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Abstract The mean length of finite clusters is derived exact] y for the case of directed com-
pact percolation near a damp wall. We find that the result involves elliptic integrals and
exhibits similar critical behaviour to the dry wall case.
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1 Introduction

The directed compact percolation model, introduced by Domany and Kinzel [4], is an ex-
actly solvable model. Directed compact percolation provides us with a testing ground for the
predictions concerning the phase and critical behaviour of percolation more generally as we
can examine its behaviour in a variety of circumstances, such as the damp wall we examine
here. It also allows us to understand the effect of directness on percolation, so providing a
link between isotropic and directed, non-compact percolation. Directed compact percolation
near a wall was reviewed in (7] and the percolation probability was calculated in the damp
wall case. Expressions for the mean cluster length have already been found in the bulk [5],
wet wall [6] and dry wall [1] cases, and this paper proceeds to find an expression in the damp
wall case.

The model is defined on a directed square lattice, the sites of which are the points in
the 7, x plane with integer co-ordinates such that 7 € N U 0, x € Z and t + x is even. The
growth rule is that the site (¢, x) becomes wet with certainty if both the sites (r — 1, x + 1)
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Fig. I An example of a directed

compact percolation cluster near ' ( ) O O O O
a damp wall, with the O O O O
corresponding pair of weighted SN /N
directed walks. This particular } |
cluster has length 8

are wet, and with probability p if only one of these sites is wet, defining g = 1 — p to be the
probability of remaining dry in this case. Where both of the sites (f — 1, x & 1) are dry, the
site (¢, x) remains dry with certainty, ensuring a single compact cluster is produced from a
seed of m contiguous sites at 1 =0, x >0, where we restrict ourselves to the case m =1 in
this work. We introduce a wall at x = —1, and consider the wall to be damp—that is, made
up by some combination of wet and dry wall sites, governed by a wall occupancy probability
Pw- .

The problem can be mapped to pairs of directed walks, weighted with two fugacities &)
and k> as shown in Fig. 1, and the generating function G(z; k1, k) for these walks, found in
[7], allows us to solve the percolation problem.

4

2 Mean Cluster Length

We define the length of the cluster to be the number of sites in the shortest path from seed
to terminal point, including the seed—it is hence equal to the number of occupied columns.

The generating function G(z; k1, k) for the walk problem [7] gives a weighting of z to
each growth stage in the corresponding cluster, and so a cluster with ¢ growth stages (and
hence length 7 + 1) will gain a weighting of 2. So in order to find the mean cluster length
we take the derivative with respect to z of zG(z; k1, k2), and evaluate with the values cor-
responding to the percolation problem—noting that we must also adjust by a terminating
factor of g* to bring the walk model in line with the percolation problem. So the unnor-
malised mean cluster length is given by

- d w w
L(p, p)=(1~ p)z—-[zG(z; o "—)] @
dz Pa 4 ) =pi-m

where G(z; k1, k2) was found in [7]. In [8], after substituting the percolation values of
and k-, the generating function was re-expressed as:

G(z; o "—"’) = (1 - ﬁ)[A.& - Az(2)<1 - ‘”—)] 3 CZa(0)2”
rq 4 z 2z Z

r=I|

wq we we We ad 2r
14+ —=)|AI— - A2 _——— C,Zy(d
( + z)[ = ,(z)(wd Z)]; 2 (d)z
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FA )( | o ) Z:(',');,"' Ar(Dw (¢ — d)kr (2.2)

0,
rel

where
el d=f=_F 2.3)
q P
( w T )
W = pq, wg = f_p_z__f_. (2.4)
Puw

A= : 2.5)

'T - d)o '

cd

Ax(z) = (2.6)

weki(c — d) (22 — wewy)

Also note that Z5, (d) is a sum over Dyck paths of length 2r weighted with a factor k = 1+d
for each contact with the axis (the contact polynomial, denoted Zzs, in [3]). It was shown in
(3.19) and (3.23) of [3] that

Zy(d)=(+d))_ Byomd" @7

m=0

where B, , is the Ballot number, as defined in [2]:

(h+ Dt!
B, y= T 1 (2.8)
G +m+ DG —h)!

2.1 Calculation
We can write the mean length as:

¥ d w w

L(p, pw) = Q(p, pw) + p(1 = p)3—G(z; Do, q—) (2.9)

dZ rPq 9q z=p(l—p)

where we recall from [7] that Q(p, pw), the probability of a finite cluster, is given by:

1 for p <

Ni—

pll’ qw
Q(p, pw) = qu(pq; L

pa’ q )_ L0-20) 930"
(1-q)*(1-2g+q9qw) for p > 2

We differentiate (2.2), using the following relationships to simplify the expressions:

(2.10)

A A A A
Api=Ay(w)=—21  Ayw)=- A, and 2_AF% o)
W — Wy W — Wy Wy [OR
and hence write the derivative of the generating function as:
d
-—G(z;ﬂ,ﬂ) =To+T) +T @.12)
dz P44 Jl=pa-p
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where

200 )M dy!
Ny = — 2.13
TSN ) 2.13)

4A, oA Y
N=— I‘(‘,Z-,((‘)m" e E ;‘waz,'

w,. —1 (). |

i .

Z( W' L( o) (2.14)

r=0 s=r4d

3A 2A
1"2—_-_._ZC(U Z C (l) ___l_t__ZZC ZZr(C)w
s=r+l1 “e r=1
+A|+A2 Ziczwzr_ H_ﬁ”_‘i icz (d)o? (2.15)
W, p— e Wc ) o ' '

Note that the last term of I'y cancels the first term of I'y. These terms have been introduced
to obtain the simplification below.

In order to make contact with the dry wall limit analysed in [1] we write the partition
function in the form:

Za(c) = (l—}-c—ZCw) (2.16)

s=0

=" ((c -+ ZC@jﬁ) (2.17)

sS=r

where

(2.18)

2w, forec > 1

i Crof = 1 =20, — /1- 4w, [ forc <1
= = 1
r=1 ¢

Substituting (2.17) into (2.14) gives:

4A,

r, -—:—-—(c—c*)Zer +——Zer ZC w;
2A' Z Clo¥ + Zc, ! Z Co! (2.19)

s=r+l

We split the second term into two halves, replace r by r + 1 in the first half and combine the
second half with the remaining two terms to give

Fi=4Ac—c) ) rCo ™ + ==Y r+ DCrw* Y C}
w,

r=1 < r=0 s=r+l

A« - _
+ =3 Cr+nCaw Y. o} (2.20)

C r=0 s=r+1
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So we have:

. - d el . b Ay p .
'y =4A (¢« )(/‘A (L(,«. > + 7‘(;511 (/’)) (221

where
(,2 oo 00
L*(p) = > YN +2)Ce + @+ )Cwl] Y Coof
r=0 s=r+1

which comes from the mean length calculation in the dry wall case, found in [1] to be:

L (p)=6(p - p.)

3-2
q( = p)+L*(p) (2.22)

where 6(p — p.) is the unit step function, which is zero for values of p below p, = 3
We split I'; in (2.15) into two parts

=T +Tn (2.23)
where
A+ A, 2 2 Wy — 2
My = Crol — 14+ — C,Zr (d)w” 2.24
21 = o I:ZI: + o ; 2 (d)w; ( )
and
3A 2A,
r2,=—-—Zc, ol Z Cout — 221 1242 Zc Zo ()Y
@e r=0 s=r+l e r=}
A+ A - 2,2
+ — Clw 2.25
o 2 (2.25)

r=1

We note that, for our later convenience, we have split the term with a coefficient 2 up into
two halves, one in each of the components. Substituting (2.16) into (2.25), we have:

r—1

r= i

€ r=0 s=r+l

A+ A & 3A, 424, = .
= > Clo - (1 +0) > G (2.26)

e
r=|

Interchanging the limits on the first term it cancels with part of the second term, leaving

=0 ¢

|+A2 ) 3A, +2A;
Iy = 2Y ¢ C, Co | - 221 T2 227
., [sz w+z,w( P2 g0 )
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Now if we split the first term in half, reverse the order of summation, and manipulate the
sums, we get:

A+ A 3A, +2A
1+ Az 1+ 21

Iy = et +2) - +0) (2.28)
A+ A A
L Basr BT YA DTS S (2.29)
W, W

and so we have simplified T'; to the form:

A A A
= —ﬁ——-z-c"(c* —2¢) — ~—lc*(| +0c)

(4 wl.

A+ Al o s ( wd) - 2
_— Col — |1+ — C,Zy(d)w? 2.30
+ o [ E T, “+ o ,§=1 2 (d)wy (2.30)

r=1

2.2 Exact Result

The final result for the mean length of compact clusters, using (2.9) with (2.10) and (2.12)
and grouping coefficients, is:

L(p, pu) = AL(p. pu) Y C2(p@)” + BL(p, pu) ) CrZar(d)(pg)”

r=I1 r=I1
+ Dp(p, pu)L*(p) + EL(p, pw) (2.31)
where
2 3
Puwd
AL(p, pw) = (2.32)
t £ qw(] _q(l + pw))2
2(,2
q9°(pyq + pw — P)
BL(p, pw)=— (2.33)
L Pl = (T =g+ pu)?
p
Dy.(p, py)=——"— (2.34)
L P) =T (0¥ po)
2,2
ppwl —pw)—p+p /7,4,) < 1
(I=pw)(p=pw+ppw) for p = 2
EL(p, pw) = X R (2.35)
_ @2 U =pw—=Q=3pw)(I+pw)g+(1=5py)q4"+Pyq”) 1
=pu) (1= 2 (1=g(I+pw)? forp>3

2.3 Critical Behaviour

The asymptotics of the mean length, calculated in [8], show that the behaviour near the
critical point p = § is dominated by the elliptic integral K (16p%g?) from the L*(p) term,
and we have:

L(p, pu) = Blog|2p—1|+C (2.36)

where

-8
B = M 2.37
”(] - pw) ( )
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| dhlopg2 X])‘:v ‘
C=—— 4|+ —2s + C*(pu) (2.38)
(= pw) i a(l = pu)!
| Pu b 2pl = pl for p < %
+ T : (2.39)
=P | 8 17p+6p2 + pl, forp=1t
where
2 el 2r
Py t+2pw—1 1
c* =—2———% CZ,Q2p,— |~ 2.40
(Pw) 201 — Pw)3 ; Lo (2p ) 2 ( )

So we can see that the damp wall case exhibits similar critical behaviour to the dry wall
case.

2.4 Comparison to Dry Wall

We compare the mean length result we have found for the damp wall model to the previously
found result for the dry wall case. Setting p,, = 0, we find that:

d=-1, AL =0, Zy(d) =0, Dy (p,0)=1 (2.41)
and
0 for p < %
E (p,0)= N (2.42)
(1-g)° 2
thus:
Lp.0 =L +] querg PSP (2.43)
9“—__5%— for p > p,.
=L (p) (2.44)

as expected. So we see that for p,, = 0 the damp wall expression describes the dry wall case
found in [1].

2.5 Further Analysis
2.5.1 Expansion

Expanding (2.31) in powers of p and ¢ gives series which agree with those obtained by ap-
plying (2.1) to the expression for the generating function found in [7], (4.69), both yielding
the following expansions:

L(p, pw) =1+ pw+ (1 + pu +2p2)p + 2+ pu +5p)) p*
+ (3 +3pu +3py —7p}, + 14py)p°
+ (64 3pu +2p;, + 21 p, — 42p, +42p}) p

w "
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FOF Mpa 1 9pl Xpl 4 138p2 —198p) 4 132p0 )y p™ + -+

(2.45)
L= g, pw) =L = pudg + (5 3p2aag” + (134 5p, —5p% —5p2)g°
F QO+ 18y — py — Hp, = Tp,)q"
+ (46 +4dp, + 1Tpl —19p} —27pd —9p3yg° + ... (2.46)

2.5.2 Behaviour of the Mean Length Near the Curve g = 1/(1 + py,) in the Low Density
Region

An interesting mathematical peculiarity found in the solution is the apparent divergence in
the low density region, as the amplitudes A, and A, are divergent at ¢ = 1/(1 + p,,). This
appears to lead to a divergence in the mean length below the critical probability, which is
impossible on physical grounds.

Numerically the mean length calculated from (2.31) shows no divergence at g*. The
strongest divergence is from the A, terms and the coefficient of A, evaluated at ¢* contains

a lactor:
2r 2r
(””Z <<1+pw>2)> Zczz’(”’”’((wpw)z)

r=1 =1

We can show using Mathematica that this coefficient vanishes, although this is not sufficient
to eliminate the divergence which is quadratic. We find that the resulting simple pole cancels
that arising from A, and hence there is no divergence in the low density region, as expected.

' We note that at ¢ = ¢*, ¢ =d = p,, and the origin of the divergent amplitudes came from
using the formula in (4.40) of [7] for Zgr. It may be that this could be avoided by instead
using the expression in terms of Ballot numbers found in [2].
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