functions are found to have three different

entropic exponents depending on whether the temperature is above, below, or at its critical

value. The expected number of monomers adsorbed onto the surface is found to become

proportional to the vesicle length at temperatures below critical. Scaling functions near the

critical point are determined.
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1 Introduction

A vesicle with a preferred direction, or ‘directed vesicle’, can be modelled by a pair of fully

directed polymer chains joined in parallel where only configurations in which the chains avoid

one another are allowed. In two dimensions the configurations of a single chain can be assumed

to be the possible space-time trajectories of a one dimensional random walker who at each tick

of a clock moves unit distance in either the positive or negative direction. The links of the

chain are therefore in the direction of one of the two vectors e1 = {−1, 1} and e2 = {1, 1}
which form the basis vectors of a directed square lattice which we think of as being oriented at

45 degrees to the horizontal so that time increases from left to right. Since the first and last

link in each chain of the vesicle have fixed directions due to the mutual avoidance condition the

configurations of a pair of walkers which start at height xi and xi + 2 and end at xf and xf + 2

after t steps will be enumerated corresponding to a vesicle of length t + 2. The adsorption of

the vesicle by an attractive wall will be considered so that in calculating the partition function

a vesicle configuration with m monomers adsorbed onto the wall will be given weight κm where

κ = exp(−εs/kBT ) ≥ 1. The quantity εs is the energy of contact with the wall. The wall will

be positioned along the line x = 0 with the vesicle restricted to the half space x ≥ 0 and if

the beginning of the vesicle is grafted to the wall only monomers at even distances along the

chain may be adsorbed (see Figure 1). Earlier work on polymer networks made from long chains

in a good solvent both in the bulk and with a surface has recently been reviewed by De’Bell

and Lookman [1]. Adsorption of directed polymer chains onto a surface has been reviewed by

Privman and S̆vrakić [2]. They determined the grand partition function of a partially directed

polymer chain near an attractive wall and the same system with additional attractive monomer-

monomer interactions was solved exactly by Veal et. al. [3]. The adsorption of vesicles formed

from two partially directed chains was investigated numerically using a transfer matrix method

by Micheletti and Yeomans [4]. They also included the effect of a pressure difference between

the inside and outside of the vesicle by introducing an area fugacity. Their vesicle configurations

correspond to row convex polygons whereas the ones considered here are staircase polygons.

We shall denote the partition function for vesicles of length t+2 beginning at height xi+1 and

ending at height xf + 1 by ZV
t (x

f |xi;κ). (Generically in this paper we shall use the superscript

V to denote quantities associated with vesicles, S for quantities associated with one walker (a

single polymer chain) and T for quantities associated with two walkers (polymer chains). Also,

we shall use an acute accent for quantities associated with walkers attached to the surface from

one end with the other end free (summed over), while the hat shall denote cases where both ends

are fixed to a surface.) In this paper we obtain exact expressions for these partition functions,

as well as the special cases when one end of the vesicle is grafted to the wall and the other is
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either free to move, ŹV
2r(κ), or fixed at distance xf from the wall, ZV

t (x
f |0;κ). In the latter case

ZV
t (x

f |0;κ) = κ

(
t+ 2
q

) q∑
n=0

(xf + 1)(n+ 1)(xf + n+ 2)(xf + 2n+ 3)
(q + 1)(t+ 1)(t+ 2)(t+ 3)

(
t+ 3
q − n

)
(κ − 1)n , (1.1)

where q = 1
2(t − xf ). When one end is free we find, for t even,

ŹV
2r(κ) =

∑
xf ≥0

ZV
t (x

f |0;κ) = κCr

r∑
n=0

n+ 1
r + 1

(
2r + 2
r − n

)
(κ − 1)n , (1.2)

where Cr is the rth Catalan number,

Cr =
1

r + 1

(
2r
r

)
, (1.3)

and ŹV
2r+1(κ) is given by the same formula with Cr replaced by Cr+1. If both ends are fixed on

the wall we obtain, setting xf = 0 in (1.1),

ẐV
2r(κ) = ZV

2r(0|0;κ) = κ

(
2r + 2

r

)
r∑

n=0

(n+ 1)(n+ 2)(2n+ 3)
(r + 1)(2r + 1)(2r + 2)(2r + 3)

(
2r + 3
r − n

)
(κ − 1)n . (1.4)

The above sums have hypergeometric terms and using a program of Paule and Schorn [5],

which is an implementation of Zeilberger’s algorithm [6], we find, writing zr(κ) = ŹV
2r(κ) or

ẐV
2r(κ), that in both cases

(κ − 1)
κ

g(κ) + rh(κ)
2(2r − 1)

zr(κ) − κ
g(κ) + (r + 1)h(κ)

r + 2
zr−1(κ) = −zr−1(1) , (1.5)

where in the first case g(κ) = h(κ) = 1 and in the second case

g(κ) = κ2 + 2κ − 2 and h(κ) = (κ − 2)2. (1.6)

It follows that, for t → ∞, the partition functions have the asymptotic forms1

ŹV
t (κ) ∼ µt tg1 and ẐV

t (κ) ∼ µt tg11 , (1.7)

where the growth parameter µ and exponents g1, g11 are given in Table 1. The notation γ1 − 1

and γ11 − 1 are often also used in place of g1 and g11 respectively.

Notice that the growth parameter and exponents for κ < 2 are independent of κ and hence

must have their κ = 1 values. Fisher [7] solved the κ = 1 problem for fixed xf in the continuum

limit when the walks become Brownian motion paths and the exponent we find for the discrete

problem is in agreement with his. Fisher’s work on one and two walkers was generalised to p

walkers by Forrester [8] who found

g1 = −(3p2 + p − 2)/4 and g11 = −p(2p+ 1)/2 . (1.8)
1Note, in this paper we take f(x) ∼ g(x) to mean limx→x0 f/g = constant �= 0 (rather than one). This avoids

the frequent introduction of constants.
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Table 1: Summary of vesicle growth parameter and critical exponents.

µ g11 g1 ∆s

κ < 2 4 −5 −3 0

κ = 2 4 −3 −2 1
2

κ > 2 2κ/
√

κ − 1 − 3
2 − 3

2 1

which yields g1 = −3 for p = 2. Fisher [7] also considered the effect of an attractive wall on

a single chain but his “necklace” technique does not extend to vesicles. It is one of the main

purposes of this paper to illustrate a powerful combinatorial technique [9] known as a “constant

term formula” which we have used to obtain equations (1.1) and (1.2). The growth factor for

κ < 2 is the same as for a vesicle with no wall. However when κ > 2 the asymptotic form is

dominated by the solution of the homogeneous part of (1.5) and has a factor 2 arising from the

entropy of the chain which is furthest from the wall and a temperature dependent factor arising

from the nearest chain, a macroscopic part of which is adsorbed onto the wall. As κ → ∞
the adsorption becomes complete leaving only the Boltzmann factor κ

1
2 arising from the single

configuration with half of the monomers adsorbed and the entropy of a single chain.

In the adsorbed region the critical exponent is independent of whether or not the end of the

vesicle is fixed to the surface or free to move, and is equal to that of a single chain with both ends

grafted onto the surface in the desorbed regime. We find g = −3
2 which agrees with setting p = 1

in the g11 formula of (1.8). At the critical point, κ = 2, we shall show that ẐV
t (2) = ŹV

t (1) in

agreement with g11(κ = 2) = g1(κ = 1). Also we show that ŹV
t (2) is equal to the κ = 1 partition

function of a two-chain star polymer attached to the wall for which the exponent, g = −2, was

given by Forrester [8]. These results are respectively special cases of equations (4.16) and (4.14)

with κ̄ = 1.

The critical point may be characterised as the temperature lower than which the expected

number of adsorbed monomers, 〈m〉V
t (x

f |0;κ) becomes of order t. This quantity may be obtained

in the usual way by differentiating the partition function. Thus, for fixed xf , with the definition

ZV
t (x

f |0;κ) =
q∑

m=0

∑
v∈Vt(x|0;m)

κm, (1.9)

where Vt(xf |0;m) is the set of vesicle configurations with m adsorbed monomers, we have

〈m〉V
t (x

f |0;κ) = MV
t (x

f |0;κ)/ZV
t (x

f |0;κ) , (1.10)

where

MV
t (x

f |0;κ) =
q∑

m=0

∑
v∈Vt(xf |0;m)

mκm = κ
d

dκ
ZV
t (x

f |0;κ) . (1.11)
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An explicit formula for MV
t (x

f |0;κ) may be obtained by differentiating (1.1) and, for xf = 0,

from an asymptotic analysis of the recurrence relation which results from using Zeilberger’s

algorithm we find, on dividing by ZV
t (0|0;κ),

〈m〉V
t (0|0;κ) ∼ t∆s , (1.12)

where the values of the ‘adsorption’ exponent ∆s are listed in table 1. This exponent is equal to

the ‘crossover’ exponent φs (defined below) when κ = 2. The same result is found for the case

when one end is free by using (1.2).

The scaling theory which applies near the binding transition has been discussed in the case of

the adsorption of undirected polymer chains by Eisenreigler et. al. [10, 11, 12]. For the present

problem we find the following scaling forms which are valid for κ → 2 and t → ∞. When both

ends of the vesicle are grafted to the surface

ẐV
t (κ) ◦∼ 4ttg

c
11ϕ̂V

(
(κ − 2)

2
tφs

)
, (1.13)

where gc11 = −3, the value of g11 at κ = 2, and φs = 1/2. Also, as expected, [13], the scaling

function ϕ̂V(z) is an entire function with

ϕ̂V(z) ∼




z3ez
2
, z → ∞

(−z)−4, z → −∞.

(1.14)

The symbol ◦∼ defines the assumed two-variable scaling conditions associated with critical points

[13].

There is a similar scaling form in the case of a vesicle with one free end with gc1 = −2 and

ϕ̂V(z) replaced by

ϕ́V(z) ∼




zez
2
, z → ∞

(−z)−2, z → −∞.

(1.15)

Notice that the factor multiplying κ−2 in the argument of the ϕ functions comes from 〈m〉V
t (κ =

2). These scaling forms together imply all of the data in Table 1. The complete scaling functions

are defined in terms of integrals given in section 4.

The grand partition function is often used as a computational aid in the theory of polymer

adsorption [10]. This is defined by

ǴV(u, κ) =
∞∑
t=0

ŹV
t (κ)u

t , (1.16)

where u is called the length fugacity. It may be deduced from the form of ŹV
t (κ) that Ǵ

V(u, κ) is

singular at u = uc = 1
µ which is physically the value of u at which the expected polymer length
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diverges. The form of ŹV
t (κ) as t → ∞ implies that as u approaches uc from below

ǴV(u, κ) ∼ (1 − µu)−γ1 , (1.17)

where the critical exponent γ1 = 1+g1. Note, γ1 takes on three values, γ−
1 , γc1 and γ+

1 depending

on whether κ > 2, κ = 2 or κ < 2 respectively.

Near the critical point, (κ = 2, u = 1
4), the grand partition function has the scaling form

ǴV(u, κ) ◦∼ (1 − µu)−γ
c
1 ψ́V

(
κ − 2

(1 − µu)φs

)
, (1.18)

where ψ́V(z) is the scaling function, and γc1 = gc1 + 1. The grand partition function when both

ends are grafted to the surface has a similar form with ψ́V replaced by ψ̂V .

In section 2 we write down the partial difference equations to be satisfied by the single chain

and vesicle partition functions. In section 3 we illustrate the use of the constant term method

in the case of a single chain and in section 4 the method is used to produce explicit formulae for

the vesicle partition functions. In both cases we deduce the recurrence relations which lead to

the determination of the critical exponents and scaling forms.

2 Partial Difference Equations

This section contains the partial difference equations for the partition functions of a single chain

and vesicle near an attracting wall on the directed square lattice. Our approach to the vesicle

problem will be to first solve the problem of a single chain near an attracting wall using techniques

which have immediate extensions to the problem of two non-intersecting chains. The vesicle

partition function is then a special case of that for two chains.

2.1 Single Chain

A vesicle is constructed from two chains only one of which makes contacts the wall so here we

consider a single polymer chain (one walker) of length t (having t + 1 monomers) which starts

at xi ≥ 0 and terminates at xf ≥ 0. For given xf the partition function ZS
t (x

f |xi;κ) is defined
by (1.9) with the set of vesicle configurations replaced by chain configurations. Since a chain of

length t can be made by appending a single step to a chain of length t − 1 we get the partial

difference equations

ZS
t (x|xi;κ) = ZS

t−1(x − 1|xi;κ) + ZS
t−1(x+ 1|xi;κ) x > 0, t > 0 (2.1)

ZS
t (0|xi;κ) = κZS

t−1(1|xi;κ), x = 0, t > 0 (2.2)

ZS
0 (x|xi;κ) =




δ(x, xi) for xi > 0

κδ(x, 0) for xi = 0.

(2.3)
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where the last equation is the initial condition which can also be rewritten more compactly as

ZS
0 (x

f |xi;κ) =
[
1 + (κ − 1)δ(xi, 0)

]
δ(xf , xi). (2.4)

These equations may be programmed recursively to obtain ZS
t (x

f |xi;κ) for increasing values of

t and the computing time is polynomial in the length t. From the exact solution (given below)

or by iterating the difference equations, the first few terms when the chain starts and ends on

the the wall are given by

ZS
0 (0|0;κ) = κ

ZS
2 (0|0;κ) = κ2

ZS
4 (0|0;κ) = κ2 + κ3

ZS
6 (0|0;κ) = 2κ2 + 2κ3 + κ4

ZS
8 (0|0;κ) = 5κ2 + 5κ3 + 3κ4 + κ5

ZS
10(0|0;κ) = 14κ2 + 14κ3 + 9κ4 + 4κ5 + κ6 .

(2.5)

For a chain starting at the wall and ending at xf = 2

ZS
0 (2|0;κ) = 0

ZS
2 (2|0;κ) = κ

ZS
4 (2|0;κ) = 2κ+ κ2

ZS
6 (2|0;κ) = 5κ+ 3κ2 + κ3

ZS
8 (2|0;κ) = 14κ+ 9κ2 + 4κ3 + κ4

ZS
10(2|0;κ) = 42κ+ 28κ2 + 14κ3 + 5κ4 + κ5 ,

(2.6)

and for a chain which starts and ends at x = 2

ZS
0 (2|2;κ) = 1

ZS
2 (2|2;κ) = 2

ZS
4 (2|2;κ) = 5 + κ

ZS
6 (2|2;κ) = 14 + 4κ+ κ2

ZS
8 (2|2;κ) = 42 + 14κ+ 5κ2 + κ3

ZS
10(2|2;κ) = 132 + 48κ+ 20κ2 + 6κ3 + κ4.

(2.7)

We obtain a general formula for these polynomials in the section 3.

2.2 Two Chains and Vesicles

In calculating the vesicle partition function it is necessary to consider the configurations of two

polymer chains of length t the first of which goes from xi1 ≥ 0 to xf1 without crossing the wall

and the second goes from xi2 to xf2 , where all intermediate positions satisfy x2 > x1 ≥ 0, that is,
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without touching the first walk. For fixed final positions, and for t > 0, the partition function

ZT
t (x

f
1 , x

f
2 |xi1, xi2;κ) satisfies the partial difference equation

ZT
t (x1, x2|xi1, xi2;κ) = ZT

t−1(x1 − 1, x2 − 1|xi1, xi2;κ)
+ZT

t−1(x1 + 1, x2 − 1|xi1, xi2;κ)
+ZT

t−1(x1 − 1, x2 + 1|xi1, xi2;κ)
+ZT

t−1(x1 + 1, x2 + 1|xi1, xi2;κ), 0 < x1 < x2, t > 0 , (2.8)

ZT
t (0, x2|xi1, xi2;κ) = κZT

t−1(1, x2 − 1|xi1, xi2;κ)
+κZT

t−1(1, x2 + 1|xi1, xi2;κ) 0 = x1 < x2, t > 0 , (2.9)

ZT
t (x1, x1|xi1, xi2;κ) = 0, x1 = x2, t > 0 , (2.10)

ZT
0 (x1, x2|xi1, xi2;κ) =




δ(x1, x
i
1)δ(x2, x

i
2) for xi1 > 0

κδ(x1, x
i
1)δ(x2, x

i
2) for xi1 = 0 .

(2.11)

Equation (2.10) ensure the walkers never cross. The last equation is the initial condition. For

any given initial and final positions the partition function may again be computed from these

equations in a time which is polynomial in t. We now illustrate this in the case of vesicles for

which xi2 = xi1 + 2 and xf2 = xf1 + 2. Thus the partition function defined in the introduction for

which the initial monomer of the lower chain is grafted to the surface and the other end is fixed

at distance x is obtained by setting xf1 = x and calculating

ZV
t (x|0;κ) = ZT

t (x, x+ 2|0, 2;κ) (2.12)

using the above equations. The first few terms are

ZV
0 (0|0;κ) = κ

ZV
2 (0|0;κ) = κ2

ZV
4 (0|0;κ) = κ2 + 2κ3

ZV
6 (0|0;κ) = 3κ2 + 6κ3 + 5κ4

ZV
8 (0|0;κ) = 14κ2 + 28κ4 + 28κ5 + 14κ6

ZV
10(0|0;κ) = 84κ2 + 168κ3 + 180κ4 + 120κ5 + 42κ5 .

(2.13)
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The first few terms for the case of one free end are

ŹV
0 (κ) = κ

ŹV
1 (κ) = κ

ŹV
2 (κ) = κ+ κ2

ŹV
3 (κ) = 2κ+ 2κ2

ŹV
4 (κ) = 4κ+ 4κ2 + 2κ3

ŹV
5 (κ) = 10κ+ 10κ2 + 5κ3

ŹV
6 (κ) = 25κ+ 25κ2 + 15κ3 + 5κ4

ŹV
7 (κ) = 70κ+ 70κ2 + 42κ3 + 14κ4

ŹV
8 (κ) = 196κ+ 196κ2 + 126κ3 + 56κ4 + 14κ5

ŹV
9 (κ) = 588κ+ 588κ2 + 378κ3 + 168κ4 + 42κ5 .

(2.14)

3 A Single Chain near an Attractive Wall

There are many ways of solving the problem of a single chain interacting with a wall. In this

section an explicit formula is obtained for the partition function defined by the equations of

section 2.1 using a method which can be generalised to more than one chain.

3.1 Solution of a Single Chain with Both Ends Fixed

3.1.1 Derivation of ZS
t (x

f |xi;κ).

To solve (2.1) we begin by separating the variables with a trial solution of ZS
t (x|xi;κ) = Pt(x, k) =

Λt exp(ikx) which requires

Λ = λ(k) = exp(ik) + exp(−ik) . (3.1)

If we substitute this trial solution into (2.2) then the equation is satisfied only provided Λ =

Λp = κ/
√
κ − 1 and exp(ikp) =

√
κ − 1. This gives us a particular solution. However, Pt(x, k) =

Λt exp(ikx) and Pt(x,−k) = Λt exp(−ikx) satisfy the bulk equation so we try a more general

form of solution, Rt(x, k) = λ(k)t(A(k) exp(ikx) + B(k) exp(−ikx)) for ZS
t (x|xi;κ). If this is

substituted into (2.2) then we must have
A
B = S(eik), where the “surface scattering” amplitude,

S(z) is given by

S(z) = −z + z − κz

z + z − κz
, z :=

1
z
. (3.2)

Thus the most general form of the solution for ZS
t (x|xi;κ) satisfying the bulk and boundary

equations is

Wt(x;κ) =
∫ π

0
Rt(x, k) dk + CΛtp exp(ikpx)

=
∫ π

0
λ(k)tB(k)

[
exp(−ikx) + S(eik) exp(ikx)

]
dk

+C
(
κ/

√
κ − 1

)t
(κ − 1)x/2 . (3.3)
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It remains to choose the two arbitrary constants B(k) and C such that the initial condition (2.3)

is satisfied. If we choose B = B0[exp(ikxi) + S(e−ik) exp(−ikxi)] and call the integral with that

choice in (3.3), Kt(x|xi), then by a few changes of variable we can rewrite the integral as

Kt(x|xi) = B0

∫ π

−π
λ(k)t

[
exp(ik(x − xi)) + S(eik) exp(ik(x+ xi))

]
dk . (3.4)

When t = 0 this integral can be evaluated using the contour illustrated in figure 2. It has a pole

at

k =
i

2
log(κ − 1) (Binding pole) (3.5)

We find that

K0(x|xi) = 2πB0

(
δ(x, xi) + (κ − 1)δ(x,−xi)

)
+πB0θ(κ − 2)(2κ − κ2)(κ − 1)−(x+xi+2)/2 , (3.6)

where θ is the Heaviside step function. The last term arising from the residue of the pole. Thus

we see that in order to satisfy (2.3) we have two cases depending on whether κ is greater than or

less than 2, ie. whether the pole is outside or inside the contour. Case a: 1 < κ < 2 – no interior

pole (unbound phase). In this case we must have C = 0 and B0 = 1/2π. Case b: κ > 2 – an

interior pole (bound phase). In this case we must have B0 = 1/2π and

C =
κ

2
(κ − 2)(κ − 1)−(xi+2)/2 . (3.7)

We denote the solution which satisfies (2.3), the initial condition, by ZS
t (x|xi;κ) = St(x|xi;κ).

For 1 < κ < 2, to find St(x|xi;κ) for t > 0 we need to evaluate the integral in (3.4) by a different

means. First, make the change in variable to z = exp(ik), then expand the denominator of the

S amplitude to give

St(x|xi;κ) =
1
2πi

∮
|z|=1

[
Λt
(
zx−xi − zx+x

i
)

− (1 − 1/z2)
t∑

m=1
(κz)mΛt−mzx+x

i

]
dz

z

+
κ

2πi

∮
|z|=1

(κz)t(z − 1/z)
Λ − κz

zx+x
i dz

z
. (3.8)

Now, using the result
∮

|z|=1
zM

dz

z
= 2πiδ(M, 0), with M an integer, as well as the fact that the

last term vanishes, gives

St(x|xi;κ) = S
(0)
t (x|xi) + S

(1)
t (x|xi;κ) , (3.9)

where

S
(0)
t (x|xi) =

(
t

t−x+xi

2

)
−
(

t
t−x−xi

2

)
, (3.10)

and

S
(1)
t (x|xi;κ) =

∑
m≥1

κm
{(

t − m
t+x+xi−2

2

)
−
(

t − m
t+x+xi

2

)}
. (3.11)
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Since the binomial coefficients vanish outside their natural domain of definition St(x|xi;κ) is, as
expected, a polynomial in κ. Also note that t ± xi ± xf is always even due to the formulation of

the problem we have chosen. Now, since S
(0)
t (xf |xi) is simply the κ = 0 value of St(xf |xi;κ) it

is therefore the number of walks which avoid the wall. Hence we can also interpret S
(1)
t (xf |xi;κ)

as the partition function for walks which touch the wall at least once. These equations correctly

reproduce the t ≤ 10 polynomials given in section 2.1 so that although they were derived for

1 < κ < 2 they are therefore valid for all κ. Note that equation (3.10) follows from the well-known

reflection principle [14].

In conclusion, our solution is

ZS
t (x

f |xi;κ) = St(xf |xi;κ) (3.12)

where St(xf |xi;κ) is given in equations (3.9), (3.10) and (3.11).

3.1.2 The Constant Term Formulation

We illustrate the method for a single chain. The action of the integral in (3.8) is formally

equivalent to extracting the constant term of the integrand in (3.4). If z := exp(ik) is regarded

as a formal variable then

ZS
t (x

f |xi;κ) = St(xf |xi;κ) = CT
[
(z + z)t(zx

f −xi
+ S(z)zxf+xi

)
]
, (3.13)

where CT[·] denotes the constant term of the argument, ie. the coefficient of z0. Separating the

parts which correspond to walks which touch the wall, and those that do not, gives the κ = 0

term as

S
(0)
t (xf |xi) = CT

[
(z + z)t(zx

f −xi − zx
f+xi

)
]
, (3.14)

and the complement as

S
(1)
t (xf |xi;κ) = κCT

[
(z + z)tD(z)zx

f+xi
]
, (3.15)

where

D(z) = κ−1(1 + S(z)) = 1 − z2

1 − (κ − 1)z2 . (3.16)

When κ = 2, D(z) = 1 and we obtain the simple form

S
(1)
t (xf |xi;κ = 2) = 2

(
t

t−xf −xi

2

)
. (3.17)

This result has an interesting combinatorial interpretation – see section 3.4. For future reference

we note from (3.15) that S
(1)
t (xf |xi;κ) depends on xi and xf only through their sum (xf + xi),

so that

S
(1)
t (xf |xi;κ) = S

(1)
t (xf + xi|0;κ) . (3.18)
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3.1.3 Formulae for Walks Beginning on the Surface

Interesting and convenient formulae can be obtained for the special cases where walks begin at

the surface, that is xi = 0. Let us define

Ut(xf ; κ̄) := S
(1)
t (xf |0; κ̄+ 1)/(κ̄+ 1) = ZS

t (x
f |0;κ)/κ , (3.19)

which is proportional to the partition function for walks that finish at xf after beginning at 0

(by definition this implies it touches the surface x = 0 at least once), where

κ̄ = κ − 1 . (3.20)

Using (3.15) we have

Ut(x; κ̄) = CT

[
(z + z)t

1 − z2

1 − κ̄z2 z
x

]
. (3.21)

Expanding the denominator in (3.21) gives

Ut(x; κ̄) =

1
2 (t−x)∑
m=0

κ̄mCT
[
(z + z)t(1 − z2)z2m+x

]
. (3.22)

However we note

Ut(x; 0) = CT
[
(z + z)t(1 − z2)zx

]

=

(
t
t−x
2

)
−
(

t
t−x−2

2

)
=

2(1 + x)
t+ x+ 2

(
t
t−x
2

)
, (3.23)

so that we can identify the coefficient

CT
[
(z + z)t(1 − z2)z2m+x

]
(3.24)

of κ̄m in the expansion (3.22) of Ut(x; κ̄) as Ut(x+ 2m; 0). Hence we can write

Ut(x; κ̄) =

1
2 (t−x)∑
m=0

κ̄mUt(x+ 2m; 0). (3.25)

The fact that the expansion of Ut(x; κ̄) in the variable κ̄ has as its coefficients positive numbers

suggests they have a combinatorial interpretation. Indeed they can be interpreted in terms of

“terraced walks” [15].

We will use the function Ut(x; κ̄) as the basis for our analysis of the behaviour of ẐS
2r(κ), the

partition function for walks that begin and end on the surface. We have from (3.19),

ẐS
2r(κ) = ZS

2r(0|0;κ) = κU2r(0;κ − 1) = κ
r∑

m=0
(κ − 1)mU2r(2m; 0). (3.26)

with

U2r(2m; 0) =
1 + 2m

r +m+ 1

(
2r

r − m

)
. (3.27)

12



For ŹS
t (κ), the partition function for walks that start on the surface with the other end free (i.e.

summed over), we have

ŹS
t (κ) =

∑
xf ≥0

ZS
t (x

f |0;κ) = κ
∑
xf ≥0

Ut(xf ;κ − 1) . (3.28)

3.2 Single Chain with Both Ends Fixed, One End on the Surface: Recurrence

Relations and Critical Exponents

From inspection of (3.26) and (3.27) we see that Ut(0; κ̄) is a sum of hypergeometric terms and

the same can be seen for the more general Ut(x; κ̄) by inspecting the combination of (3.25) with

(3.23). Using Zeilberger’s algorithm [6] Ut(x; κ̄) is found, for t ≥ x, to satisfy the recurrence

relation

(κ − 1)Ut(x; κ̄) − κ2Ut−2(x; κ̄) = −At(x; κ̄) , (3.29)

where

At(x; κ̄) = Ut−2(x; 0)
qt(x; κ̄)
qt(x; 0)

=
(t − 2)!qt(x; κ̄)
2( t−x2 )!( t+x2 )!

, (3.30)

with

qt(x; κ̄) = (x+ 1)(t − x) − κ̄(x − 1)(t+ x) (3.31)

and Ut(t; κ̄) = 1. Equation (3.29) has a direct combinatorial derivation [15]. In Appendix 1 we

show that the equation

ur − G(r)ur−1 = H(r) (3.32)

has two solutions with the asymptotic form

ur ∼ ρrrg , (3.33)

where the constant ρ may take values ρ1 and ρ2 with corresponding exponents g′ and g′′ obtained

from the expansions

G(r) ∼ ρ1(1 +
g′

r
+

h1

r2 + . . .) and H(r)/H(r − 1) ∼ ρ2(1 +
g′′

r
+

h′′

r2 . . .). (3.34)

In the case that ρ1 = ρ2 it is shown that the critical exponent may take values g′ or g′′ + 1

normally depending on which of these values is greater. Now

At(x; κ̄)
At−2(x; κ̄)

=
4(t − 2)(t − 3)qt(x; κ̄)
(t − x)(t+ x)qt−2(x; κ̄)

(3.35)

and
q2r(x; κ̄)

q2r−2(x; κ̄)
∼ 1 +

1
r
+O(

1
r2 ) . (3.36)

Since H(r) = A2r(x; κ̄)/(κ − 1) we find

H(r)
H(r − 1)

∼ 4
(
1 − 3

2r
+O(

1
r2 )
)
. (3.37)
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µ g11 g1 h11 h1

κ < 2 2 − 3
2 − 1

2 − 3
2 − 1

2

κ = 2 2 − 1
2 0 0 1

2

κ > 2 κ/
√

κ − 1 0 0 1 1

Table 2: Summary of the growth parameter and critical exponents for a single walk grafted to a

surface at one (subscript 1) or both (subscript 11) ends. The g exponents are associated with the

partition function and the h exponents with the first moment of the distribution of the number

of contacts.

It is interesting to note that to order 1/r the coefficients are independent of κ and x as expected

from universality but the order 1/r2 term is a rational function of both of these variables. This

will also be true of all subsequent recurrence relations to be considered. Setting ur = U2r(x; κ̄)

or U2r+1(x; κ̄), depending on whether x is even or odd, gives G(r) = κ2/(κ − 1) and the critical

parameters are therefore ρ1 = κ2/(κ − 1), ρ2 = 4, g′ = 0 and g′′ = −3
2 . The value ρ1 in the

regime κ > 1 is convex having its minimum value 4 when κ = 2. For κ < 2, ρ1 is decreasing and

since from its definition the partition function increases with κ the asymptotic behaviour must

be governed by the bulk value ρ = ρ2 = 4 which is the same as when no wall is present and the

restriction to x ≥ 0 just changes the exponent g from −1
2 for a free walk fixed at both ends to −3

2

in agreement with Forrester’s formula (1.8) with p = 1. For κ > 2, ρ1 is an increasing function of

κ and ρ = ρ1 = κ2/(κ − 1) determines the asymptotic form with exponent g = 0 corresponding

to a bound phase in which the walk sticks close to the wall. The critical value κ = 2 at which

this binding transition takes place corresponds to the second pole moving inside the contour in

the integral formulation of the previous section. When κ = 2 the relation (3.29) has a particular

solution satisfying

Ut(x; 1) =
4t(t − 1)
t2 − x2 Ut−2(x; 1). (3.38)

which together with Ux(x; κ̄) = 1 gives another route to (3.17). The solution Ut = 2t of the

homogeneous equation is therefore not required in this case. From (3.38) it follows that the critical

exponent is g = −1
2 which is equal to g′′ +1. This is an exception to the rule found in Appendix

1 since the solution having the more dominant exponent g′ = 0 does not contribute. The other

special case is κ = 1. In this case equation (3.29) gives the explicit formula Ut(x; 1) = −At+2(x; 1)

having the bulk critical point and exponent. The exponents are summarised in Table 3.2 in the

column headed g11.
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3.3 Single Chain: One End Free

We now consider the partition function,

Z̃S
t (x

i;κ) =
∑
xf ≥0

ZS
t (x

f |xi;κ) (3.39)

for walks of length t with the beginning fixed at distance xi from the wall and the other end free

to be at any value of xf ≥ 0. The usual ‘free end’ partition function ŹS
2r(κ) = Z̃S

2r(0;κ) is simply

a sub-case. Now using (3.9) we can write

Z̃S
t (x

i;κ) = S̃
(0)
t (xi) + S̃

(1)
t (xi;κ) , (3.40)

where

S̃
(0)
t (xi) =

∑
xf ≥0

S
(0)
t (xf |xi) (3.41)

and

S̃
(1)
t (xi;κ) =

∑
xf ≥0

S
(1)
t (xf |xi;κ) . (3.42)

Note that firstly

S̃
(0)
t (0) = 0 (3.43)

and that further for xi > 0 the asymptotic form of S̃
(0)
t (xi), which is the κ = 0 solution, as

t → ∞ is either sub-dominant (for κ > 2) or co-dominant (for κ ≤ 2) to S̃
(1)
t (xi;κ). Hence we

shall examine S̃
(1)
t (xi;κ) more closely.

Let us choose xi = 2y to be even and t = 2r also to be even. Summing (3.18) over (even)

xf = 20 and using (3.25) with definition (3.19) gives, using r − y = q,

S̃
(1)
2r (2y; κ̄) = (κ̄+ 1)

q∑
m=0

κ̄m
q−m∑
�=0

Ut(2y + 20+ 2m; 0) (3.44)

and using (3.23) we find that the inner sum telescopes to give,

S̃
(1)
2r (2y; κ̄) = (κ̄+ 1)

r−y∑
m=0

κ̄m
(

2r
r − y − m

)
. (3.45)

Application of Zeilberger’s algorithm gives the same recurrence relation (3.29) as when both ends

are fixed but with At(x;κ) replaced by

B2r(2y; κ̄) = (κ̄+ 1)
(2r − 2)!q2r(2y; κ̄)
2(r − y)!(r + y − 1)!

(3.46)

with q2r(2y; κ̄) given by

q2r(2y; κ̄) = 2 [r − y − κ̄(r + y − 1)] , (3.47)
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and S̃
(1)
2r (2r; κ̄) = 1 + κ̄. The asymptotic form of q2r(2y; κ̄) is again given by (3.36) but now

B2r(2y; κ̄)
B2r−2(2y;κ)

=
2(r − 1)(2r − 3)q2r(2y; κ̄)

(r − y)(r + y − 1)q2r−2(2y; κ̄)
. (3.48)

The discussion of the previous section therefore applies to S̃
(1)
2r (2y; κ̄) except that now g′′ = −1

2

in agreement with the value obtained by setting p = 1 in the formula (1.8) for g1. Comparing

(3.35) and (3.48) we notice that when κ = 2 and xi = y = 0 the recurrence relation becomes the

same as for the chain with both ends attached to the wall but now the partition function is a

linear combination of both solutions. To satisfy the initial conditions each of the two solutions

has U0(0; κ̄) = 1 and the partition function is sum of the resulting functions

S̃
(1)
2r (0; κ̄ = 1) = 22r +

(
2r
r

)
. (3.49)

The critical exponent is therefore g = 0 since the bulk solution 22r is dominant. The exponents

are summarised in Table 3.2 in the column headed g1.

A simpler recurrence relation results if both xi and t are allowed to vary with q = t−xi

2 fixed:

now allowing t and xi to be either both odd or both even, which implies that xf is still even.

κ̄S̃
(1)
t (xi; κ̄) − (1 + κ̄)S̃(1)

t−1(x
i − 1; κ̄) = −S̃

(1)
t−1(x

i − 1; 0) = −(1 + κ̄)

(
t − 1
t−xi

2

)
(3.50)

with the boundary condition S̃
(1)
t (−t; κ̄) = (1 + κ̄)t+1. However this relation cannot yield the

required asymptotic form for t → ∞ with xi fixed.

3.4 Single Chain: A Combinatorial Interpretation of κ = 2

Let W(1)
t (xi, xf ) be the set of all walks, from xi to xf , having t steps, which do not cross the

wall, but have at least one contact with the wall. The contribution of such walks to the partition

function is

S
(1)
t (xf |xi;κ) = κ

∑
w∈W(1)

t (xi,xf )

κc , (3.51)

where c is the number of contacts of the walk w with the wall other than the last. When κ = 2

each contact with the wall contributes a factor of two to the weight of the walk. Thus a given

walk with c+ 1 contacts will contribute 2c to the sum. Instead of considering the given walk as

contributing a weight 2c one can think of this as 2c walks each contributing weight one. How

are these 2c new walks constructed? For each contact, other than the last, there is a factor of

two, we can get two walks by counting the original configuration as well as the walk obtained

by reflecting the segment of the walk between the contact and the next one to the right in the

t−axis. This is easiest to explain by illustration - see figure 3. If this reflection procedure is

carried out for each subset of the wall contacts (excluding the last), then the resulting set of
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walk configurations is the set of all walks from xi → xf with no wall but which visit x = 0 at

least once. The number of such walks is equal to the number of walks from −xi to xf and hence

we obtain (3.17). The κ = 2 partition function for a chain which starts at xi = 0 and ends at any

xf ≥ 0 has a similar interpretation. For a configuration which ends at xf > 0 the last κ factor

may be replaced by reflecting the part of the chain between the last contact and the terminal

monomer. Configurations which terminate at the wall have an additional factor of κ which will

not be included by the reflection procedure. The partition function is therefore the sum of the

number of chains with one free end and no wall i.e. 2t, and the number of chains which start

and end at xi = 0 with no wall i.e.
( t
t/2
)
, which gives (3.49).

Physically we can interpret these results as corresponding to the wall becoming completely

transparent. This is somewhat analogous to what happens at the theta point of interacting

self-avoiding walks in three dimensions were the self-avoiding walk behaves rather like a random

walk [16]. Intriguingly, this value, κ = 2 is also the weight generated by the appropriate kinetic

growth walk near a surface [17].

An alternative combinatorial interpretation of the κ = 2 partition function when one end is

grafted to the wall follows by setting κ̄ = 1 in (3.25). The left hand side is the required partition

function giving weight one to the grafted monomer. The right hand side is the total number of

t step walks which start at distance xi and end anywhere on or above the wall, visiting the wall

at least once.

3.5 Single Chain: The Mean Number of Contacts.

The mean number of contacts for a vesicle was defined in the introduction as the ratio of

MV
t (x

f |0;κ), given by equation (1.11), to the partition function. A similar definition holds

for a single chain.

3.5.1 Mean Contact Number of a Single Chain: Both Ends Fixed to the Surface.

When both ends are fixed MS
t (x

f |0;κ) is obtained (noting (3.19)) by differentiating (3.25) with

respect to κ̄ and multiplying by κ. We have done this for general xf but only give the results

for xf = x = 0 since the exponents turn out to be independent of xf as expected:

κ̄
(
κ+ (r − 1)(κ − 2)2

)
M̂S

2r(κ) − κ2
(
κ+ r(κ − 2)2

)
M̂S

2r−2(κ)

= −κ
(
−3 + κ̄+ 3 r − 2 κ̄ r − κ̄2 r

)
(2r − 2)!/r!(r − 1)! . (3.52)

The values of the critical exponent h11 of Mt which follow from this recurrence relation are listed

in table 3.2. The expected number of contacts has critical exponent ∆̂s = h11 − g11.
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3.5.2 Mean Contact Number of a Single Chain: One End Free.

The function M̃S
t (x

i;κ) for a chain with one end fixed at xi, that ends anywhere above or on

the wall, is given by differentiating the summand in (3.45) with respect to κ̄ and multiplying by

κ. Note that S̃
(0)
t (xi) does not depend on κ. With t = 2r and xi = 2y, applying Zeilberger’s

algorithm to the sum gives the recurrence relation

κ̄ (κy − (r − 1)(κ − 2)) M̃S
2r(2y;κ) − κ2 (κy − r(κ − 2))M2r−2(2y;κ)

= κ2

(
2r − 2

r − y − 1

)
(κy + (r − 1)(κ − 2)) . (3.53)

When κ = 2 this reduces to

M̃S
2r(2y; 2) − 4M̃S

2r−2(2y; 2) = 4

(
2r − 2

r − y − 1

)
(3.54)

and if further y = 0 we obtain the explicit form

M̃S
2r(0; 2) = 4r

(
2r − 1

r

)
. (3.55)

Proceeding as in the case of the partition function we find for xi = 0, with ḾS
t (κ) = M̃S

t (0;κ),

ḾS
t ∼ µtth1 , (3.56)

where the values of h1 are given in table 3.2. The expected number of contacts has critical

exponent ∆́s = h1 − g1, and satisfies ∆́s = ∆̂s ≡ ∆s. This adsorption exponent also has the

same value as for the equivalent exponent in the case of vesicles (see Table 1), as expected.

3.6 Single Chain Scaling Form Near κ = 2.

In the case of even t = 2r and xf = 2y we consider U2r(2y; κ̄) and the solution of (3.29) subject

to U2r(2r; κ̄) = 1 may then be written in the form

U2r(2y; κ̄) = ωy−r(1 − 1
κ̄

r∑
s=y+1

A2s(2y; κ̄)ωs−y) (3.57)

where ω = κ̄/(κ̄+ 1)2 = (κ − 1)/κ2. Noting that

ZS
2r(2y|0;κ) = κU2r(2y; κ̄) (3.58)

we can analyse the scaling behaviour of ŹS
2r and ẐS

2r via (3.28) and (3.26) respectively.
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3.6.1 Single Chain Scaling Form: Both Ends Fixed to the Surface

Setting x = 0 in (3.30) gives A2r(0; κ̄) = κCr−1 and hence the partition function for chains with

both ends grafted to the surface is given by

ẐS
2r(κ) = κω−r(1 − 1

κ

r−1∑
s=0

Csω
s)). (3.59)

Now for κ > 1 (that is, 0 ≤ ω ≤ 1
4) ω as a function of κ passes through a maximum at κ = 2

which is the value at which the polymer first sticks to the wall. It is a property of the Catalan

numbers that for |ω| ≤ 1
4

∞∑
s=0

Csω
s =

1 − √
1 − 4ω
2ω

=
κ(κ − |κ − 2|)

2κ̄
(3.60)

and hence

ẐS
2r(κ) =

κ(κ − 2)
κ̄

ω−rθ(κ − 2) +
∞∑
s=r

Csω
s−r. (3.61)

The Catalan numbers have asymptotic form

Cs ∼ 4s

π
1
2 s

3
2

as s → ∞ , (3.62)

which on substitution in (3.61), replacing the sum by an integral gives

ẐS
2r(κ) ∼ κ(κ − 2)

κ̄
ω−rθ(κ − 2) +

4r√
πr

χ(r log(
1
4ω

),
3
2
). (3.63)

where

χ(y, n) =
∫ ∞

1

e−y(u−1)

un
du. (3.64)

As κ → 2, log( 1
4ω ) ≈ 1

4(κ − 2)2 and hence near the binding transition (κ → 2 and t → ∞)

the partition function has the scaling form

ẐS
2r(κ) ◦∼ 4r

r
1
2
ϕ̂S(

(κ − 2)
2

r
1
2 ) , (3.65)

where

ϕ̂S(z) =
1√
π
χ(z2,

3
2
) + 4θ(z)zez

2
. (3.66)

Integration by parts gives

χ(z2,
3
2
) = 2 − 2z2χ(z2,

1
2
) , (3.67)

and for z ≤ 0 the substitution u
1
2 = −v/z in the definition of χ(z2, 1

2) gives

ϕ̂S(z) =
2√
π
+ 2zez

2 2√
π

∫ ∞

−z
e−v2dv

=
2√
π
+ 2zez

2
erfc(−z) . (3.68)
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This form of ϕ̂S(z) also gives the z > 0 branch correctly. Note that ϕ̂S(z) is analytic for all z as

expected.

Now erfc(−∞) = 2, erfc(0) = 1 and (see [18]) for z → ∞
√
π z ez

2
erfc(z) = 1 − 1

2z2 +
3
4z4 − 15

8z6 +O(
1
z4 ) (3.69)

thus

ϕ̂S(z) ∼




1√
πz2

for z → −∞
2√
π
+ 2z for z → 0

4zez
2

for z → ∞ .

(3.70)

which gives values of g11 and µ in agreement with table 3.2.

3.6.2 Single Chain Scaling Form: One Free End

In the case of chains of length 2r which terminate at any even value of xf = 20 ≥ 0, if the initial

monomer is grafted to the surface then setting xi = 0 in (3.46) givesB2r(0; κ̄) = (κ̄−r(κ̄−1))Cr−1.

Substituting in (3.57) gives

ŹS
2r(κ) = κω−r(1 − 1

κ̄

r−1∑
s=0

Cs(1 − (κ − 2)s)ωs+1) (3.71)

and using (3.60)

ŹS
2r(κ) = κω−rθ(κ − 2) +

1
κ

∞∑
s=r

Cs(1 − (κ − 2)s)ωs−r , (3.72)

where the step function is defined such that θ(0) = 1. Proceeding as in the previous section we

see that near the binding transition the free energy has the scaling form

ŹS
2r(κ) ◦∼ 4rϕ́S(

(κ − 2)
2

r
1
2 ) , (3.73)

where

ϕ́S(z) =
−z√
π
χ(z2,

1
2
) + 2θ(z)ez

2
(3.74)

= ez
2
erfc(−z) . (3.75)

Using the above properties of erfc gives values of g1 in agreement with table 3.2.

Equations (3.68) and (3.75) are similar to those of Eisenreigler et. al. [10] for an undirected

polymer interacting with a wall. The form (3.75) is identical to that calculated for the partially-

directed partition function scaling form [19], as one expects from universality.
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4 Vesicles near an Attractive Wall.

4.1 Constant Term Formula for the Two Chain Partition Function.

We now derive a constant term formula for the partition function of two chains. The formula will

“automatically” produce both the method of images involution and the Gessel-Viennot involution

for non-intersecting chains [20]. We must solve equations (2.8) to (2.10), to do this we try the

Ansatz

ZT
t (x|xi;κ) = Qt(x;κ) = Λ(k1, k2)t

∑
ε1=±1

∑
ε2=±1

∑
σ∈P2

A
(σ1,σ2)
(ε1,ε2) exp(iεσ1k1x1 + iεσ2k2x2), (4.1)

where σ = (σ1, σ2), and P2 = {(1, 2), (2, 1)} (we use the vector notation x = (x1, x2)). This

satisfies (2.8) if

Λ(k1, k2) = λ1λ2, λj = exp(ikj) + exp(−ikj). (4.2)

Equation (2.9) is satisfied provided

A
(1,2)
(ε1,ε2)

A
(2,1)
(ε1,ε2)

= −1 , (4.3)

A
(1,2)
(+,ε2)

A
(1,2)
(−,ε2)

= S(exp(ik1)) , (4.4)

A
(2,1)
(ε1,+)

A
(2,1)
(ε1,−)

= S(exp(ik2)) , (4.5)

where S(z) is defined by (3.2). Thus we have the general solution

ZT
t (x|xi;κ) = Tt(x;κ) =

∫ π

0

∫ π

0
B(k1, k2)Λ(k1, k2)tF(k1, k2) dk1dk2 , (4.6)

where

F(k1, k2) = exp(ik1x1 + ik2x2) + S(exp(ik1)) exp(−ik1x1 + ik2x2)

− exp(ik2x1 + ik1x2) − S(exp(ik2)) exp(−ik2x1 + ik1x2)

+S(exp(ik1))S(exp(ik2)) exp(−ik1x1 − ik2x2)

+S(exp(ik2)) exp(ik1x1 − ik2x2)

−S(exp(ik1))S(exp(ik2)) exp(−ik2x1 − ik1x2)

−S(exp(ik1)) exp(ik2x1 − ik1x2) . (4.7)

Once again we choose B(k1, k2) as 1/2π times the complex conjugate of F(k1, k2). This gives an

integrand with 64 terms. As in the case for a single chain the number of terms can be reduced,

resulting in an integral over only eight terms. Thus we obtain the result,

ZT
t (x|xi;κ) = CT

[
(z1 + z1)t(z2 + z2)tz

xf
1

1 z
xf
2

2 D(z1, z2;xi1, x
i
2)
]

, (4.8)
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where

D(z1, z2;xi1, x
i
2) = z

xi
1

1 z
xi
2

2 + S(z1)z
xi
1

1 z
xi
2

2 + S(z2)z
xi
1

1 z
xi
2

2 + S(z1)S(z2)z
xi
1

1 z
xi
2

2

−z
xi
2

1 z
xi
1

2 − S(z1)z
xi
2

1 z
xi
1

2 − S(z2)z
xi
2

1 z
xi
1

2 − S(z1)S(z2)z
xi
2

1 z
xi
1

2 .

(4.9)

and zj = eikj with z̄j = 1/zj . Each term can be interpreted diagrammatically as shown in figure

4. Combining the terms as illustrated in the figure leads to the determinantal form

D(z1, z2;xi1, x
i
2) =

∣∣∣∣∣∣
z
xi
1

1 + S(z1)z
xi
1

1 z
xi
2

1 + S(z1)z
xi
2

1

z
xi
1

2 + S(z2)z
xi
1

2 z
xi
2

2 + S(z2)z
xi
2

2

∣∣∣∣∣∣ . (4.10)

If we generate on t then, with GT (xf |xi;u, κ) =∑
t≥0 Z

T
t (x

f |xi;κ)ut, we get

GT (xf |xi;u, κ) = CT

[
z
xf
1

1 z
xf
2

2
D(z1, z2;xi1, x

i
2)

1 − u(z1 + z1)(z2 + z2)

]
. (4.11)

4.2 Explicit Form of the Partition Function for Vesicles Grafted to a Wall.

As a first step to finding the partition function for vesicles with one or both ends attached to

the wall we set xi1 = 0 and xi2 = 2 in the formulae of the previous section. The determinant in

(4.10) may then be evaluated to give a simple generalisation of the constant term formula for a

single chain attached to the wall. As in the case of the one chain problem we also remove a factor

of κ, which is always present for vesicles attached to the wall. Defining a specialised partition

function by

Ut(x
f
1 , x

f
2 ; κ̄) = κ−1ZT

t (x
f
1 , x

f
2 |0, 2;κ) (4.12)

gives

Ut(x1, x2; κ̄) = CT
[
Λt1Λ

t
2D(z1)D(z2)(z2

1 − z2
2)(z

2
1 − z2

2)z
x1
1 zx2−2

2

]
, (4.13)

where D(z) is given by (3.16) and Λi = zi+zi. Expanding the denominators in D(z1) and D(z2)

shows that Ut(x1, x2; κ̄) may be expressed in powers of κ̄ with the coefficients determined by the

“κ = 1” solution.

Ut(x1, x2; κ̄) =
∞∑
m=0

∞∑
n=0

κ̄m+nUt(x1 + 2m,x2 + 2n; 0) . (4.14)

For a vesicle we write x = x1 = x2 − 2 and separating the m = 0 term the partition function

may be written in the equivalent form

Ut(x, x+ 2; κ̄) =
∞∑
n=0

κ̄nUt(x, x+ 2n+ 2; 0) +
∞∑
m=0

∞∑
n′=0

κ̄m+n′−1Ut(x+ 2m,x+ 2n′; 0) , (4.15)

where Ut(x1, x2; κ̄) is defined in terms of the constant term formula (4.13).
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If we formally extend the definition of Ut(x, x+ 2; κ̄) to x1 > x2 using (4.13) then it follows

that Ut(x1, x2; κ̄) = −Ut(x2, x1; κ̄). Using this shows that the second summation in (4.15) is zero

and thus we obtain the final result

Ut(x, x+ 2; κ̄) =
∞∑
n=0

κ̄nUt(x, x+ 2n+ 2; 0). (4.16)

The general vesicle partition function is

ZV
t (x|y;κ) = ZT

t (x, x+ 2|y, y + 2;κ) . (4.17)

Hence the partition function for vesicles started at the surface and finishing at some height is

ZV
t (x|0;κ) = ZT

t (x, x+ 2|0, 2;κ) = κUt(x, x+ 2; κ̄) . (4.18)

Also, we have

ẐV
t (κ) = ZV

t (0|0;κ) = ZT
t (0, 2|0, 2;κ) = κUt(0, 2; κ̄) . (4.19)

Further

Z̃V
t (y;κ) =

∑
x≥0

ZV
t (x|y;κ) =

∑
x≥0

ZT
t (x, x+ 2|y, y + 2;κ) (4.20)

and so

ŹV
t (κ) = Z̃V

t (0;κ) =
∑
x≥0

ZV
t (x|0;κ) =

∑
x≥0

ZT
t (x, x+ 2|0, 2;κ) = κ

∑
x≥0

Ut(x, x+ 2; κ̄) . (4.21)

Notice that the sum in (4.16) is finite since the summand vanishes for x + 2n > t. To

determine the summand in (4.16) we set κ̄ = 0 in (4.13) to obtain the constant term form

Ut(x1, x2; 0) = CT
[
Λt1Λ

t
2(1 − z2

1)(1 − z2
2)(z

2
1 − z2

2)(z
2
1 − z2

2)z
x1
1 zx2−2

2

]
. (4.22)

Taking the constant term after expanding the brackets gives a sum of sixteen products of binomial

coefficients which simplifies to

Ut(x1, x2; 0) =
(x2−x1

2 )(x1+x2
2 + 1)(x1 + 1)(x2 + 1)

(t+ 1)(t+ 2)(t+ 3)2

(
t+ 3

t+x1
2 + 2

)(
t+ 3

t+x2
2 + 2

)
, (4.23)

which together with (4.16) gives formula (1.1) for ZV
t (x|0;κ). For vesicles of even length t = 2r

ending anywhere the partition function ŹV
2r(κ) may be found by summing (4.16) over even values

of x from 0 to 2r. With the aid of Zeilberger’s algorithm this gives,

ŹV
2r(κ) = κCr

r∑
n=0

n+ 1
r + 1

(
2r + 2
r − n

)
κ̄n , (4.24)

where Cr is defined by (1.3), which is equation (1.2). Similarly, for vesicles of odd length,

summing (4.16) over odd values of x from 1 to 2r + 1 gives

ŹV
2r+1(κ) = κCr+1

r∑
n=0

n+ 1
r + 1

(
2r + 2
r − n

)
κ̄n . (4.25)

We note that the above, together with (3.26), shows the following relations

ŹV
2r+1(κ) =

Cr+1

Cr
ŹV

2r(κ) and ŹV
2r(κ) =

Cr
κ

ẐS
2r+2(κ). (4.26)
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4.3 Recurrence Relations and Critical Exponents for Vesicles Grafted to a

Wall

As in the case of a single walk the critical exponents are most easily found from recurrence

relations. From equations (4.16) and (4.23) we see that Ut(x, x+2; κ̄) is a sum of hypergeometric

terms and Zeilberger’s algorithm may therefore be used to find its recurrence relation. We find

κ̄(r+2)(g(κ)+ rh(κ))U2r(0, 2;κ)− 2κ2(2r− 1)(g(κ)+h(κ)(1+ r))U2r−2(0, 2;κ) = −κBr (4.27)

where

g(κ) = κ2 + 2κ − 2, h(κ) = (κ − 2)2 (4.28)

and

Br =
4(2r − 1)2

(r + 1)2
Br−1 = 6C2

r , (4.29)

with B0 = 6 and U0(0, 2;κ) = 1. This may be written in the form (1.5) quoted in the introduction.

In the notation of Appendix 1,

G(r) =
2κ2(2r − 1)(g(κ) + (r + 1)h(κ)

κ̄(r + 2)(g(κ) + rh(κ))
= ρ1

(
1 − 3

2r
+O(

1
r2 )
)

, (4.30)

where ρ1 = 4κ2/κ̄. The corresponding exponent g′ = −3
2 . Also

H(r)
H(r − 1)

=
4(2r − 1)2 (g(κ) + (r − 1)h(κ))
(r + 1)(r + 2)(g(κ) + rh(κ))

= 16
(
1 − 5

r
+O(

1
r2 )
)

, (4.31)

so that ρ2 = 16 and g′ = −5. Similarly, for vesicles with one end free, we find the recurrence

relation for

Vr(κ̄) = ŹV
2r(κ̄+ 1)/ [(κ̄+ 1)Cr] = ŹV

2r+1(κ̄+ 1)/ [(κ̄+ 1)Cr+1] (4.32)

to be

κ̄Vr(κ̄) − (1 + κ̄)2Vr−1(κ̄) = −Cr , (4.33)

and so

κ̄(r + 1)ŹV
2r(κ) − 2(1 + κ̄)2(2r − 1)ŹV

2r−2(κ) = −(κ̄+ 1)Aeven
r . (4.34)

Here Aeven
r = (r + 1)C2

r and hence

Aeven
r =

4(2r − 1)2

r(r + 1)
Aeven
r−1 . (4.35)

This result may be rearranged to give equation (1.5) with g(κ) = h(κ) = 1. Similarly,

κ̄(r + 2)ŹV
2r+1(κ) − 2(1 + κ̄)2(2r + 1)ŹV

2r−1(κ) = −(κ̄+ 1)Aodd
r , (4.36)

where Aodd
r = (r + 2)CrCr+1 and hence

Aodd
r =

4(2r + 1)(2r − 1)
(r + 1)2

Aodd
r−1. (4.37)
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This result is similar to but not exactly of the form (1.5). The asymptotic form of the solution

in the case of vesicles of even length is determined by

Geven(r) =
2κ2(2r − 1)
κ̄(r + 1)

= ρ1

(
1 − 3

2r
+O(

1
r2 )
)

, (4.38)

which is asymptotically the same as when both ends are fixed, and

Heven(r)
Heven(r − 1)

=
4(2r − 1)2

(r + 1)2
= 16

(
1 − 3

r
+O(

1
r2 )
)

, (4.39)

so that again ρ2 = 16 but g′′ = −3. For vesicles of odd length the relevant ratios are

Godd(r) =
2κ2(2r + 1)
κ̄(r + 2)

and
Hodd(r)

Hodd(r − 1)
=

4(2r + 1)(2r − 1)
(r + 1)(r + 2)

, (4.40)

which have the same asymptotic forms as in the even case. Using the same argument as for a

single chain the asymptotic form of the partition functions is determined by ρ2 for κ < 2 and ρ1

for κ > 2 so that again the binding transition is at κ = 2. In the case κ < 2 the exponents agree

with the κ = 1 result of equation (1.8).

When κ = 2 and xf = 0, that is we try a solution for ẐV
2r(2) = 2ur, the solutions of the

inhomogeneous and homogeneous equations may be seen to satisfy the relations

u(1)
r =

4(2r − 1)(2r + 1)
(r + 1)(r + 2)

u
(1)
r−1 and u(2)

r =
8(2r − 1)
(r + 2)

u
(2)
r−1. (4.41)

respectively. Only the first of these solutions is required to match the coefficients and has ρ = 16

and g = −3 which is not equal to g′′ + 1 due to the vanishing of h(κ) at the transition point.

Similarly for vesicles with one end free and κ = 2, that is, we try a solution for ŹV
2r(2) = 2vr, the

coefficients are generated by the first of the two solutions satisfying the relations

v(1)
r =

4(2r − 1)(2r + 1)
(r + 1)2

v
(1)
r−1 and v(2)

r =
8(2r − 1)

r + 1
v

(2)
r−1 , (4.42)

and hence the asymptotic form of vr has parameters ρ = 16 and g = −2 which this time is equal

to g′′ + 1. The critical exponents are summarised in table 1.

We noted that when κ = 1 or 2, vesicles which start and end at the wall satisfy first order

recurrence relations. We now give the generalisation of these relations to vesicles which terminate

at arbitrary fixed xf :

ZV
t (x

f |0; 1) = 16(t − 1)t(t+ 1)(t+ 2)
(t − xf )(t − xf + 2)(t+ xf + 4)(t+ xf + 6)

ZV
t−2(x

f |0; 1) . (4.43)

In both cases ZV
t (x

f |0; 1) is zero for t < xf which is consistent with the zeros of the denominator.

The critical points and exponents are independent of xf .
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4.4 Vesicles: The Mean Number of Contacts.

4.4.1 The Mean Number of Contacts of Vesicles: One End free.

Differentiating (1.2) with respect to log κ gives ḾV
t (κ), and applying Zeilberger’s algorithm to

the resulting sum gives

κ̄(r + 1)
(
2 + (r − 1)(κ − 2)2

)
ḾV

2r(κ) − 2κ2(2r − 1)
(
2 + r(κ − 2)2

)
ḾV

2r−2(κ) =

4κ (1 + r(κ − 2)) (2r)!(2r−1)!
r!2(r−1)!(r+!)! ,

(4.44)

which, applying the analysis of appendix A, yields critical exponents which give rise to the values

of ∆s in Table 1.

4.4.2 The Mean Number of Contacts of Vesicles: Both Ends Fixed to the Surface.

The same procedure applied to (1.1) with x = 0 gives the rather more complicated expression

κ̄(r + 2)
(
8 − 22κ+ 18κ2 − κ3 − κ4 + 3r(κ − 2)2(3κ − 2) + r2(κ − 2)4

)
M̂V

2r(κ)−
2κ2(2r − 1)

(
6κ+ r(κ − 2)2(2 + κ+ 2κ2) + r2(κ − 2)4

)
M̂V

2r−2(κ) =

12κH(r)
(
8 + 2κ − r(4 + 7κ − 6κ2) + r2(κ − 2)(2 + 3κ)

)
,

(4.45)

where

H(r) =
(2r)!(2r − 1)!

(r − 1)!r!(r + 1)!(r + 2)!
. (4.46)

When κ = 2 this simplifies to

M̂V
2r(2) − 8

2r − 1
r + 2

M̂V
2r−2(2) = 12H(r) . (4.47)

The critical exponents derived from these equations give the same values of ∆s as when one end

of the vesicle is free. Similar equations may be obtained for x > 0 but this would not be expected

to change the critical behaviour by analogy with the single chain calculations.

4.5 Vesicles: Scaling Form Near κ = 2.

We first consider the free energy of vesicles with one free end. The scaling form of ŹV
2r(κ) may

be derived from that of ẐS
2r(κ) since solving (4.33) we find

ŹV
2r(κ) = κCr ω

−r(1 − 1
κ̄

r∑
s=1

Csω
s) (4.48)

which on comparison with (3.59) shows that

ŹV
2r(κ) =

Cr
κ

ẐS
2r+2(κ) , (4.49)

and this agrees with the previously noted relation (4.26). Combining (4.49), (3.65) and (3.62)

gives the scaling form

ŹV
2r(κ) ◦∼ 2

16r√
πr2 ϕ́

V(
(κ − 2)

2
r

1
2 ) , (4.50)
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where ϕ́V = ϕ̂Sand using (3.66) gives values of g1 in agreement with table 1.

Using ŹV
2r+1(κ) =

Cr+1
κ ẐS

2r+2(κ) gives the same scaling form for ŹV
2r+1(κ) and hence we have

the general form (1.13) with ϕ̂V replaced by ϕ́V of equation (1.15). The asymptotic form given

in (1.15) follows from (3.70).

To find the partition function when both ends are grafted to the surface we substitute

ẐV
2r(κ) =

2ω−r(g(κ) + (r + 1)h(κ))Cr
(r + 2)(g(κ) + h(κ))

ur(κ) (4.51)

into (4.27) and solving the resulting difference equation gives

ur(κ) = 1 − 3κ
κ̄
(g(κ) + h(κ))

r∑
s=1

Csω
s

(g(κ) + sh(κ))(g(κ) + (s+ 1)h(κ))

=
κ − 2
κ̄

θ(κ − 2) +
3κ
κ̄

∞∑
s=r+1

(g(κ) + h(κ))Csωs

(g(κ) + sh(κ))(g(κ) + (s+ 1)h(κ))
. (4.52)

Following the analysis for a single walker this leads to the following scaling form near the binding

transition,

ẐV
2r(κ) ◦∼ 16r

r3 ϕ̂V(
(κ − 2)

2
r

1
2 ) , (4.53)

where for z ≤ 0

ϕ̂V(z) = ez
2
(3 + 2z2)

6
π

∫ ∞

1

e−uz2

u3/2(3 + 2uz2)2
du , (4.54)

and substituting u1/2 = −v/z gives

ϕ̂V(z) = −ez
2
(3 + 2z2)

12z
π

∫ ∞

−z
e−v2

v2(3 + 2v2)2
dv (4.55)

=
4(1 + z2)

π
+

ez
2
z(6 + 4z2)erfc(−z)√

π
, (4.56)

which provides the continuation to z > 0. Using the properties of the erfc function, equation

(3.69) and before, gives the asymptotic forms

ϕ̂V(z) ∼




3
π

1
z4

for z → −∞
4
π + 6z√

π
for z → 0

8z3ez2
√
π

for z → ∞ ,

(4.57)

which is in agreement with the form (1.13) quoted in the introduction. These forms also confirm

the critical exponents in table 1 which we previously obtained from the recurrence relation.
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A Critical exponents from Recurrence Relations

The recurrence relations which arise in this paper are of the form

f(r)ur − g(r)ur−1 = h(r) (A.1)

which we rewrite as

ur − G(r)ur−1 = H(r) (A.2)

or as the equivalent second order relation

ur −
(
G(r) +

H(r)
H(r − 1)

)
ur−1 +

H(r)
H(r − 1)

G(r − 1)ur−2 = 0. (A.3)

Here G(r) = g(r)/f(r) and H(r) = h(r)/f(r) are rational functions which may be expanded to

give the asymptotic forms

G(r) ∼ ρ1(1 +
g′

r
+

h′

r2 + . . .) and H(r)/H(r − 1) ∼ ρ2(1 +
g′′

r
+

h′′

r2 . . .). (A.4)

We seek solutions having the asymptotic form ur ∼ ρrrg. Substitution in (A.3) and expanding

the coefficients to order 1/r2 gives

ρ2 − ρ(ρ1φ1(r) + ρ2φ2(r)) + ρ1ρ2ψ(r) = 0 (A.5)

where

φi(r) ∼ 1 +
gi − g

r
+

hi − ggi + g(g − 1)
r2 + . . . (A.6)

with g1 := g′, g2 := g′′, h1 := h′, h2 := h′′ and

ψ(r) ∼ 1 +
g′ + g′′ − 2g

r
+

g′ + h′ + h′′ + 2g(g − 1) + g′g′′ − 2g(g′ + g′′)
r2 + . . . (A.7)

Equating the constant terms in (A.5) gives a quadratic in ρ having roots ρ1 and ρ2. Setting ρ = ρi

in the coefficient of 1/r gives (ρ1 − ρ2)(g − gi) = 0. If ρ1 �= ρ2 then the exponent corresponding

to ρi is gi. On the other hand, if the roots are equal then the coefficient of 1/r is automatically

zero and equating the coefficient of 1/r2 to zero gives a quadratic for g having solutions g = g′

and g = g′′ +1 and the asymptotic form of ur will be governed by the larger of these two values.

Notice that h′ and h′′ cancel out at this order.

B The partition function for a chain with both ends fixed.

The grand partition function corresponding to ZS
t (x

f |xi;κ) is defined by

GS(xf |xi;u, κ) :=
∑
t≥0

ZS
t (x

f |xi;κ)ut. (B.1)
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Substituting from (3.4 ) the summation over t may be removed at the expense of introducing a

factor 1−2u cos(k) into the denominator and hence a set of poles parallel to the real k axis. The

only contribution to the integral comes from the one at

k = −i log(λ) where λ =
1
2u

− 1
2u

√
1 − 4u2 (Bulk pole) (B.2)

and is the root of λ2 − u−1λ+ 1 = 0 which is less than one. Note, the position of this pole does

not depend on κ. To evaluate the contour integral there are once again two cases depending on

whether or not the binding pole is inside or outside the contour. However, in both cases exactly

the same result

GS(xf |xi;u, κ) = λ

u(1 − λ2)

[
λ|xi−xf | +

(κ − 1 − λ2)λx
i+xf

(1 − (κ − 1)λ2)

]
(B.3)

is obtained. This may be written as the sum of the partition function for chains which avoid the

wall and those which have at least one contact, and making the substitution λ2 = u−1λ − 1 in

part of the expression we find

GS(xf |xi;u;κ) = u−1λ(λ|xi−xf | − λx
i+xf

)
1 − λ2 +

κλx
i+xf

1 − κuλ
. (B.4)

Notice that the denominator of the first part cancels to leave a polynomial in λ. A further form

which shows that κ = 2 is a special value is

GS(xf |xi;u;κ) = λ|xi−xf | − λx
i+xf

1 − 2uλ
+

κλx
i+xf

1 − κuλ
(B.5)

since when κ = 2 the denominators coincide. To determine the critical exponents we substitute

explicitly for λ in the denominators and find

GS(xf |xi;u, κ) = λ|xi−xf | − λx
i+xf

√
1 − 4u2

+
1
2κ(κ − 2 + κ

√
1 − 4u2)λx

i+xf

(κ − 1) − κ2u2 . (B.6)

From (B.6) it can be seen that for κ ≤ 2, GS(xf |xi;u, κ) has a singularity at the bulk critical

point u = 1
2 with exponent γ11 = −1

2 except at κ = 2 when γ11 = 1
2 . For κ > 2 there is a second

singularity at

u = uc(κ) =
√
κ − 1
κ

(B.7)

corresponding to the surface transition which has exponent γ11 = 1 and occurs before the bulk

transition. At κ = 2, GS(xf |xi;u, κ) reduces to the simple form

GS(xf |xi;u, 2) = λ|xi−xf | + λx
i+xf

√
1 − 4u2

. (B.8)
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C Partition function and critical exponents for chains with one

end free.

If one end of the chain is fixed at xi and the other is allowed to be at any xf ≥ 0 the relevant

partition function G̃S(xi;u, κ) is obtained by summing (B.6) over xf from 0 to ∞. Now

∞∑
xf=0

λx
i+xf

=
λx

i

1 − λ
and

∞∑
xf=0

(λ|xi−xf | − λx
i+xf

) =
(1 + λ)(1 − λx

i
)

1 − λ
(C.1)

and hence

G̃S(xi;u, κ) =
1 − λx

i

1 − 2u
+

κλx
i
[
(κ − 1 + κu)(1 − 2u) + (κ − 1 − κu)

√
1 − 4u2

]
2(1 − 2u)((κ − 1) − κ2u2)

(C.2)

The critical curve is the same as when the end is fixed and the exponent γ1 at the binding

transition κ > 2 is the same as with both ends fixed. However for κ < 2 the exponent is now

γ1 = 1
2 . At κ = 2, G̃S(0;u, 2) takes on the simple form

G̃S(0;u, 2) =
1

1 − 2u
+

1√
1 − 4u2

. (C.3)

and the dominant exponent is γ1 = 1.
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Figure 1: Two non-intersecting directed walks above a wall (left) and (right) a vesicle made by

adding two pairs of steps (grey) to two non-intersecting walks starting and ending a distance two

apart.
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Figure 2: The contour and pole structure in the complex k-plane, used to evaluate the integral

(3.4).

Figure 3: The figure shows an example of one configuration of weight 22 and the corresponding

set of 4 walks, each of weight one, obtained by reflecting segments of the walk between surface

contacts.
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Figure 4: a) All eight terms of the constant term formula for vesicles – each horizontal line

represents a directed walk with no constraints. b) Pairs of terms can be combined and interpreted

as one walker not going below the wall – this is the method of images involution. c) All eight

terms can be combined into two terms (of two factors each – each of which represents a walker not

going below the wall) – these two terms give correspond the the determinant for non-intersecting

walkers.
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