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A A-state Potts model with multispin interactions is considered which includes models recently introduced
by other workers in order to provide a Hamiltonian for site percolation. A duality transformation is
obtained for this model which becomes the matching relation for site percolation when A = 1.

1. INTRODUCTION

It has been known for some time' that the thermody-
namic properties of the A-state Potts model yield corre-
sponding properties of bond percolation in the limite A—1.
Recently Kunz and Wu? have extended this result to site
percolation by considering a generalization of the Potts
model to include multispin interactions. Ashley and Tem-
perley’ have further developed this idea and shown that dif-
ferent Potts models can yield the same percolation problem.

The duality transformation for the Potts model with
two-spin interactions was obtained by Potts* using a transfer
matrix method. It was later obtained by topological argu-
ments (see for example Refs. 5 and 6) and may be written

@ - DE = 1) =4, (1.1)

where z is defined in terms of the interaction parameter K by
z = e~ ** and z* denotes the corresponding variable for the
dual problem. In Sec. 3 we generalize Eq. (1.1) to Potts mod-
els with multispin interactions. The duality relation for the
zero field partition function is seen as an immediate exten-
sion of the matching relation for the mean number of clusters
in a site percolation problem.” The latter is rederived by a

simpler method which avoids the use of nonplanar graphs.

In the case A = 2, the Potts model with two-spin inter-
actions reduces to an Ising problem with two-spin interac-
tions for which the duality relation was given much earlier
by Kramers and Wannier.* Duality for Ising models with
multispin intractions has recently received considerable at-
tention.’"’ The A = 2 Potts model with three-spin interac-
tions in zero field is also isomorphic with an Ising model with
only two-spin interactions. Our result in this case enables the
self-duality relation for the Ising model on the triangular
lattice to be obtained without the usual reference to the hon-
eycomb lattice (see also Wegner!!).

In general the A = 2 Potts model with /-spin interac-
tions is isomorphic to an Ising model with even interactions
of order 2 [/ /2] and less, and seems not to have been dis-
cussed previously when />4 except perhaps as a special case
in the articles sited above.* "’

The model is introduced in Sec. 2 in a form which in-
cludes the conventional Potts model® as well as the models of
Kunz and Wu? and Ashley and Temperley.’ The correspon-
dence with bond and site percolation is discussed in a unified
scheme and the connecting formulas, some of which are re-
quired for the main discussion of Sec. 3, are derived.
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2. THE MODEL AND ITS RELATION TO PERCOLATION

Consider a system of spins S. Each spin has A states and
selected subsets interact via a Potts interaction. Let the set of
all such interacting subsets be denoted by I and define a
bipartite interaction graph G which has vertex set ¥ = (S,1)
and edge set

E = {(s,0) : 58, iel and sei.}.

Suppose that each interaction involves at least two spins, so
that the vertices of I have at least degree two, and also that
spins involved in each interaction /el are distinct so that
there are no multiedges. Let the states of each spin be in-
dexed by a variable ¢ = 1,---,A. In any state of the system let:

&= {iel: not all spins of / are in the same state},
7 = {seS: snotinstatea = 1},
§ = {iel: not all spins of i are in state @ = 1}.

Assign zero energy to the reference state of the system in
which all spins are in state @ = | and an additional energy
— kT logz, for each ie&, — kT logu, for each sey and

— kT logu, for each ief. If the variables {u, seS'}, {u, z,,
iel | all lie in the interval [0,1], then the reference state is a
ground state. The partition function is

Apy= 3 25, 2.1)
spin states
where
2 = [[zand g™ = [[p e~ 2.2)
ie& sen el

(This convention for a variable raised to the power of a set

enables all interaction variables to be considered as distinct
without making the notation unduly heavy.) The model so

defined will be called a generalized Potts model and denoted
by (S,1).

Now consider the percolation model P on G in which
each vertex of §is “occupied” with probability 1 and each
vertex 7 of / is occupied independently with probability p,. A
percolation state may be specified by giving the vertices [’
C 1 which are occupied, and such a state occurs with prob-
ability p’ (1 — p)' '". A path is a sequence of vertices, suc-
cessive members of which constitute an edge of E. An occu-
pied path is one in which all vertices are occupied. In any
percolation state two vertices are connected if there is an
occupied path between them, and a maximal set of connect-
ed vertices is called a cluster. A single spin will be thought of
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as connected to itself, and so a cluster may be single isolated
spin. The “percolation average” of arandom variable X (J ‘}is
defined by

Ay,=>p 0 =—p"rxU).

1'clit

(2.3)

Forexample X ( "y may be the number of clusters or the num-
ber of spins connected to a given spin when the vertices /' are
occupied.

We now demonstrate that the partition function of (S,7)
may be written as a percolation average for P. First note the
identities

z =[]z + (1 —2)8()]

iel

= 2 21— z)”H&(i), 2.49)
"cr ief’
where the indicater variable § (¥) is defined by
_ 1, ifidé
0 = {o, if ick. 2.5)

With p, = 1 — z, and taking I to be vertices of  which are
occupied in P we may write

2 = (JJ60), (2.6)
el’
By definition of & we see that
1, if all spins in each cluster are
16 = in the same state, )

iet’

0,
Substituting (2.6) into (2.1) and interchanging the sum and
average we obtain,

AG—pw = ([ 11 +G = e*e1),

e’

otherwise.

(2.8)

where ¢’ is the set of all finite clusters corresponding to I’
and ¥ (c) 1s the subset of vertices ¥ which belong to the clus-
ter ¢. In restricting the product to finite clusters we are as-
suming that sufficient i variables are less than one, so that
1V = 0 for any infinite cluster.

The result (2.8) will now be used to relate the thermody-
namic properties of (S,7) to the percolation functions of P.
We shall take z = 1 to mean u,— 17,V vel.

The free energy InA yields a generating function G (p,u)
for percolation theory, since

J — V(C)>
A=1 <Z'[l p'

5 (p)=——InA
ce't’

= (2.9)

Whenu = 1, ¥ (p,u) = {(n),, the mean number of finite spin
clusters, which for an infinite G is normally calculated per
spin or per interaction, since % itself would be infinite.

Differentiating (2.9) w.r.t. i,

39 Vi)
=8, 1" ) p 2.10
c?lnuv ol P ( )
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where §, = 1 if there is a finite cluster ¢, containing vertex v
but zero otherwise. Setting ¢« = 1 gives the probability that v
is part of a finite cluster, so that if G is finite,

) [
yly—y Po
For Ginfinite and ve¥ the percolation probability P, may be

defined as the conditional probability that, given v belongs to
a cluster, it belongs to an infinite cluster, and hence,

ve s,

vel’ 2.1

_, 0%
P=1—p! o Lz 2.12)
wherep, = lifseS.
Setting u, = 1, Vsand u;, = u,V i in (2.10) gives
ay 17l
={5,1"N, (2.13)
pe=1 v
dln g, e

where I (¢) is the set of interaction vertices in c. | (c,)| is a
measure of the cluster size, and if vel, it is the standard mea-
sure of cluster size in the site percolation problem P, defined
later. Equation (2.13) therefore gives the moment generating
function for the cluster size distribution. The moment gener-
ating function for |S (c,)| may be obtained by setting ., = 4,
Vs and u; = 1, V i. This is an alternative measure of the
cluster size and is, in fact, the number of sites in a bond
problem (see later), whereas |1 (c,)| is the number of bonds
(see also Stephen').

For v, v’ € ¥V, the pair connectedness P, is the probabil-
ity that v and v’ belong to the same finite cluster. This may be
obtained from (2.10) by differentiating first with respect to
4, and then with respect to y,, since the only terms which
survive the second differentiation are the ones where vand v/
belong to the same member of ¢'', thus

__¥y
W G, dnpy, T
:5‘?’%_\“:, if vk, (2.14)
My, Ol

The corresponding derivative of In A is a spin correlation
function.

The above relationship between percolation and the
Potts model has been derived by other authors for less gener-
al models.

Kastelyn and Fortuin' demonstrated a correspondence
between Potts models with only two-spin interactions and
bond percolation. This was recently developed by Stephen'
and Wu." For such amodel (S,7) the vertices / of the graph G
have degree two, and for each i € I the pair of edges
{(51,0),(i,s,)} may be replaced by a single edge (s,,5,) to give a
graph H. This operation is called suppression of the vertices
I. The edges so formed are deemed to be occupied when the
corresponding vertex of i is occupied and an occupied edge
provides a connection between its terminal vertices. The per-
colation model P corresponding to (S, ) is clearly the bond
problem on H. Figure 1(a) illustrates the Potts model for the
bond problem on the square lattice.
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FIG. 1. (a) Kasteleyn-Fortuin correspondence
between a Potts model with two-spin interactions
and the bond problem on the square lattice. The
self duality of this model is illustrated (b) Kunz-
Wu correspondence between a Potts model with
six-spin interactions and the site problem on the
triangular lattice. The dual model is also shown.

Key : 0 = interaction vertex, @ = primary spin, © = dual spin,— = primary edge, ---- = dual edge.

The percolation model P corresponding to any Potts
model (S,/ ) may be converted into a more conventional per-
colation model P in which all sites are randomly occupied.
Thessites S of G which are occupied with probability one may
be removed by the following “star” transformation. For
each vertexse Slet ] (s) be the vertices of I which are adjacent
to s. Then replace the edges {(s,i),/el (s)} by the complete
graph on I (s) and remove s from the vertex set of G. If s has
degree two this corresponds to suppression. If s has degree
three it is the star—triangle transformation. Multiedges
formed during the transformation may be replaced by single
edges without changing the connectedness of the model. The
resulting graph will be called G. The site clusters of P corre-
spond to the clusters of P, but a cluster of P which is just a
single spin has no counterpart in P. However, the following
simple relation holds between the mean number of clusters
for the two problems

(m),= (A, + 3 (1 —p)'®. (2.15)

seS
The pair connectedness for two vertices i,,i, € [ is the same in
both problems.

A given site problem may correspond to several Potts
models. Kunz and Wu? showed that the site problem on a
graph H corresponds to the Potts model (S, ) obtained by
taking / to be the sites of H and associating a vertex of § with
each edge of H. Clearly H is the graph G defined above. The

FIG. 2. Ashley~Temperley correspondence between a Potts model with
three-spin interactions and the site problem on the triangular lattice. The
key is as in Fig. 1.
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Potts model for the site problem on the triangular lattice is
shown in Fig. 1(b). This model involves six-spin interactions.
An alternative Potts model for which Pis the site problem on
the triangular lattice was given by Ashley and Temperley.’
This model is obtained by taking .S and 7 to be the two trian-
gular sublattices of a honeycomb lattice as shown in Fig. 2.
In contrast to the Kunz-Wu model only three-spin interac-
tions are involved.

It is well known that any bond problem may be trans-
formed into a site problem on a different graph. In the pre-
sent context, if the bond problem on a graph H corresponds
by the Kastelyn-Fortuin transformation’ to a Potts model
(S,7), then the equivalent site problem is P described above.

3. DUALITY FOR PERCOLATION AND THE ZERO FIELD
PARTITION FUNCTION

Consider a Potts model (S,/) and for simplicity assume
that all vertices have at least degree two. Assume also that
the interaction graph G is connected and planar, and that it
has been drawn in the plane to form a plane graph (also
denoted by G). The graph G obtained from G by the star
transformation is not necessarily planar, and is in general a
decorated mosaic.” The dual model (S *,/) is constructed by
placing a vertex of § * in each face of G and connecting it by
an edge to each vertex of / which lies in the boundary of the
face in such a way that no two edges intersect. The plane
graph so formed will be denoted by G * and G ** = G. Figure

FIG. 3. Duality on a finite graph. Both Potts models correspond to the site
problem on the tetrahedron. The key is as in Fig. 1.
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FIG. 4. Corresponding percolation states for the site problem on the square
lattice and its matching lattice. Open circles are occupied on the square
lattice, whereas solid circles are occupied on the matching lattice.

3 shows the dual transformation between the cube G and the
decorated tetrahedron G *. Notice that the Ashley-Temper-
ley mode! of Fig. 2 is self-dual, as is the square lattice with
two-spin interactions [Fig. 1(a)]. The dual of the Kunz—-Wu
model of Fig. 1(b) is the diced lattice in which the sixth order
vertices are interaction vertices. The percolation model P
corresponding to the latter model is also the triangular site
problem.

The percolation model P * corresponding to (S *,1) to-
gether with P constitute a pair of matching site problems.’
These have the property that the mean number of clusters at
probability p for Pis related to the mean number of clusters
at probability 1 — p for P*. (For the models in Fig. 3, Pand
P * are both the site problem on the tetrahedron which is self-
matching.) We now obtain a similar relation for P and P*
which by (2.17) implies the matching relation between Pand
P *_ A relation between the partition functions of dual mod-
els is also obtained by the same technique.

Suppose that the occupied vertices of G in a percolation
state of Pare colored black. This means that all the S vertices
are black, together with the subset 7 of I. The black vertices
together with the edges of G connecting black vertices form a
subgraph which we shall call G, the components of which
are the clusters. A corresponding state of P * may be obtained
by supposing that the vertices / \I " are occupied on G *. If
these vertices together with the vertices S * are colored white,
the white vertices define a subgraph G, the components of
which are the clusters for this state of P *. Figure 4 shows a
pair of dual models and the corresponding states. The model
(8 *,1)is the Kunz—Wu model? for which P *isthesite prob-
lem on the square lattice, and its dual (S, ) is such that P s
the site problem on the square lattice with first and second-
neighbor connections. The latter is the matching lattice of
the square lattice. The figure illustrates the following
theorem.

Theorem: With Gz and G, defined as above:

(a) every component of G, is contained within a single
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face of G, and

(b) each face of G contains exactly one component of
G, The same statement is true with G and G, inter-
changed by symmetry of the dual construction.

Proof: Gg and G, never intersect, since the only possi-
ble intersection points are vertices of /, and in any percola-
tion state each vertex of I either belongs to G or to G . It
follows that any two vertices which are connected in G,
must lie in the same face of G, which proves part (a).

To prove part(b) we first notice that the faces of G are
made up of faces of G each of which contains a vertex of § *.
It follows immediately that every face of G contains at least
one component of G . To show that there cannot be more
than one, we must prove that any two vertices of G, which
lie in the same face of Gz are connected on G . It is sufficient
toprove this for two vertices of S *, since any vertex of / \ I ' is
on the boundary of some face of G and is therefore connected
toavertex of S *. Suppose that the vertices s, and s, of S * liein
the faces F, and F, of G which are within the face F of G
Since Fzis a connected region of the plane, the faces F, and F,
must be connected by a chain of faces of G which are within
Fp, successive members of which have edge to edge contact
along at least one edge of G' which is internal to F. An edge
of G which s internal to £y must have a white vertex which is
inf N1, and hence vertices of S * which lie in successive faces
of the chain must be connected on G, via this white vertex.
Hence the vertices s, and s, are connected by a chain of white
vertices.

It follows from the theorem that the number of faces f,
of G, including the infinite face, is equal to the number of
components n, of G, which is the number of clusters for
the problem P *. Also the number of faces of G is deter-
mined in terms of n, by Euler’s law applied to G, thus,

Ny =fg=ep—vg+ng+ 1 3.1
On taking averages over all percolation states,
(np), =P @)+ (np)i_,, (3.2)

where the average on the right is calculated for P *, for which
1 — p, is the probability of occupation of . The function
@ (p) is linear in the variables p,, and is given by

P@p)=|S|+ Zpi— Eyipi— 1,
il iel
where y,is the number of vertices of S which are adjacent to .
Notice that

(3.3)

PN —p)=|S|+ |- |E| =3 pi+ > 7iPi— L,

el iel

= “S*[_Zpi_f_z'}/ipi'*‘ 1,

iel iel
= — D *(p), 3.4)

where we have used (3.3) with p; = 1. Notice also that by
construction ¥, is also the number of vertices of S * adjacent
to i.
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The matching relation obtained by Sykes and Essam’
was

(fip)p=No @)+ (Tw)i _p» (3.5
where N = |I |. Using (2.7) we find

Ne@ =P+ X p'¥ =310 -p)Y, (3.6)
seS

seS*
which should be compared with their equation (6.14).

The above relations are exact when G is a finite graph
but should also apply to an infinite lattice graph in the ther-
modynamic limit, in which case one works with the mean
number of clusters per vertex of I. A proper treatment of this
limit will not be attempted here. However, we note that al-
though our main theorem is true when the lattice is made
finite by embedding it in a torus in the usual way (see Fig. 4),
not all subgraphs G are properly embedded in the torus.
This creates difficulties when applying Euler’s formula for
the number of regions.

As an illustration of the above formulas if P is the site
problem on the square lattices with first and second neighbor
connections,

Pp)=N(1—-3p)
and
d@)=1—-3p+2p"—(1—-p),

=p =4’ +4p’—p',

in agreement with Table II of Sykes and Essam.’

A dualityrelation forthezerofield partition function will
now be obtained. Setting u = 1 in (2.8),

A(l—p, )= (1", (3.7

where n = | ¢’|, the number of finite clusters in the percola-
tion model P. The duality for A may therefore be considered
as a percolation problem, and the notation of the first part of
the section will be maintained. By definition,

AM,=A"), =3 pla—p A (3.9)
I'cr
From (3.1)
nanW+|S|+|1l|—'z7/i_l’ (3.9)

iel’
which is Eq. (3.3) before averaging. Substituting in (3.8)
gives

(A", =A1=1S A T=7(1 = p)TA"™, (3.10)

r'cr

and renormalizing the distribution gives
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am™)

P
=AST A —p+pA TN Y PN A —ph A,
1'clt
=AM 1 —p4pa' 1", (3.11)
where
p*= 1=p (3.12)

Cl—ptpAt T
WhenA = 1,p* = 1 — p, which is the usual percolation
relation. In terms of the Potts model variables,

AED =AY z4+ 1 =24~ "A*z*1), (3.13)

where

pe_ 1= (3.14)
AT 4 (1 -2
which may be written in the symmetric form
C '-D '=D=A7"1 (3.15)

Equations (3.12), (3.14), and (3.15) are local relations and
the subscript / on the variables z, p, and y has been sup-
pressed for convenience. For model with only two-spin in-
teractions y; =2, V iand Eq. (1.1) is obtained.

Itis worth noting that when A = 2 the Ashley-Temper-
ley model’ is isomorphic to a triangular lattice Ising model
with a two-spin interaction parameter y = z'/? for which the
duality relation reads (with y = 3),

O =D -1 =4
and since the model is self-dual, the critical point (assumed
to be unique) is located at y? = % as found by Onsager.'
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