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Abstract. Many problems concerning lattice paths, especially on the square lattice have been
accurately solved. For a single path, many methods exist that allow exact calculation regardless of
whether the path inhabits a strip, a semi-infinite space or infinite space, or perhaps interacts with
the walls themselves. It has been shown that a transfer matrix method using the Bethe Ansatz
allows for the calculation of the partition function for many non-intersecting paths interacting
with a wall. This problem can also be considered using the Gessel–Viennot methodology. In a
concurrent development, two non-intersecting paths interacting with a wall have been examined
in semi-infinite space using a set of partial difference equations.

Here, we review this partial difference equation method for the case of one path in a half
plane. We then demonstrate that the answer for arbitrary numbers of non-intersecting paths inter-
acting with a wall can be obtained using this method. One reason for doing this is its pedagogical
value in showing its ease of use compared to the transfer matrix method. The solution is expressed
in a new form as a “constant term” formula, which is readily evaluated. More importantly, it is
the natural method that generalizes easily to many intersecting paths where there is inter-path
interactions (e.g., osculating lattice paths). We discuss the relationship of the partial difference
equation method to the transfer matrix method and their solution via a Bethe Ansatz.

Keywords: directed paths, interacting walks, lattice paths, difference equations, constant term,
Gessel–Viennot theorem, Bethe Ansatz, transfer matrix method

1. Introduction

Recently, the problems of one- and two-directed paths interacting with one and two
walls via contact interactions on the square lattice has been accurately solved [4]. In
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particular, the partition functions for fixed length and fixed starting and ending posi-
tions have been evaluated. Another recent development [3] has been the proof of two
theorems concerning the evaluation of the partition function of N such paths with ar-
bitrary inhomogeneous (with respect to the direction perpendicular to the directedness)
weights; these theorems give the answer in terms of a determinant provided the solution
of the one-path problem can be structured in a particular fashion. In a further work [2],
it was shown that the one-path solution for the case of surface contact interactions with
homogeneous bulk weights satisfies the conditions of those theorems, and hence, a so-
lution of N paths in a strip and in a half-plane interacting with their surfaces was given
for all numbers of paths N. These formulae generalize the “master formulae” of Equa-
tion (5.9) of [5] and Equation (4) of [6] where paths that do not interact with a surface
are considered. This method of solution calculates the partition function for paths be-
tween two walls (in a strip) and then finds the half plane (one wall) partition function
as a limit. This is based on a transfer matrix method. However, the original work on
one and two paths [4] found the solution directly in the half plane via the solution of
a set of partial difference equations. This had two advantages: First, the solution of
the half-plane was direct, and second, the solution came out naturally as the “constant
term” of a Laurent series which was simple to evaluate. In fact, the solution of the one-
path problem is substantially simpler using the partial difference equation method. As
has now been shown by its use in the osculating path problem, this method, because of
its constant term solution, is the method that easily generalizes, not only to many paths,
but also to problems outside the range of the Gessel–Viennot theorem [7,8] where paths
are allowed to intersect (but not cross).

In this paper, we generalize the partial difference equation method by applying it to
the case of the N-path problem of Brak et. al. [2] in the half plane. This demonstrates its
ease of use compared to the transfer matrix method though the partial difference method
currently lacks rigor. We shall see that the solution involves using an Ansatz for the trial
solution of the partial difference equations that is similar to the Bethe Ansatz for the
components of the eigenvectors of the transfer matrices for the problem. This leads us
to discuss the relationship between the partial-difference method and the transfer matrix
method.

2. Partial Difference Method for Non-Intersecting Paths and a Wall

2.1. The Model

A lattice path or walk in this paper is a path on a square lattice rotated 45� which has
steps in only the north-east or south-east directions. See Figure 1 where variables yi, y f

and t are shown. The path closest to the lower wall has weight v(1)w(1; 2)w(2; 3)
w(3; 2) � � �w(1; 0)w(0; 1) = κ3 so that yi

1 = 1 and y f
1 = 1. A set of paths is non-

intersecting if they have no sites in common. First, we describe the general model
considered by Brak et. al. [3] in a strip of width L. This requires the following sub-
domains of ZN:

o

SL = fy j0 � y � L;y 2Z and y oddg; (2.1a)
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Figure 1: Three non-intersecting directed paths of length t = 14 in a strip of width
L = 9.

e

SL = fy j0 � y � L;y 2 Z and y eveng; (2.1b)

SL = fy j0 � y � L; y 2 Zg; (2.1c)

o

UL = f(y1; : : : ;yN) j1 � y1 < :: : < yN � L; yi 2
o

SLg; (2.1d)

e

UL = f(y1; : : : ;yN) j0 � y1 < :: : < yN � L; yi 2
e

SLg; (2.1e)

UL = f(y1; : : : ;yN) j0 � y1 < :: : < yN � L; yi 2S Lg: (2.1f)

We will use
p

UL to denote
o

UL or
e

UL. Note that in most cases, it will be clear from

the context whether
p

UL is
o

UL or
e

UL and thus it will not be explicitly stated unless an
ambiguity arises. With the above definitions, the cardinality of the sets are

j

o

UL j=

�
b

L+1
2 c

N

�
and j

e

UL j=

�
b

L
2 c+1

N

�
(2.2)

and

j UL j=

8>>>><
>>>>:

2

�
b

L+1
2 c

N

�
L+2�N

L+2 ; L even,

2

��L+1
2

�
N

�
; L odd.

(2.3)

Note that this shows that the cardinalities of
o

UL and
e

UL are the same if L is odd, but
they differ if L is even.

Let N non-intersecting paths, confined to a strip of width L, start at positions yi =

(yi
1; : : : ;y

i
N) 2

p

UL in column m = 0 of the lattice sites and terminate after t steps at

positions y f = (y f
1 ; : : : ;y

f
N) 2

p0

UL in the tth column. If t is even, then p0 = p, else
p0 = p̄, where p̄ is the opposite parity to p. Paths are considered such that if (m�1; y)
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is the position of a path in column m� 1, the only possible positions for that path in
column m are (m; y0) with y0 = y� 1 provided y; y0 2S L. Non-intersection is defined
through the constraint that, if there are N sites occupied at m= 0, then in each column of
sites (0 � m � t), there are exactly N occupied sites. The path problem associated with
the five-vertex problem [9, 11] was generalized by Brak et. al. [3] by the assignment
of a weight w(y; y0) to the lattice edge from site (m� 1; y) to (m; y0) with y0 = y� 1
(see Figure 1). Note that, since w(y; y0) is assumed independent of the column index t,
due to the square lattice structure, the weights are periodic in the t direction with period

two: If y 2
p

SL, then y0 2
p̄

SL. In general, w(y; y0) 6= w(y0; y). An arbitrary weight v(yi)
was also associated with each of the sites occupied at m = 0. The weight associated
with a given set of paths is the product of w weights over all edges occupied by the
paths multiplied by the product of the v weights for each of the initial sites occupied.

The partition function
=

Z
N
t (yi

!y f ) is the sum of these weights over all sets of paths
connecting yi and y f :

=

Z
N
t (yi

!y f ) =∑
Y

N

∏
j=1

v(y j(0))
t

∏
m=1

w(y j(m�1); y j(m)); (2.4)

where y j(m) is the position of the jth path in column m and the set Y is given by

Y = fy j(m)j1 � j � N;0 � m � t; 1 � y1(m)< y2(m)< � � �< yN(m)� L;

y j(m) = y j(m�1)�1 and y j(0) = yi
j; y j(t) = y f

j g: (2.5)

In this paper, as was discussed Brak et. al. [2], we are interested in the case when
L ! ∞; with the weights given by

w(y; y0) =

8<
:

κ; for (y; y0) = (1; 0);

1; otherwise
(2.6)

provided y; y0 2S ∞ and

v(y) =

8<
:

κ; for y = 0;

1; otherwise
(2.7)

provided y 2S∞. It should be noted that while we have a model where weights are
associated with edges, the model chosen is exactly equivalent to 1, where a weight κ is
associated with every occupied site at y = 0.

Now, we re-derive the solution of the problem described above in the half plane
using a set of coupled partial difference equations. We begin by reviewing the solution
of the one-path problem.

2.2. One Path in the Half Plane
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Although this problem can be solved by many methods, for completeness, we briefly
discuss the partial difference equation method as presented by Brak, Essam and
Owczarek [4]. The reason for this is that the partial difference equation method is
one of the very few methods that generalize to many paths. We restrict the discussion in
this section to the domain 1 < κ < 2 (see [4] for the analytical complications that arise
in the extended domain κ > 1). Note that the final generating function is a polynomial
and thus, by analytic continuation, applies for all κ.

Consider a single path of length t which starts at yi
2S ∞ and terminates at y f

2S ∞.
A path of length t can be made by appending a single step to a path of length t�1 and
this consideration gives the partial difference equations

Z̄S
t (y

i
!y) = Z̄S

t�1(y
i
!y+1)+ Z̄S

t�1(y
i
!y�1); y > 0; t > 0; (2.8)

Z̄S
t (y

i
!0) = κZ̄S

t�1(y
i
!1); y = 0; t > 0; (2.9)

Z̄S
0 (y

i
!y f ) = (1+(κ�1)δ0;yi)δyi

;y f ; (2.10)

where δx;y is the Kronecker delta. The first equation (2.8) is a “bulk” equation valid for
y > 0, while (2.9) is clearly a boundary condition and (2.10) is an initial condition. To
solve (2.8), we begin by separating the variables with a trial solution of Z̄S

t (y
i
! y) =

Pt(y;k) = λt
k exp(iky) which requires

λk = exp(ik)+ exp(�ik); k 2 [0; π]: (2.11)

We now exploit the degeneracy of λk by noting that Pt(y; k) = λt
k exp(iky), and Pt(y;�k)

satisfy (2.8) so we try a more general form of solution, Rt(y; k) = λt
k(A(k)exp(iky)+

B(k)exp(�iky)) for Z̄S
t (y

i
! y). If this is substituted into (2.9), then we must have

A=B = exp(�iθk), where

exp(iθk) =�
λk�κ exp(�ik)
λk�κ exp(ik)

: (2.12)

Thus, the most general form of the solution for Z̄S
t (y

i
!y) satisfying (2.8) and (2.9) is

Wt(y) =
Z π

0
A(k)λt

k

�
exp(iky)+ exp(�iky+ iθk)

�
dk: (2.13)

It remains to choose the arbitrary function A(k) such that the initial condition (2.10) is
satisfied. If we choose A(k)=

�
exp(�ikyi)+exp(ikyi

� iθk)
�
=2π, then by a few changes

of variable, we can rewrite our trial solution as

Z̄S
t (y

i
!y f ) =

1
2π

Z π

�π
λt

k

�
exp(ikfy f

� yi
g)+ exp(ikfy f + yi

g+ iθk)
�

dk (2.14)

=

I
juj=1

(u+1=u)t(uyf
�yi

+S(u)uyf+yi
)

du
u
; (2.15)

where

S(u) =�

u+ 1
u �

κ
u

u+ 1
u �κu

: (2.16)
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If we Taylor expand the denominator of the integrand (uniformly convergent for κ con-
tained in any closed subinterval of (0;2)) and integrate term by term using

H
juj=1 uMdu=u

= 2πiδM;0, with M as an integer, it shows that the result is equivalent to evaluating the
“constant term” of a formal Laurent power series. Thus, (2.15) is equivalent to

Z̄S
t (y

i
!y f ) = CT

�
(z+

1
z
)t(zy f

�yi
+S(z)zy f+yi

)

�
; (2.17)

where z is considered a formal variable. More precisely, we form the quotient field,
FR((z)), from a ring, R((z)), of formal Laurent power series, ∑n�n0

anzn, where n0 is an
integer and an are elements of some integral domain. We then define the constant term
only on the subring, F�

R((z)), of FR((z)) isomorphic to R((z)). Thus, if γ= ∑n�n0
anzn

2

F�

R((z)), then

CT[γ] = a0: (2.18)

Note that this restricts the denominator series of F�

R((z)) to the form ∑n�n0
anzn with

an0 = 1. Clearly, this is the case in (2.17). It is then straightforward to show that
an integral

H
juj=1 f (u)du=u of a rational function f (u) is equal to CT[ f (z)], with f (z)

considered as an element of F�

R((z)) if and only if f (u), considered as a function, is
analytic in a punctured disc centered on the origin of radius greater than 1.

Evaluating the constant term gives

Z̄S
t (y

i
!y f ) =

�
t

1
2 (t� y f + yi)

�
�

�
t

1
2 (t� y f

� yi
�2)

�

+ ∑
n�1

(κ�1)n
��

t
1
2(t �2n� y f

� yi +2)

�

�

�
t

1
2 (t�2n� y f

� yi
�2)

��
: (2.19)

Note that the integral (2.15) can also be evaluated by residues. Our aim is, however,
to have a method of evaluating N-dimensional integrals; the residue method does not
seem to generalize easily whilst the constant term method does [1].

If t = 0 then, for yi
; y f

2S∞ the only case a non-zero result is obtained is if yi = y f

in which case (2.19) reduces to (2.10). Thus, the Ansatz (2.15) is justified.

2.3. Many Non-Intersecting Paths in the Half Plane

In this section, we will solve the one-wall, N non-intersecting path problem using the
method of partial difference equations.

The generating function (or partition function), Z̄N
t (yi

! y), of configurations in

which the paths start at yi
2

p

U∞ satisfies the following partial difference equation:

Z̄N
t (yi

!y) = ∑
e1=�1

: : : ∑
eN=�1

Z̄N
t�1(y

i
!y+e); y1 > 0; (2.20)
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with the boundary condition

Z̄N
t (yi

!(0; y2; : : : ;yn)) = κ ∑
e2=�1

: : : ∑
eN=�1

Z̄N
t�1(y

i
!(1; y2 + e2; : : : ;yN + eN))

(2.21)

meeting condition

Z̄N
t (yi

!y) = 0; if y j = y j+1 for any j � 1, (2.22)

and initial condition

Z̄N
0 (yi

!y) = δyi
;y(1+(κ�1)δy1;0); (2.23)

where e= (e1; : : :eN). Equation (2.21) allows for the wall (at y1 = 0) at step t, where the
only possibility for the previous step is y1 = 1. This ensures that negative coordinates
never arise. Equation (2.22) ensures the paths do not intersect. The variable κ counts
the number of sites the lowest path has in common with the wall.

Analogous to the one-path method, the first step is to separate the step variable t and
the height variables y in Equation (2.20). We then look for particular solutions to (2.20)
and use a linear combination to solve (2.21) and (2.22). This will use up all but N of
the arbitrary constants. The final constants are then used to satisfy the initial condition,

(2.23). Thus, for the first step we substitute Λt
k exp(ik � y) into (2.20) for Z̄N

t (yi
!y),

where k = (k1; : : : ;kN). This substitution will satisfy Equation (2.20) provided that

Λk =
N

∏
α=1

λkα ; λkα = exp(ikα)+ exp(�ikα); kα 2 [0; π]: (2.24)

If no two of the kα are equal, then any permutation of the kα will also give a linearly in-
dependent solution of (2.20) with the same value of Λk. Furthermore, if the sign of any
of the kα is reversed, another linearly independent solution is obtained with the same
value of Λk. Taken together any fixed set of kα with kα 2 [0; π], no two of which are
equal, gives us 2NN! solutions. We find below that by considering all possible subsets
of fk1; k2; : : : ;kNg, we have sufficient solutions to satisfy the initial and boundary con-
ditions and hence do not require further solutions. Specifically, let PN be the set of N!
permutations of f1; 2; : : : ;Ng, σ= (σ1; σ2; : : : ;σN) 2 PN , and η = (η1; : : : ;ηN), where

ηα = �1, then A
η
σ ∏N

α=1 exp(iηαkαyσα ) is a solution of (2.20). The second step is to
take a linear combination of the above solutions in order to satisfy the boundary and
meeting conditions. The specific combination is inspired by the Bethe Ansatz for the
eigenvectors of the six-vertex model [10]. The explanation for the success of this guess
is given in Section 3. Thus, we try

Z̄N
t = ∑

σ2PN

∑
η1=�1

� � � ∑
ηN=�1

Z π

0
dkA

η
σΛt

k

N

∏
α=1

exp(iηαkαyσα ): (2.25)

If we assume the constants factorize

A
η
σ = Aσ

N

∏
α=1

Bηα
α ; (2.26)
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then with the following choice of factors

Aσ = εσ; (2.27)

B+
α

B�
α

= exp(iθkα ); (2.28)

where εσ is the signature of the permutation σ, the Ansatz satisfies (2.21) and (2.22).
Since (2.28) only fixes the ratio of the constants, it leaves N remaining constants. Thus,
for the third step, we use the remaining constants to try and satisfy the initial condition
(2.23). We try

B+
α = exp(�ikαyi

α)+ exp(iθkα + ikαyi
α): (2.29)

Substituting this into (2.25) and rearranging gives,

Z̄N
t (yi

!y f ) = ∑
σ2PN

εσ

Z π

0
dkψ�

k(y
i)Λt

kψk(y
f
σ); (2.30)

where y f
σ = (y f

σ1 ; : : : ;y
f
σN ),

ψk(y) =
N

∏
α=1

(exp(ikαyα)+ exp(�iθkα � ikαyα)) (2.31)

and ψ�

k(y
i) is the conjugate of ψk(yi). The multiple integral factorizes into a product of

single integrals of the form
Z π

�π
dkλt

k

�
exp(ik(y� y0))+ exp(iθk + ik(y+ y0))

�
; (2.32)

which corresponds to the N = 1 case (i.e., the single path equation (2.15)). Hence,
Equation (2.30) becomes

Z̄N
t (yi

! y f ) = ∑
σ2PN

εσ

N

∏
α=1

Z̄S
t (y

i
α !y f

σα ); (2.33)

which is the expansion of a determinant [2, 3]. If t = 0, Z̄N
0 (yi

! y f ) = δyi
;y f (1 +

(κ�1)δyi
1;0) which agrees with (2.23) for yi

; y f
2U∞, thus justifying the Ansatz (2.29).

Remark. The factorization of the multiple integral (2.30) allows us to express the mul-
tiple integral as a product of single integrals or, equivalently, as the product of constant
term expressions. Going back one step thus gives us

Z̄N
t (yi

! y f ) = CT

"
∑

σ2PN

εσ
N

∏
α=1

�
zyi

α
α +S(

1
zα

)z�yi
α

��
z�y f

α
α +S(zα)z

y f
α

�#
: (2.34)

Although little is gained for non-intersecting walks by rewriting (2.30) this way, it is
very significant in more difficult problems where the multiple integral does not factor-
ize. In this case, the evaluation of the multiple integral is a major hurdle unless it can
be written as a constant term of some formal series (in N variables). This is precisely
what happens in the case of osculating lattice paths [1].
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3. Relationship Between the Partial Difference Equation Method and the
Transfer Matrix

Having solved the N-path problem in the half plane via partial difference equations we
now show there is an intimate relation between this method and that of diagonalizing
transfer matrices via the Bethe Ansatz. As we will show, the relation manifests itself
in two ways: (1) through the difference equations, the coefficients of which turn out
to be matrix elements of an infinite-dimensional transfer matrix, and (2) in solving the
difference equations by separating the step variable “t” and the height variables, one
ends up with another set of equations, the solution of which is equivalent to solving an
infinite-dimensional eigenvector problem. Thus, the partial difference equations can be
thought of as a method of representing the “no strip” (and hence, infinite-dimensional)
transfer matrix method.

Let us consider a general N-path problem defined via the following set of partial
difference equations. Now, the paths may be intersecting (but not cross), or not, and we
place arbitrary weights on edges of the lattice that are occupied. Our only restriction is
that, if there are N occupied sites at t = 0 then each column of edges has N occupied
steps. The generating function Z̄N

t (yi
!y f ) of N paths of length t in the half plane is

given by a set of partial difference equations:

Z̄N
t (yi

!y f ) = ∑
y2U∞

Z̄N
t�1(y

i
!y)

N

∏
j=1

w(y j; y f
j ); for yi

; y f
2U∞ : (3.1)

Note that even though the paths are intersecting, we can always order the edges. To-
gether with the initial condition

Z̄N
0 (yi

!y f ) = δyi
;y f V (yi); (3.2)

where

V (yi) =
N

∏
α=1

v(yi
α); (3.3)

Equation (3.5) determines Z̄N
t (yi

!y f ). Let us define the elements of a matrix (RN)y;y f

as the coefficients of the partial difference equation:

(RN)y;y f =
N

∏
j=1

w(y j; y f
j ): (3.4)

Now, the generating function
=

Z
N
t (yi

!y f ) of N paths of length t in a strip is related

to
=

Z
N
t�1(y

i
!y), by one of two one-step transfer matrices defined above depending on

whether y f
2

e

UL or not, thus

=

Z
N
t (yi

!y f ) =

8>><
>>:

∑
y2

e
UL

=

Z
N
t�1(y

i
!y)(

eo
TN)y;y f ; for y f

2

o

UL;

∑
y2

o
UL

=

Z
N
t�1(y

i
!y)(

oe
TN)y;y f ; for y f

2

e

UL :

(3.5)
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Now, so long as we do not consider paths that touch the upper wall, the elements of the

matrices
eo
TN and

oe
TN are the same as those of (RN):

(
oe
TN)y;y0 = (RN)y;y0 y 2

o

UL and y0 2
e

UL given yN; y0N 6= L (3.6a)

and

(
eo
TN)y0

;y = (RN)y;y0 y0 2
e

UL and y 2
o

UL given yN; y0N 6= L: (3.6b)

This demonstrates that the coefficients of the partial difference equations are nothing
other than the transfer matrix elements with a parity complication due to the lattice
structure. The symmetry of the transfer matrix is partly determined by the choice of
matrix element labeling which in turn is affected by the structure of the lattice. In our
square lattice problem, only even or only odd heights are possible in any column of
sites and the opposite parity is only allowed for adjacent columns.

Let us return to the problems solved in the previous section where we considered
non-intersecting paths with the weights as described by Equation (2.6). Solving the par-

tial difference equations (2.20–2.23) by separation of variables Z̄N
t (yi

!y)! ΛtP(y)
gives a set of equations

ΛP(yi
! y) = ∑

y02UL

P(yi
!y0)(RN)y0

;y: (3.7)

Solving these equations is the same as solving an infinite-dimensional eigenvector prob-
lem RjPi= ΛjPi with hyjPi= P(yi

! y) with y 2U∞. This explains our choice of the
Bethe Ansatz-like trial solution for P(yi

! y) as this is precisely the type of Ansatz that
is required in the diagonalization of the associated transfer matrices [2]. Note that the
route to the Bethe Ansatz in both the transfer matrix and partial difference methods is
to find solutions to the “bulk” equation such as (2.20) and then find linear combinations
that satisfy the boundary and meeting conditions.

4. Conclusions

The partial difference equation method for solving several non-intersecting lattice path
problems has been reviewed and extended. It has been shown to be well suited to the
semi-infinite (though also fully infinite by default) scenario by providing a quick and
easy method of solution. However, the method currently lacks the rigor of the trans-
fer matrix method (when this is applied in a strip). We have demonstrated that the
partial difference equation method is essentially the same as considering an infinite-
dimensional transfer matrix directly. Importantly, this method has led to the expression
of the solution as a constant term of a formal Laurent series. The constant term formu-
lation is crucial in intersecting path problems.

Acknowledgments. Financial support from the Australian Research Council is gratefully ac-
knowledged by RB and ALO. JWE is grateful for financial support from the Australian Research
Council and for the kind hospitality provided by the University of Melbourne during which time
this research took place.



*** 275

References

1. R. Brak, Osculating lattice paths and alternating sign matrices, In: Proceedings of the “For-
mal Power Series and Algebraic Combinatorics” Conference, 1997.

2. R. Brak, J. Essam, and A.L. Owczarek, Exact solution of N directed non-intersecting walks
interacting with one or two boundaries, J. Phys. A., 1998, submitted.

3. R. Brak, J. Essam, and A.L. Owczarek, From the Bethe Ansatz to the Gessel-Viennot theo-
rem, Ann. Combin., submitted.

4. R. Brak, J. Essam, and A.L. Owczarek, New results for directed vesicles and chains near an
attractive wall, J. Stat. Phys. 93 (1998) 155–192.

5. M.E. Fisher, Walks, walls, wetting and melting, J. Stat. Phys. 34 (1984) 667–729.
6. P.J. Forrester, Probability of survival for vicious walkers near a cliff, J. Phys. A. 22 (1989)

L609–L613.
7. I.M. Gessel and X. Viennot, Determinants, paths, and plane partitions, 1989, preprint.
8. I.M. Gessel and X. Viennot, Binomial determinants, paths, and hook length formulae, Ad-

vances in Math. 58 (1985) 300–321.
9. A.J. Guttmann, A.L. Owczarek, and X.G. Viennot, Vicious walkers and young tableaux i:

Without walls, J. Phys. A. 31 (1998) 8123–8135.
10. E.H. Lieb, Residual entropy of square ice, Phys. Rev. 162 (1967) 162–172.
11. F.Y. Wu, Remarks on the modified potassium dihydrogen phosphate model of a ferroelectric,

Phys. Rev. 168 (1968) 539–543.


