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A cluster expansion, valid at low densities, is derived for the mean number of clusters in a random
mixture of sites or bonds on a graph. It is shown that only clusters without a cut-point (stars) are
required, and a number of general theorems for determining the weights are proved.

1. INTRODUCTION

N this paper we examine the derivation of series
expansions, valid at low densities, for the mean
number of clusters in a random mixture. We have
introduced this problem in a previous paper,’ here-
after referred to as I. For a detailed introduction
to the problem, and to the closely related percolation
problem, reference should be made to I, to Fisher
. and Essam,” and for a general survey, to Hammersley
and Frisch.®> We make use of the general concepts
of graph theory which we have described in a paper,*
hereafter referred to as II.

We begin with a statement of the problem in the
formal terminology of graph theory and then derive
a cluster expansion for the mean number function.
We show that the expansion depends only on con-
nected clusters without cut-points (stars) and that
the corresponding weights are particularly simple
in the system of weak lattice constants. We prove
a number of general theorems of use in determining
the weights of individual clusters and, as an example,
derive series expansions for the site and bond prob-
lem on the plane triangular lattice.

We subsequently apply these expansions to a
study of the mean number function and extend the
series developments for the mean size of clusters
in a random mixture.

2, STATEMENT OF THE PROBLEM
(A) Site Problem

In site mixtures the sites, or vertices, of a linear
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graph G are supposed colored black with prob-
ability p or white with complementary probability q.
We adopt the convention that, in such a random
mixture of two species represented by the black
and white sites, the primary species is the black,
and we refer to small p as low density. The bonds,
or edges, of G are regarded as colored black if
they connect two black sites, white if they connect
two white sites, uncolored if they connect sites of
different colors.

Any realization R of the probability distribution
on @ defines two linear graphs By and Ry which
are, respectively, the ensembles of black and white
clusters. More precisely, Ry is the section® graph
of @ defined by all the sites of G that are black in R
and the term black cluster is used to describe any
connected component of Rz, In general, B, has
many connected components, and it is the expecta-
tion value of the number of these that we study.
Denoting the number of connected components of
R 3 by n(R3), we define the mean number funetion K
by

K(@p; @) = (n(B5)).
(B) Bond Problem

@.1)

In bond mixtures the bonds, or edges, of a linear
graph @ are supposed colored black with probability
P or white with complementary probability §. A
realization B of the bond probability distribution
on @ defines two linear graphs B, and Ry which
are, respectively, the ensemble of black and white
bond clusters. More precisely, B is the subgraph
of G defined by the edges of @ that are black in R,
together with their end points, and a black bond
cluster is a connected component of B;. We define
the corresponding mean number function by

K®;6) = (n(Ry)).

§ Defined in II, Seec. 2.

2.2)
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In this simple conceptual form the sites of the graph
are not assigned a color. The bond problem may
be studied as a site problem in which each bond
is made to correspond to a site on a suitably defined
covering graph.’

In many applications of bond mixtures the bonds
are primarily considered as connections between the
sites, and a simplification results if we adopt the
following convention which we call the null-cluster
convenlion.

Suppose that for any realization R two sites are
defined as connected if they are joined by a black
bond. We employ the term black-connected cluster
to describe any connected component of the partigl“
graph, P; of G whose edge set is the edge set of K.
Some black-connected clusters may reduce to iso-
lated sites (null-clusters). We define the mean num-
ber function K, for this convention to be the ex-
pectation value for the number of black-connected
site clusters. We write

Ko@; G) = <n(PB)>} (2.3)

where the suffix on K, denotes the operation of the
null-cluster convention. If we denote the mean
number, or expectation value, of the isolated sites
or null-clusters by (n.c.), then

K®; @ = K@#; G) + (n.c.).

3. LOW-DENSITY CLUSTER EXPANSION FOR
K(p; G) (SITE PROBLEM)

We now describe a method of obtaining the mean
number function which avoids a detailed specifica-
tion of cluster perimeters® required by the alternative
perimeter method. It has been outlined in II and
is readily formalized.

To recapitulate, any realization, R, of the prob-
ability distribution defines a section graph Ry of G
which is the graph of the black sites and bonds.
In the notation of II, G contains [g;; G| section
graphs isomorphic with g; and the probability of
any one of these being R is just

(2.4)

pA =P (3.1)
Thus if g, has n; connected components
Kp; ) = Lnp”l =" "lg5 G, (32

where the summation is taken over all the strong
lattice constants of G. Now these latter can be
expressed in terms of the connected constants only,
and because mean number is an extensive property
it follows, by the arguments of Sec. 5 of II, that

¢ Defined in I, Sec. 2, and in Ref. 2, Sec. 2.
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the resultant expression is linear in the connected
constants and that a cluster expansion may be
developed for K (p; G). Thus we may write, denoting
connected graphs by ¢,

Kp; @ = 'Z W.(@)[c:; G,

where W, is the appropriate weight function of ¢;,.

It is evident from the form of (3.2) that the weight
functions are polynomials in p. They can be eval-
uated by carrying out the substitutions for the
separated lattice constants, and the coefficient of
any connected constant [¢;; G] will come from two
sources (II, Theorem II):

(3.3)

(1) from ¢, itself. The presence of the factor p°*
in (3.1) ensures that this contribution is always of
degree at least v, in p.
(2) from separated constants such as, for example,
a three component graph ¢, \J ¢, \U ¢,. In the
reduction of these it is evident that ¢; cannot occur
as an overlap partition unless ¢, \J ¢, U ¢, has
at least v, vertices, and therefore again by (3.1) the
contribution is of degree at least v; in p.
Alternatively, the weight functions may be eval-
uated from the mean number functions of the
individual connected constants. Since the weight
of any graph ¢; is expressible in terms of the K(p; G)
of ¢; and all its connected subgraphs [Egs. (5.19)
and (5.20) of II], and this expression is linear, and
further, each function is a polynomial in p of degree
at most v;, it follows that W,(p) is of degree at most
v; in p. Thus by virtue of the previous result, W,(p)
can only have one nonzero coefficient—that of the
v,th power of p, and we state the result as a theorem.

Theorem I: The strong weight function W.(p) of
[c;; G] can be written K,p"*, where K is independent
of p.

The strong weight functions arise quite naturally
in the site problem since the clusters studied are
all section graphs. However, we often find it con-
venient to work with the corresponding weak weight
functions which we introduce by the following
theorem.

Theorem II: The weak weight function w,(p) of
(c;; @) can be written k;p**, where k; is independent
of p.

Proof: The result follows at once by conversion
of the strong weight functions K,p°‘ into the weak
weight functions by means of the conversion matrix
for weights, which is just the transpose of the
reciprocal conversion matrix for the connected con-
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stants, and which relates constants with the same
number of vertices.

We now define K(c;) = K; and k(c;) = k; to be
the (strong) K-wt and (weak) k-wt of ¢, respec-
tively. Following the convention of II, Sec. 2, we
also abbreviate K(s;), k(s;) to K., k; whenever it
is clear from the context which graph dictionary
is being used, and further, we sometimes write Kg¢, ko
for K(G), k(G). For any graph G we have

K(p; G) = Z [c;; GIK p*
= Z :; Dkp™,

where the summations are taken over all the con-
nected constants of @. The form of (3.4) and (3.5)
which results from Theorems I and II makes it
possible, when @ is an infinite graph, to derive series
developments in powers of p as appropriate to low
densities. By the methods of this section, the weights
of the site and the bond are found to be 41 and —1,
respectively (in both systems), and we use this result
as a lemma to prove the next theorem.

(3.49)
3.5)

Theorem I11: For any graph G
2 o GIKs = X (o3 Ok: = C(G),

i>2
where C(G@) denotes the cyclomatic number (or
circuit rank) of G and the summation is taken over
all the connected constants of G except the site and
the bond. (In graph dictionary order these will have
suffixes 1 and 2.)

Proof:

(3.6)

In both the weak and the strong systems,

the site has weight 41 and the bond, weight —1.

Thus from (3.4)

Kp; @) = vep — lap* + Z‘_, les; GIK p™°. (3.7

But for p = 1 the expected number of clusters
must reduce to the number of components in @ or
K(1; G) = ng, and on setting p = 1in (3.7),

> lei; GIK: = ng — v5 + lg = C(G)

i>2
by definition. Likewise the result holds for weak
weights.

(3.8

Theorem III may be used to derive the weak
and strong weights by successive application to the
connected constants arranged in a suitable graph
dictionary order (i.e., in order of ascending cyclo-
matic number). We may thus take (3.6) as defining
the quantities K;, k; associated with a graph c;.

The weights of all graphs with three and four
vertices are found to contain only four with nonzero
contributions,

PROCESSES. I. 1575
AT K e
K=1 E=1 K=0 Ew=—-1
k=1 k=1 k=—1 k=2

which suggests that only stars have nonzero weight—
a result we now prove.

Theorem IV: If ¢, has a cut point, K; = k; = 0.

Proof: We prove the result in the strong system,
and the result for the weak system follows by chang-
ing to weak weights throughout.

Suppose a graph @ has a cut point at the vertex 4.
Then by definition the deletion of 4, together with
all its incident edges, leave a graph with at least
two connected components. Denote the vertex set
of any one of these by V’ and that of all the others
by V”. Denote by G’ the section graph of @ with
the vertex set V/ 4+ A4 and by G” that with vertex
set V' + A. Then @ = ¢ + @". By application
of (3.6) to G, G and G,

Z le:; GIK: = C(@), (3.10)

Z le; @K, = C(@), (3.11)

g [e:; K. = C(G"), (3.12)
and since A is an articulation point

C(@ = C(@) + c@. (3.13)

The constants of @ result from embeddings of each
¢; in G, and these may be grouped into three mutually
disjoint classes: those that lie wholly in G, those
that lie wholly in G”, and those that lie neither
wholly in @ nor wholly in @’ and which necessarily
correspond to those ¢; with cut points. Denoting
the contribution of this third class of embeddings
by an asterisk, we must have [from (3.10)—(3.13)]

g le.; GI*K; = 0, (3.14)
and since the only connected graph of three points
with a cut point has weight zero, the result follows

inductively by successive application of (3.14) to
all graphs with cut points.

Theorem IV enables the definitive equation (3.6)
for weights to be restricted to multiply connected
graphs, and we may write, for any such graph M,

2 [s MK, = 3 (s:; MOk, = COD),  (3.15)

> i>1
where the summation is taken over all stars except
the bond (s,). For theoretical purposes it is most
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convenient to study the weak weights; we do so
in Sec. 5 after we have developed the cluster ex-
pansion for the bond problem to which, as we
show, the weak weights also apply. For practical
purposes the strong weights are useful in the actual
derivation of series expansions, and we prove two
theorems, restricted to strong weights, that simplify
the derivation of individual weights.

G:

-1
We remark, parenthetically, that the corresponding
k-wts can be found by use of the conversion matrix.
The method is capable of elaboration and an ap-
propriate technology can be developed to obtain
K(p; G) for an individual graph by the use of re-
currence relations. It is found that many stars have

gero K-wt, and most of these are accounted for by
the next theorem.

Theorem VI: If G is a graph with a cut set of
n vertices, and further the section graph which has
these n vertices as vertex set is a complete graph
of n vertices, then Kg = 0.

Proof: Denote the vertex set of the cut set by
N. Denote the vertex set of one of the connected
components that result from the deletion of N and
its incident edges by V’, and that of all the others
by V. Denote by G’ the section graph with vertex
set N + V’, and by G”’ that with vertex set V"' 4+ N.
If in a realization R of the distribution any of the
vertices in N are black, they must all be members
of the same component of R since the section graph
of G defined by N is a complete graph. But ¢ =
& + G" and the number of components in the
sum graph @ is the sum of the components in ¢’
and G if the cut set contains no components
(probability ¢*). If the cut set contains a component
it contributes both to ¢’ and G”. Thus

K@p; @' + @) = K(p; @)
+ K@; @) + ¢ — 1. (3.18)

By Theorem V the required weight is the coefficient
of the (vg- + v5.- — n)th power of p, and this

Kp; @) = 4p — 4p" + p',

Kip;@) =5p — 8p" + 4p° +p' — 1,

W. ESSAM AND M. F. SYKES

Theorem V: The strong K-wt of a graph G is
the coefficient of the vgth power of p in K(p; G).

Proof: The result is evident since there is only
one nonzero constant with vg vertices in the strong
system—the graph itself.

As examples of the application of this theorem
we quote

K

I

+1, (3.16)

Kg = —1. (3.17)

exceeds max (vg:, Vg-.) Since vg: > m, Vg0 > M.
Therefore K = 0.
4. LOW-DENSITY CLUSTER EXPANSION FOR
R(p; G) (BOND PROBLEM)

The cluster expansion method applies to bond
mixtures in an analogous manner to the treatment
of site mixtures. If g; is any subgraph of G, with
no isolated vertices, the probability of g; being a
realization of the bond distribution probability is
now

UL — e @D

and the argument proceeds formally as for the site
problem. Thus we now write

Rp;® = 2 (5 Owi(p)
and obtain in place of Theorem I:

Theorem VII: The bond weight function w,(p)
for (c;; G) can be written k,5'¢, where &, is independ-
ent of 3.

(42

Because the conversion matrix for weights con-
verts from constants with r vertices to constants
with r vertices (and not edges), the strong bond weight
function of a graph, W.(p), is in general a poly-
nomial in 3.

By including the subgraphs of G with isolated
vertices we obtain corresponding results for the
null-cluster convention, and we denote the corre-
sponding weights, independent of $ in Theorem VII
by k3. The bond weights of the site and the bond
are found to be, for the site £ = 0, £ = +1 and,
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for the bond £ = <1, £° = —1. The null-cluster
convention leads directly to:

Theorem VIII: For any graph ¢,
£ =k, 4.3)

or with the null cluster convention, the bond and
site weights are identical.

Proof: The result follows because under the null-
cluster convention the site has weight 1, the bond,
weight —1, and the number of clusters for p =1
is the number of components in G. Therefore by the
arguments of Theorem III the weights are defined by

T (@3 OF: = C(©), @)

which is identical with the definitive equation (3.6)
for weak weights.

We examine the properties of weak weights in
Sec. 5 and conclude this section with a closer study
of the relation between £; and £°.

To relate the two systems of weak bond weights,
we first observe that corresponding to Theorem V
we have the result that the weak £-wt of a graph G
is the coefficient of the lsth power of 5 in R(p; G).
By an argument closely parallel to that of Theorem
VI, it can be shown that graphs with a cut-vertex
whose deletion, together with all its incident edges,
leaves & graph with at least one edge have zero
k-wt. The only graphs with cut-vertices that do not
satisfy this latter condition are those with the
obvious general topology

f < é s—é (4.5)

To determine the weight of the general graph q,
of this type, we use

Rps0)=1—q = (f)ﬁ— (;)p°+

+ =00, o
and therefore from the last coefficient the £-wt of
a, = (_1)¢+1.

For a general graph with no repeated bonds (i.e.,
not a multigraph) the contribution of graphs of
type (4.5) is

Y _Z(—D'“(:)ﬁ' - 1,

4.7

PROCESSES. I. 1577

where the sum runs over all the sites of G and z is
the number of edges incident on a site. Every a,
can be associated with its center point except the
bond a,, which is counted twice.

For the null cluster convention we must add the
number of isolated clusters, and with the same
restriction on multigraphs,

(.c)= 2 §. 4.8)
On adding (4.8) and (4.7) we are left with
1 — P, 4.9

and the contribution from terms of type (4.5) cancel
except for the site and the bond which now have
weights +1 and — 1, respectively, and we may write

]E? = E.’ = k¢ (4.10)

On a regular lattice of coordination number 2z, with
N sites, we may write

(n.c.) = N¢".
S. PROPERTIES OF THE WEAK WEIGHTS

for allstars © > 2.

(411

We now establish a number of theorems applicable
to the weak k-wts defined for multiply connected

graphs by

4:.; (s:3 M)k = C(M). (5.1)
Theorem IX: If two graphs are homeomorphic they
have equal k-wts.

Proof: The result is more or less obvious from
the definitive equation (5.1). A tedious proof is
readily constructed, but we confine our treatment
to examples from which it is evident that the result
will follow inductively.

First, every Jordan’ curve has weight +1 since
there is only one multiply connected subgraph, the
graph itself, and the cyclomatic number is 1. [The
site and bond are excluded by (5.1).] Thus

k-wt of (n), = +1. (5.2)

For stars of cyclomatic number 2 there is only
one topological type—the 6 graph. Any 6 graph
(r, s, t), has three Jordan subgraphs:

r+9 ¢+, @+10, (5.3)
all with weight 41, and therefore
Ewtof (r,s, )y = —1. (5.4)

For stars of cyclomatic number 3, there are

T The various types of graph are described in II, Sec. 7.
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four topological types, and we work with only one,
the tetrahedral or « graph:

“ or (g, b;¢,d;e Nay

of which the relevant subgraphs are the seven
Jordan curves

(@+c+ 1, @+d+e, G+c+e,
b+d+1, (@+b+c+d),
(@at+b+e+f C+d+e+
which contribute 47 and the six ¢ graphs
(g, c+f,d+ e (b,c+e d+ 1,
ca+f,b+es (@ a+ted+f,
e,a+d,b+c0s (,atc b+ dy,
which contribute —6. Therefore
k-wtof (a, b;c,d;e, f)a = +2. 5.7

Theorem IX effects a great reduction in the
number of individual k-wts that need be worked,
and we now state the k-wts of all stars with C(S) = 3:

5.5)

(5.6

a graphs  k-wt = 42
B8 graphs  k-wt = 41, (5.8)
v graphs  k-wt = +1,
8 graphs  k-wt-= +1.

For C(S) = 4 there are 17 topological types and
we list these, together with their weak weights in
the Appendix.

In practice the determination of the weight of
a graph from (5.1) becomes heavy as the cyclomatic
number increases. Numerous results can be estab-
lished to effect a reduction in the calculation, and
we quote two theorems,® which we apply in a sub-
sequent paper to the problem of high-density
expansions.

Theorem X: If § is a planar topological star, that
is, a planar star drawn to conform with the planar
condition, and Y_* denotes summation over all sub-
stars that are not finite faces, then

2% (s:5 )k = 0. (5.9)

To avoid aspecial notation we adopt the convention

8 In these theorems we use the terms star and substar in
place of multiply connected graph and multiply connected
subgraph. It is clear from the context that the bond is not
intended.

J. W. ESSAM AND M. F. SYKES

that the restriction > * imposed on the summation
implies the corresponding restriction on the lattice
constants. Thus in (5.9) the constant (s,;; S) is the
constant for the embeddings of s; that are not finite
faces. Likewise, in the next theorem Y 5 implies that
(s:; 8) is the constant for embeddings that contain
the boundary.

Proof: The result follows from Euler’s law of the
edges which states that for a planar topological graph
the cyclomatic number is equal to the number of
finite faces. Each of these has weight unity in (5.1),
and therefore the total contribution from stars that
are not finite faces must be zero.

Theorem XI: If 8 is a planar topological star and
> denotes summation over all substars which con-
tain the contour of the infinite face of § (the bound-
ary of S), then

ZB (8:; Ok = 0, C(S) > 1.

Proof: We show that if the result holdsfor C(s,) < n
it will hold for C(8S) = n. It is true for C(8) = 2. If
S is a planar topological star, then so are all its
substars, and we may divide these into mutually
disjoint categories by the contours of their infinite
faces. The members of any category are the sub-
stars of the graph bounded by the contour that
contain the contour, and this graph must have
cyclomatic number less than C'(S) unless the contour
is the contour of 8. Assuming the result holds for
C(s;) < C(8), the contribution from each category
is zero unless the contour reduces to a finite face.
If we exclude these,

(5.10)

2o* (s 8k = 0 (5.11)
by the previous theorem, and therefore
2% (s:; ki = 0, (5.12)

but the asterisk, which excludes finite faces from
the summation, is now redundant since C(S) > 1
and no finite face contains the boundary. Thus the
result is proved.

As an example we can now simplify the calculation
of the k-wt of the tetrahedral graph (a, b; ¢, d; ¢, f)a.
The subgraphs which contain the boundary are: the
graph itself and

(a+d+eo),
(a,c+ f,d+ e,
(d, @ + e, b + f)sr contribution —3,

e,at+d,c+ b

contribution 41
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and therefore by (5.10)
k-wt of (a, b;c,d;e, . = +2. (5.13)

For completeness we now state the theorem for
weak weights which corresponds to Theorem VI for
strong weights.

Theorem XII: If @ is a graph with a cut set of »
vertices, and further the section graph G’ which
has these n vertices as vertex set is a complete
graph of n vertices, then with G’ and G’ defined
as in Theorem VI if kg, k¢, kqr., kg.. denote the
weak weights of G, ¢, @', G’", respectively:

kgnlkg = ko/kolr. (5-14)

We omit the proof of this theorem since the
result is most easily established by techniques we
shall describe in a subsequent paper; the direct
proof is long. It is a result of great practical use.
For example, the k-wt of the graph formed by
placing a tetrahedron on one of the triangular faces
of a square-based pyramid as drawn,

(5.15)

is found by taking @ as the pyramid (¢ = —3),
@’ as the tetrahedron (¢ = 2), and G’ as the
triangle they have in common (k = 1), and therefore
from (5.14), k = —6.

The scope of Theorem XII is much extended by
Theorem IX, and all homeomorphs of (5.15) will have
k = —6. A particularly useful application is to the
large class of graphs which have a cut-set with n = 2,
together with their homeomorphs. Then ¢’ is the
bond, and the required weight is just the product
—ka kg... Thus the weight of a #-graph is obtained
as —1 since @ and G are polygons. The weights
for 8- and y-graphs follow from the product of a
polygon and a §-graph.

Theorems X and XI can be extended to K-wts,
but in the present paper we do not elaborate
further the theory of strong weights since the theory
of weak weights is the more elegant and more
generally useful.

6. EXPANSION FOR K(p; ?) FOR THE
TRIANGULAR LATTICE (SITE PROBLEM)

For an infinite graph we neglect edge effects and
denote by k(p; @) the mean number of clusters
per site. The first contributions to a low-density
expansion, valid for small p, come from the site,

PROCESSES. I. 1579
the bond, and the triangle. Denoting the triangular
lattice by 7', we have

kp;T)=p—3p"+20° + - .  (6.1)

To extend this series we examine contributions from
star graphs with more than three sites. The number
of stars embeddable in the triangular lattice in-
creases very rapidly with the number of sites, but
many of these have zero K-wt. This is because of
the presence of a cut-set of the special type described
in Theorem VI; such cut-sets are of frequent occur-
rence on the triangular lattice. Thus for example
the graphs

G <t i ot

all have zero K-wt. There are no strong embeddings
of (4), or (5), and the next contributions to (6.1)

arise from

K=+1 K=-1

of which there are one per site, respectively, to
give +p° — p”. We summarize in Table I the graphs
with 8, 9, and 10 sites required to extend (6.1) to
the term in p'° and so obtain

kp;T) =p—3p" +20° +p" — p
+3p° =4+ %+ . (62

Further coefficients may be derived by direct enu-
meration, but this particular series is more readily
extended by exploiting the exact matching relation
which holds for the triangular lattice (I Sec. 3).
That (6.2) is correct may be verified by comparison
with Eq. (3.4) of 1. For three-dimensional lattices
no such matching relations exist, and the methods
of this section enable the corresponding expansions
for mean number for the simple cubic, body-centered
cubic, and face-centered cubic lattices to be derived.
We shall show in a subsequent paper that these
expansions are of use in extending series expansions
for the mean size of clusters at low densities.

7. EXPANSION FOR X(p; ¢) FOR THE
TRIANGULAR LATTICE (BOND PROBLEM)

For an infinite lattice we derive the expansion for
the mean number of bond clusters per site. The
expansion for the triangular lattice starts with the
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TasrE II. Summary of stars on the triangular lattice and

contribution from the graphs of type (4.5) which, their contributions to k(p; 1.

per site, amounts to

_ Y -3 —4 -5 =6 kwt 1l=7 =8 1=9 =10
3p—15p"+20p" — 15p" +6p — 9. (7.1)  Lolygons +1 42 123 380 1212
(Jordan curves)
TasLk I. Some graphs on the triangular lattice that contribute 6-graphs -1 42 165 609 2283
to k(p; T) a-graphs +2 0 0 20 120
p-graphs +1 0 6 54 375
Number -g:grapﬁ :I*-i g 3% 16%) 66?5
I o S grap
Graph» (per site) K-weight  Contribution Fographs T3 0 0 0 15
H-graphs —~1 0 0 0 24
K-graphs -1 0 0 6 48
ﬁgr&pﬁ -1 0 0 0 12
-grap -1 0 0 6 48
3 +1 +3p° O-graphs -1 0 0 2 12
Contribution: +6p7 +0p* +13p° +27p
2 +1 +2p°
TasLg I11. Weak lattice constants for the triangular lattice.
o-graphs. =17 (1,24) = 30
1=8 ez o
== a =
6 ~1 —6pt (1314)y = 60
(2,2,4), = 6
(2:3)3)0 = 3
1=9 8,3,2), = 31§
Jo = 16
(Ldd) = 69
Gaan 3
, 3 +1 +3p1 =10 (12,7% = 1068
s = o
yHd )y =
(2,2,6)y = 132
(23.5) = 126
(2,44)y = 63
a-graphs =9 8,1;{,%;1,‘;)« = g
1,251 = 1
3 +1 +3pn (L2ana = 3
1 =10 (1,1;1,1;1,5), = 24
21,1;1,2;1,4),, = 438
d-)%;l:g}l:g)a = 21
1,2;1,3) = 2
B-graphs 1 =8 El,,2;1,,2’;1,,1)‘; = 6
=9 1,2;1,2;1,2) = 30
1,2;1,3;1,1)s = 24
-0 Gt o
10 ¥ =
6 +1 +6p (1,211,3'1,2) = 120
(amamar = 19
1oy éya51,4)8 =
(1,2;2,3;1,1)3 = 6
(1,3;1,3;1,1) = 24
+-graphs 1=7 (50505 = 6
1 =8 El,g;l,g;zg, = %Z
1,2;1,3;1), =
6 ) - 1=9 (1,2:1,2:3); = 30
- —op glig;lyi;z)‘y = 48
1,2;1,4:1), = 60
(I31,31), = 24
l =10 (1,2;1,24), = 96
(1,2;1,3;3), = 108
(Ua5ay — 168
11,5;1) = 1
| flagee, - 12
3 +1 +3p (122411), = 12
(1,3;1,3;2), = 42
(1,3;1,4;1), = 108
S-graphs = 10 (1,2,2,5); = 6

sWe illustrate the individual space-types.
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PERCOLATION PROCESSES. I.

Up to six bonds the only star graphs are the following:

Graph k-weight Number Contribution
®3)» +1 2 + 25°
@, +1 3 + 3p
(5)» +1 6 + 6p°
1,2, 2), -1 3 - 3p°
(6), +1 15 +15p°
1, 2, 3), -1 12 —12p°

and on adding these contributions to (7.1)
k(p; T) = 3p — 15p° + 22p° — 12p*
+ 95" +2p° + --- .

We have extended (7.2) by enumerating every
star graph on the triangular lattice with 7, 8, 9,
and 10 lines, thus adding the terms

+65" + 0p° + 135° + 275".

We give in Table IT a summary of the contributions

(7.2)

(7.3

1581

from different topological types, and in Table III
we list the lattice constants for all graphs of cyclo-
matic number 3 and 4.

In an analogous manner expansions can be ob-
tained for other lattices. The graphs required are
numerous but not too difficult to count in the weak
system on a computer .The weight problem is made
manageable by the results of Sec. 5. We shall sub-
sequently apply these series developments to a study
of the mean number function and also to extending
the corresponding mean size series.

We have verified (7.3) by deriving the high-
density expansion for the matching lattice; that is,
the high-density expansion for the bond problem
on the honeycomb lattice,
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APPENDIX: THE 17 TOPOLOGICAL TYPES OF STAR WITH C(S) = 4

A graph E graph
k= -5 k= -1
B graph F graph
k= —4 k= -3
C graph G graph
k= -2 k= ~2
D graph H graph
k= —1 E=—1

@ graph

I graph M graph
E=—1 kF=—1
J graph N graph
k= —2 k= —1
K graph O graph
E=—1 k= —1
L graph P graph
k= —1 k= —1
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