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Abstract. It is shown that the partition function for the A-state Potts model with pair 
interactions is related to the expected number of integer mod-A flows in a percolation 
model. The relation is generalised to the pair correlation function. The resulting high- 
temperature expansion coefficients are shown to be the flow polynomials of graph theory. 
We also prove an observation of Tsallis and Levy concerning the equivalent transmissivity 
of a cluster. 

1. Introduction 

The Potts model (Potts 1952) has recently been reviewed by Wu (1982). Here we show 
that the thermal equilibrium properties of a Potts model with A states per spin may 
be determined by counting mod-A flows (see § 2 for definition). It turns out ( 5  3) that 
the partition function is proportional to the expected number of such flows on the 
clusters of a percolation model in which the probability of an open (present) bond is 
related to the Potts interaction parameter. Similarly the spin pair correlation function 
is related to the expected number of flows conditional upon there being a path between 
the spin sites in the corresponding percolation problem. 

Tsallis and Levy (1981) have defined an ‘equivalent transmissivity’ between spin 
pairs which we show to be related to the pair correlation function above and hence 
to the expected number of flows. This relation enables us to prove a number of 
properties of the equivalent transmissivity. 

Domb (1974) has studied the derivation of high temperature expansions for the 
partition function. He found that the coefficients could be written as a weighted sum 
over star subgraphs of the lattice and that the weights were topological invariants. In 
9 4 we extend these results to the pair correlation function and show that these invariants 
are determined by counting the number of proper flows (see § 2) which can exist on 
the subgraph. This combinatorial problem appeared in the graph theory literature 
some time ago (Tutte (1954); in this paper proper flows were known as colour cycles). 
The number of proper flows is a polynomial in A known as the ‘flow polynomial’ (Rota 
1966, Tutte 1984). 

Flow polynomials also arose in the field theoretic treatment of the Potts model by 
Amit (19761, but again only examples were given and the connection with flow 
polynomials (see 0 5 )  seems not to have been recognised. 
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2. Flows and the flow polynomial 

Let G be a graph with vertex set V =  (U,, ~ 2 , .  . . , u, (G) )  and edge set E = 
( e , ,  e:, . . . , e c ( G ) )  (for a recent introduction to graph theory see Bollobas (1979)). Let 
@ = (@,, @*,. . . . , @ e ( G ) )  be a vector, the j th  component of which is associated with 
the edge el, and consider an arbitrary directing of the edges of E as indicated by the 
matrix 

1 

[ O  

if el is directed away from U,, 

if e, is not incident with U,. 
The edge directing corresponds to the arbitrary choice of direction for Cartesian axes. 
The values of the components of @ are restricted by the flow condition 

D, = -1 if e, is directed towards U,, (2.1) 

€ ( G I  
1 Dzj@j=O for each i (2.2) 

] = I  

and vectors satisfying this condition (i.e. the signed sum of the @ I  at each vertex is 
zero) are called flows. For example, the currents in an electrical network are flows 
and in this context are flow condition corresponds to charge conservation. Electrical 
currents can take on any real value, but in the context of the Potts model the @, are 
only allowed the integer values 0, 1,2,  . . . , A - 1 and the arithmetic implied by the flow 
condition is done modulo A. In this case, for given A, the number of flows is finite 
and may be counted as follows. 

A cycle on G is defined to be a subgraph of G which is either polygonal or a loop 
(an edge connecting a vertex to itself). The length of a cycle is the number of vertices 
it contains. A pair of parallel edges in a graph with repeated edges (multigraph) is a 
cycle of length two and in a simple graph all cycles have length at least three. We 
suppose that each cycle of G is given an arbitrary orientation. A flow of strength f in 
a cycle c is a flow such that if e, E c then @, =f or A -f depending on whether or not 
e, is directed parallel or antiparallel to c, else @, = 0. The strength of such a flow is 
determined by its value on some chosen edge of the cycle and can therefore have one 
of the A values 0, 1, . . . , A - 1. A flow of unit strength in some cycle is called a primitive 
flow. 

The set of all possible mod-A flows on some graph G forms a vector space (the 
cycle space of G) and independent flows are independent vectors in this space. A 
spanning forest is a subgraph of G each tree of which spans all the vertices of one of 
the w ( G )  components of G. The primitive flows in the cycles obtained by adding each 
of the possible additional edges to a spanning forest form an independent set. This 
is because each cycle has an edge which is not present in any of the other cycles. It 
may also be shown that these primitive flows form a basis in the cycle space (Biggs 
1974). The number of flows, c( G ) ,  in this basis is equal to the number of edges in the 
complement of a spanning forest and hence 

(2.3) 
c(G) is known as the cyclomatic number of G or the number of independent cycles 
in G. All possible flows may be generated by taking a linear combination of these 
c(G) primitive flows, which is equivalent to assigning a strength to the flow in each 
one of the c(G) cycles generated by some spanning forest. The strength of the flow 
in any cycle may be taken as the value of @ on the edge of the cycle which does not 
belong to the spanning forest. We conclude that the total number of mod-A flows is 

c ( G )  = E ( G )  - v ( G )  + w ( G ) .  
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therefore A c ( G ) .  In table 1 we give the nine mod-3 flows which can occur on the 
graph of figure 1 which has two independent cycles. 

In the subsequent sections we shall find that it is the number of proper mod-A 
flows, F (  A, G), which determines the high-temperature expansion coefficients of the 
Potts model. A proper flow is one which has non-zero value on every edge. In the 
example above only flows six and eight are proper. Counting such flows on a general 
graph is a non-trivial combinatorial problem. A formula which gives the number of 
proper flows in terms of the number of flows on each subgraph of G may be obtained 
by an inclusion and exclusion argument (Rota 1966). Let Aj be the subset of flows 
which are zero on the edge e) F(A ,  G) is the number of flows which are zero on no 
edge and by inclusion and exclusion 

But I . .  . I  is the number of flows which are zero on the edges of E" and is therefore 
equal to the total number of flows on the subgraph G' of G which has edge set 
E ' =  E\E" and hence 

We see that F ( A ,  G) is a polynomial in A and is known as the flow polynomial of G. 
The graph of figure 1 has flow polynomial ( A  - 1 ) ( A  -2)  which has the value zero for 

Table 1. Mod-3 flows on the graph of figure 1. f is the strength of the Row in cycle c,. 

f, fi @,=@* Q3=m4 Q5 

1 0 0 
2 0 1 
3 0 2 
4 1 0 
5 1 1 
6 1 2 
7 2 0 
8 2 1 
9 2 2 

Figure 1. A graph with two independent cycles, graph 2.1 of table 2. 
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A = 1 and 2, coresponding to the impossibility of proper mod-1 and mod-2 flows, and 
the value two for A = 3 corresponding to the two proper mod-3 flows found above. In 
fact no graph has a proper mod-1 flow since the only allowed value of ai is zero. Also 
only Euler graphs (graphs with all vertices of even degree) can have a proper mod-2 
flow since the value of such a flow must be one on every edge. 

It is clear that the number of flows is a topological invariant (i.e. is unchanged 
when any edge is replaced by two or more edges in series) and we list the flow 
polynomials for all distinct topological types with S5 cycles in table 2. The polynomials 
are expressed as linear combinations of the factorial functions ( A  - l ) i  = 
( A  - l ) ( A  -2) . . . ( A  - i ) ,  i = 1, .  . . , c(  G) and the corresponding coefficients ai are tabu- 
lated. Drawings of the graphs may be found in Heap (1966). The graphs have an 

Table 2. Flow polynomials for graphs with g 5  independent cycles. 

1.1 1 
2.1 0 1  
3.1 1 2 1  
3.2 0 1 1  
3.3 0 1 1  
3.4 0 0 1  
4.1 0 5 5 1  
4.2 0 3 4 1  
4.3 1 4 4 1  
4.4 0 1 3 1  
4.5 0 3 4 1  
4.6 0 1 3 1  
4.7 0 1 3 1  
4.8 0 2 3 1  
4.9 0 1 3 1  
4.10 0 1 3 1  
4.1 1 0 2 3 1  
4.12 0 1 2 1  
4.13 0 1 3 1  
4.14 0 1 3 1  
4.15 0 0 2 1  
4.16 0 0 1 1  
4.17 0 1 1 1  
5.1 1 10 20 9 1 
5.2 0 5 1 5 8  1 
5.3 1 8 1 6 8 1  
5.4 0 7 1 6 8 1  
5.5 0 3 1 1 7  1 
5.6 0 3 1 1 7  1 
5.7 0 5 1 5 8 1  
5.8 0 3 1 1 7 1  
5.9 0 2 1 1  7 1 
5.10 0 3 1 1 7  1 
5.11 0 3 1 1 7  1 
5.12 0 3 1 1 7 1  
5.13 0 5 1 2 7 1  

k ( G )  

1 
-1 

1 
1 
1 
2 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-2 
-1 
-1 
-2 
-3 
-1 
-1 
-2 
-4 
-5 

1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 

5.49 0 3 1 1 7  1 
5.50 0 3 1 1 7  1 
5.51 0 0 7 6 1  
5.52 0 1 7 6 1  
5.53 0 1 7 6 1  
5.54 0 1 7 6 1  
5.55 0 1 7 6 1  
5.56 0 0 4 5 1 -  
5.57 0 3 1 1 7  1 
5.58 0 1 7 6 1  
5.59 0 1 7 6 1  
5.60 0 1 7 6 1  
5.61 0 2 8 6 1  
5.62 0 2 8 6 1  
5.63 0 0 4 5 1  
5.64 0 1 7 6 1  
5.65 0 0 4 5 1  
5.66 0 0 4 5 1  
5.67 0 0 4 5 1  
5.68 0 1 7 6 1  
5.69 0 0 5 5 1  
5.70 0 2 6 5 1  
5.71 0 1 6 5 1  
5.72 0 1 7 6 1  
5.73 0 0 4 5 1  
5.74 0 1 5 5 1  
5.75 0 1 5 5 1  
5.76 0 2 8 6 1  
5.77 0 0 6 5 1  
5.78 0 1 6 5 1  
5.79 0 2 6 5 1  
5.80 0 1 7 6 1  
5.81 0 1 7 6 1  
5.82 0 0 4 5 1  
5.83 0 1 7 6 1  
5.84 0 1 7 6 1  

1 
1 
2 
1 
1 
1 
1 
2 
1 
1 
1 
1 
2 
2 
2 
1 
2 
2 
2 
1 
4 
4 
5 
1 
2 
3 
3 
2 
6 
5 
4 
1 
1 
2 
1 
1 
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Table 2. (continued) 

5.14 0 4 1 2 7  1 
5.15 1 8 1 6 8 1  
5.16 1 8 1 3 7  1 
5.17 1 7 1 3 7 1  
5.18 0 1 7 6 1  
5.19 0 1 7 6 1  
5.20 0 3 1 1 7 1  
5.21 0 3 1 1 7  1 
5.22 0 0 7 6 1  
5.23 0 1 7 6 1  
5.24 0 3 1 1 7  1 
5.25 0 1 7 6 1  
5.26 0 1 7 6 1  
5.27 0 2 8 6 1  
5.28 0 1 7 6 1  
5.29 0 1 8 6 1  
5.30 0 2 8 6 1  
5.31 0 3 1 1 7  1 
5.32 0 3 1 1 7  1 
5.33 0 1 7 6 1  
5.34 0 5 1 2 7 1  
5.35 0 1 7 6 1  
5.36 0 4 9 6 1  
5.37 0 2 8 6 1  
5.38 0 2 8 6 1  
5.39 0 1 7 6 1  
5.40 0 3 9 6 1  
5.41 0 2 9 6 1  
5.42 0 1 7 6 1  
5.43 0 1 7 6 1  
5.44 0 0 4 5 1  
5.45 0 1 7 6 1  
5.46 0 0 4 5 1  
5.47 0 1 5 5 1  
5.48 0 0 5 5 1  

2 
1 
1 
2 
1 
1 
1 
1 
2 
1 
1 
1 
1 
2 
1 
3 
2 
1 
1 
1 
1 
1 
2 
2 
2 
1 
3 
4 
1 
1 
2 
1 
2 
3 
4 

5.85 0 1 7 6 1  
5.86 0 0 4 5 1  
5.87 0 0 4 5 1  
5.88 0 1 7 6 1  
5.89 0 0 4 5 1  
5.90 0 0 4 5 1  
5.91 0 0 4 5 1  
5.92 0 0 2 4 1  
5.93 0 0 2 4 1  
5.94 0 1 3 4 1  
5.95 0 1 7 6 1  
5.96 0 0 4 5 1  
5.97 0 1 5 5 1  
5.98 0 1 5 5 1  
5.99 0 0 3 4 1  
5.100 0 0 2 4 1  
5.101 0 1 4 4 1  
5.102 0 0 4 4 1  
5.103 0 1 7 6 1  
5.104 0 1 7 6 1  
5.105 0 1 7 6 1  
5.106 0 0 4 5 1  
5.107 0 0 4 5 1  
5.108 0 1 7 6 1  
5.109 0 0 4 5 1  
5.110 0 0 4 5 1  
5.111 0 0 2 4 1  
5.112 0 0 2 4 1  
5.113 0 1 3 4 1  
5.114 0 0 2 4 1 
5.115 0 0 1 3 1  
5.116 0 0 2 3 1  
5.117 0 1 3 3 1  
5.118 0 0 3 3 1  

1 
2 
2 
1 
2 
2 
2 
4 
4 
5 
1 
2 
3 
3 
6 
4 
7 
8 
1 
1 
1 
2 
2 
1 
2 
2 
4 
4 
5 
4 
8 

10 
11 
12 

identifier of the form c .  x where c is the number of cycles and x is Heap’s label. Graph 
2.1 is the graph in figure 1. Notice that the graphs for which a ,  = 0 have polynomials 
with a factor ( A  - l ) ( A  -2) and have at least one vertex of odd degree since otherwise 
a proper mod-2 flow would be possible. Notice also that the last coefficient for every 
graph has value one; this results from the fact that the coefficient of A c ( G )  is unity 
corresponding to the term E’= E in (2.5). Graph 4.12, which is a square pyramid, 
has F(A,  G)=(A -1),+2(A -1)3+(h -1)+ The column headed k ( G )  is the k-weight 
of the graph and is the weight which occurs in the expansion of the mean number of 
percolation clusters. (See Essam and Sykes (1966) who gave the values of k for c S 4. 
The values for c =  5 were given by Heap (1966).) We shall see (§ 4) that k ( G )  is the 
value of (d/dA)F(A, G) at h = 1 and therefore serves as a check on the coefficients a,. 
in the table. 
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3. Thermal properties, colourings and flows 

The partition function of the A-state Potts model may be defined by 

(3.1) 

where B is the set of interacting spin pairs or 'bonds' and the trace is over all positions 
of the v spin vectors s,. Each vector takes on one of the A values which are the position 
vectors of the corners of a ( A  - 1)( = n)-dimensional tetrahedron relative to its centre 
(Amit 1976). If e, and ep are two such vectors then 

where s = 1 ~ ~ 1 ,  and we shall suppose that s2 = n. Using this relation leads to 
e , .  e p = ( s 2 / n ) [ A G ( a , P ) - l ]  (3.2) 

where the reduced partition function A is given by 

(3.3) 

where ai = 1, . . . , A and zU = exp(-AKi,). Carrying out the a sums gives the well known 
result (Kasteleyn and Fortuin 1969) 

(3.5) 

where w ( B ' )  is the number of clusters into which the spin sites are partitioned by the 
subset E' of bonds and P b  = 1 - zij As K ,  varies from 0 to CO, P b  goes from 0 to 1 and 
can be interpreted as the probability of an open bond in a bond percolation process 
(Kasteleyn and Fortuin 1969). Thus A is the expected number of ways that the spin 
sites may be coloured in one of A colours such that all the sites in the same percolation 
cluster are coloured alike. 

A second probabilistic interpretation of A is in terms of mod-A flows. To make 
contact with 0 2, here G is the graph with V equal to the set of spins and E = B, the 
set of interactions. After some manipulation, equation (3.5) becomes 

A = A U i G '  n ( l + n f b ) - ' E ( h ' )  (3.6) 
b s B  

where 

P b  1 - z b  
f --=- 

A - n p b  l + n z b  
b -  

and the non-trivial factor E ( A  ') is given by 

E ( A ' ) =  n f b  n ( l - f b )  
B'E B brB' bfB\B' 

(3.7) 

where c(G') is the number of independent cycles in the subgraph G' defined by the 
bonds E'.  We note that A c ( G ' )  is the number of possible mod-A flows on the subgraph 
G'. Thus the right-hand side of (3.8) may be interpreted, for K b  3 0, as the expected 
number of mod-A flows which may be found on the clusters of a bond percolation 
process in which the bond b occurs with probability tb (hence the notation). The 
probabilistic nature of the variable t b  has already been emphasised by Tsallis and Levy 
(1981). 
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a 
=-logE(A') 

A similar result may be obtained for the correlation function ( s i  s j )  by introducing 
an extra bond g ('ghost bond' (Kasteleyn and Fortuin 1969)) between the spins i and 
j thus: 

. (3.11) 

K ,  =O 
(3.9) 

(3.10) 

Carrying out the trace of (3.15) over s, and s2 with and without the factor s1 . s2 and 
taking the ratio of the results gives 

(sl s2) = nt;; (3.16) 

with t i ;  related to K,, by (3.7). Combining (3.14) and (3.16) we obtain 

t 3  = E ( yA ' )/ E ( A  ' ) (3.17) 

where y = y12. It follows from (3 .2)  and (3.16) that ti4 is the probability that spin 2 
is in the same state as spin 1 minus the probability that it is in some particular different 
state. It is what Tsallis and Levy (1981) call the equivalent transmissivity of spins 1 
and 2 of the cluster. tb is the transmissivity of the bond b and we note that, from their 
definitions, the numerator N and denominator D of (3.17) are multilinear functions 
of the bond transmissivities. Also D = 1 when all interactions are set to zero. We 
therefore conclude that N and D are precisely the functions defined by Tsallis and 
Levy which we have now interpreted as expected values in a bond percolation model. 
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The equivalent transmissivity of any spin pair i j  is (s, 3 s,)/ n and has numerator and  
denominator given by 

N,, = E ( y , A ' ) ,  D =  E ( A ' ) .  (3.18) 

Notice that D is independent of i and j and also determines the partition function. 
Setting t b  = 1 for all b in (3.8) makes all the terms in the sum equal to zero except the 
term B'= B which proves the observation of Tsallis and Levy (1981) that the sum of 
their denominator coefficients is equal to The same is true of the numerator 
coefficients provided that spins i and j are connected by an  interaction path. 

4. High temperature expansion and related properties of the partition and correlation 
functions 

We next turn to the derivation of power series expansions for the Potts model. Domb 
(1974) has given a detailed discussion of the graph theoretic properties of the coefficients 
which occur when Z is expanded in the variable t h  (equation (3.7)). Here we relate 
these coefficients to the number of proper mod-A flows ( §  2) on the clusters of €3'. The 
flow constraint results in many of the subsets B' having zero weight, a fact which is 
not immediately obvious from previous formulations. 

Expanding the last product in (3.8) gives 

where we have replaced B'U B" by B' ,  inverted the order of summation, and used 
(2.5). When the spins lie on a crystal lattice, if B is the set of nearest-neighbour bonds 
then t b  = t for all b and (4.2) is an expansion in powers of t. For an  infinite lattice, 
(4.2) is an infinite series which converges for sufficiently high temperatures. Many of 
the properties of the coefficients in this expansion have been discussed by Domb (1974) 
but the interpretation in terms of flow polynomials was not given. Equation (4.2) may 
be deduced from the work of Biggs (1976, 1977) who expressed the Potts partition 
function as a sum over flows. Differentiating (4.1) with respect to A and setting A = 1 
gives the expansion of E ( c ) ,  the mean number of independent cycles in the clusters 
of a bond percolation model. This is simply related to E ( @ ) ,  the mean number of 
clusters, by (2.3) which is valid for any subgraph. The relation between the coefficients 
in the mean number expansion and the derivative of F, mentioned in 5 2, follows 
immediately. 

Extension of (4.2) to the expansion of E (  yJ ') follows in a similar manner by first 
introducing the factor y,,( B ' )  into (3.8): 

where 

In the calculation of the correlation between spins si and sj of the cluster the vertices 
i and j are special and are called roots. We therefore call Fij(A, G') the rooted flow 
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polynomial of G' relative to the roots i and j. Fij(A, G') may be related to F(A,  G'U g), 
where g is the 'ghost bond' introduced in 0 3, as follows. From (2.5) 

Dividing this sum into four parts depending on whether or not yv( B") = 1 and whether 
or not g E B" shows that the terms for which y,(B")  = 0 cancel, and combining the 
other two terms gives 

F;,(A, G') = n-'F(A, G'U g )  (4.6) 

which is the number of proper flows in G'U g with a fixed non-zero value on g. As 
an example, suppose we require F,,(A) for the graph of figure 1 .  Adding the ghost 
bond gives the complete graph on four vertices (tetrahedron) which is graph 3.4 of 
table 2 and has flow polynomial ( A  - 1 ) 3 .  Using (4.6) gives Fl,(A) = ( A  -2)(A - 3 ) .  
Thus there are two rooted proper mod-4 flows; if there is an external flow in at u1 and 
out at u2 of strength one, then the two flows in question are (3,2,  1 ,2 ,1)  and ( 2 , 1 , 2 , 3 , 3 ) .  
Equations (4.2) and (4.3) are illustrated in figure 2 .  

The following properties of F(A ,  G) follow in an intuitively obvious manner from 
the conservation of 'fluid' (mod A )  at each vertex of G and the condition that there 
must be a non-zero flow in each edge. A formal proof of most of these properties may 
be found in Tutte (1954, 1984). 

(i) F = 0 if G has a vertex of degree one or an articulation edge (isthmus). 
(ii) If G has components GI, .  . . , Gm then 

The same result is true even if the Gi have articulation vertices in common. 

morphic when vertices of degree two are suppressed) have the same value of F 
(iii) F is a topological invariant, that is graphs which are homeomorphic (iso- 

(iv) Deletion-contraction rule. If the edge e of G is not a loop 

F(A,  G) = F (  A, G:) - F(A, Gf ) (4.8) 

where Gf and G: are obtained by deleting and contracting respectively the edge e. 
This result is not so obvious but follows by noting that the flows on Gf correspond 
to flows on G which are zero on e but non-zero on all other edges. The flows on G: 
correspond to flows on G which are non-zero everywhere except possibly on e. 
Although loops have no physical significance in Potts model applications they can 
arise if the deletion-contraction rule is repeatedly applied. If e is a loop then 

F ( A ,  G)=(A -1)F(A, Gf).  ( 4 . 8 ~ )  

(v) Edge doubling. Most graphs with c cycles can be obtained by replacing an 
edge of a graph with c - 1 cycles by a double edge. For example, 104 of the 118 graphs 
in table 2 with five cycles may be obtained in this way. Let Gef be the graph obtained 
from G by replacing the edge e by the double edge e,& The proper flows on G, are 
of two types depending on whether or not there is a net non-zero flow through the 
double edge. There are A - 2  flows of the first type for every proper flow on G and 
A - 1 of the second type for each proper flow on Gf, thus 

F(A,  G e f ) = ( A - 2 ) F ( A ,  G)+(A-I)F(GS,). (4.9) 
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~E Fj ( A - 1 1  ( A - 2 )  

I I 1 I I 1 

Figure 2. Calculation of the pair correlation function for a cluster using flow polynomials. 
The interactions represented by the edges are assumed equal and only non-isomorphic 
subgraphs are shown. m is the number of subgraphs which are isomorphic to the graph 
shown. ( a )  yields the denominator D( a)= l + ( h  - 1 ) ( 3 r 3 + 2 r 4 + t S ) + ( h  -1)'f6 
+ ( A - l ) ( h - 2 ) ( 2 f s + 2 r 6 ) + ( A - 1 ) ( A - 2 ) 2 t 7 ;  ( b )  yields the numerator N,,( 6;n, ) =  
f 2 + 3 t 3 + 3 t 4 + ( A  - 2 ) ( 2 t 4 +  1 2 t 5 ) + ( i  - l ) t s i - [ 3 ( h  - 2 ) 2 + 4 ( A  -2)(A-3)]f6+(A - 2 ) ( A 2 - 5 h  
+ 7 ) 1 7 .  

The prefactors are the number of proper flows in the extra cycle formed by the double 
edge. 

Similar properties follow for Fo using the connection (4.6) with F and are listed 
below with the corresponding numbering. 

(i)  Ej = 0 if G has a vertex of degree one which is not i or j .  
(ii) If G has components G,, . , . , G, and if the roots i a n d j  both belong to GI then 

... 
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The same result is true even if the Gi have articulation vertices in common. 
If i and j are in different components then Fv = 0. 
(iii) Two rooted flow polynomials are the same whenever the corresponding rooted 

graphs are homeomorphic (rooted graphs are isomorphic if there is a bijection between 
their vertex sets which induces a correspondence between the rooted vertices and the 
edges of the two graphs). 

(iv) Equations (4.8) and (4.8a) are valid with F replaced by Fw 
(v) Equation (4.9) is valid with F replaced by Fw 
A particularly interesting relation for Fi,, the ‘onion property’, may be deduced 

from (4.8). Consider the vertex i of a graph G and suppose that the edges incident 
with i are partitioned into two non-empty subsets El and E*. Now let G be ‘cut 
through’ vertex i so as to separate these subsets (figure 3), leaving i incident with El  
and introducing a new vertex j which is incident with E2. This operation gives rise to 
a family of new graphs Gk, k = 1,2 , .  . . , each one corresponding to a different partition. 
These new graphs can be transformed into one another by an operation which is like 
peeling an onion. 

(vi) The ‘onion’ property implies 

F(A ,  Gk)+(h-l)Fi,(A, Gk)=F(A, G )  (4.10) 

and hence that the left-hand side is independent of k 
The result is illustrated in figure 3. To prove this result we use (4.6) to replace 

( A  - 1)ej(A, Gk)  by F(A,  Gk U g) and then apply the deletion-contraction rule to the 
edge g of Gk U g. Equation (4.10) is also trivially true for the graph Go, corresponding 
to the case E2 is empty, since then j is just an additional isolated vertex and Fv = 0. 

Figure 3. The family of graphs obtained by ‘peeling’ G at ut (only non-isomorphic graphs 
are shown). 
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The following properties of Nij and D may be deduced from the corresponding 

(i) Vertices of degree one may be deleted from G without changing D(G) .  The 
properties of F and Fv using (3.18), (4.2) and (4.3). 

same is true of N,(G), and hence ( s i -  s j ) ,  with the exception of vertices i and j .  
(ii) With Gi as in (ii) above 

D(G)= fi WG,)  
r =  1 

and if i and j are both in G, 

m 

Nij(G)=Nij(Gi) fl D(G,) 
r = 2  

and 

( s i .  s j )=  Nij(G,)ID(GI). 

This result also applies if the Gi have articulatio vertices in common. If i a 

(4.11) 

(4.12) 

(4.13) 

d j are 
in different components then Nu( G )  = 0 since there can be no flows which are proper 
on the ‘ghost’ edge g. 

(iii) If bonds b,  and b2, with transmissivities t l  and t2, are in series (i.e. have a 
non-rooted vertex of degree two in common) then, in calculating Nu and 0, they may 
be replaced by a single bond with transmissivity tit,. 

(iv) The ‘break-collapse method’ of Tsallis and Levy (1981) is obtained by splitting 
the sum in (4.2) into two parts depending on whether or not the bond e is in B’ and 
then applying the deletion-contraction rule to the flow polynomials in the first part, thus: 

D ( G ) =  [ F ( A ,  G’)+teF(A, G’Ue)]  fl t b  (4.14) 
B ’ s  B\e b e  B‘ 

and hence 

D( G )  = teD( G:) + ( 1  - t,)D( G;).  (4.15) 

The same argument, starting from (4.3), is valid for Nu( G) .  The terms on the right-hand 
side of (4.15) can be interpreted in terms of the expected numbers of flows given that 
the bond e is or is not present in the equivalent percolation problem. If e is a loop then 

( 4 . 1 5 ~ )  D ( G )  = [l + ( A  - l)te]D( Gf) .  

(v) If Gef is the graph obtained by doubling the edge e of G then 

D(Gef)  = [ f, + $ + ( A  -2)t,$][D( G:) - D( G f ) ]  +[ 1 + ( A  - l)t,$]D( G f )  (4.16) 

with a similar relation for Nil. Again the flows which determine D(Gef)  have been 
subdivided according to whether or not there is a net flow between the double edge 
and the rest of the graph. 

(vi) The ‘onion property’ follows by substituting (4.10) applied to G’ into (4.2) 
and using (4.3) to give 

D( Gk) + ( A  - 1) Ni, (Gk) = D( G). (4.17) 

G; is obtained from G‘ using the partition induced by that which gave Gk from G. 
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5. Spin traces and flow polynomials 

We now show that the flow polynomials may be used to evaluate spin traces. Since 
the scalar product of a pair of Potts model spin vectors takes on only two values, the 
exponential in (3.1) may be written 

exp( &si s j )  = A,( 1 + t,si s j )  (5.1) 

A, = exp( nK,)/( 1 + nt, ) .  (5.2) 

where t ,  is given by (3.7) and with sz = n 

Substitution in (3.1) shows that 

and using (3.3) and (3.6) gives (4.2) where now 

[ i j ] ~  E' 

(5.3) 

(5.4) 

We note that G' has the same number of vertices v ( G )  as G. It may therefore be 
concluded that this normalised spin trace is the flow polynomial of Tutte (1954). In 
view of the importance of such spin traces in Potts model theory (for example they 
also arise in the field theoretic formulation of renormalisation group theory (Amit 
1976)), we present a direct derivation of (5.4)t. 

Denote the right-hand side of (5.4) by T ( h ,  G'). Using (3.2) with s2 = n and 
replacing the trace by a sum over the state variables ai gives 

(5.6) 

(5.7) 

The factor 
for all spins in a given component. Using (2.3) applied to G" gives 

arises since the delta functions restrict the values of ai to be equal 

which confirms (5.4) 
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