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Abstract
We consider configurations of n walkers each of which starts at the origin of a
directed square lattice and makes the same number t of steps from node to node
along the edges of the lattice. Bose walkers are not allowed to cross, but can
share edges. Fermi walk configurations must satisfy the additional constraint
that no two walkers traverse the same path. Since, for given t, there are only
a finite number of t-step paths, there is a limit nmax on the number of walkers
allowed by the Fermi condition. The value of nmax is determined for six types
of boundary conditions. The number of Fermi configurations of nmax walkers
is also determined using a bijection to standard Young tableaux. In four cases
there is no constraint on the endpoints of the walks and the relevant tableaux
are shifted.

PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e

1. Introduction and definitions

Various types of interacting walker problems are considered in the literature [7] and they
model key physical entities such as gas molecules and polymers. For example, in [5] and
[6], collections of ‘vicious’ walkers are used to model directed polymer networks. Walker
configurations can also be used to elicit information on other structures such as distributions
of eigenvalues of real symmetric random matrices, see [15]. The combinatorics of the various
walker configurations on regular lattices with different types of restriction form a rich collection
of counting problems, which are not only of mathematical interest in themselves, but also relate
to the combinatorics of other structures such as the Young tableaux used in this paper.

The origin of the description Fermi walks comes from the nomenclature for elementary
particles which can be either of Fermi or Bose type. Such particles have a discrete set of
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Figure 1. The graphs (a) W7,4, (b) W 7,4, (c) S4, (d) S8, (e) S6,3, (f ) S9,3. The graphs are
considered to be directed to the left and down.

energy levels and two bosons can occupy the same energy level, while for fermions only
single occupation is allowed. These different properties of Fermi and Bose particles are
reflected in the definitions, below, of Fermi and Bose walks.

We consider n walks in the plane each of which starts at the origin and makes t steps
where the step vectors are either (−1, 0) or (0,−1). Negative steps are chosen to agree with
the usual convention for Young tableaux introduced later. The walks are allowed to intersect
but may not cross one another. Configurations which satisfy this condition are called Bose and
configurations which satisfy the further condition that no two walkers traverse the same path
are called Fermi. Bose and Fermi walk configurations were introduced by Inui and Katori
[12] in the context of directed percolation theory. Here we will be interested only in the Fermi
case.

Configurations where all walkers terminate at the same point (−�,−w), so that t = �+w,
will be called watermelons but configurations where the endpoints may vary are called stars.
This terminology was introduced by Fisher [7] in the context of vicious walkers which biject
[2] to Bose walkers. The union of all configurations defines a graph called W�,w in the case
of watermelons (� for length and w for width) and St for stars. See figure 1(a) for W7,4 and
figure 1(c) for S4.

Further the graphs W̄�,w and S̄t will arise when we introduce a wall y = x which the walks
are not allowed to pass below (see figures 1(b) and (d) for examples). Finally the imposition of
a limit w on the number of y steps made by walks in a star configuration creates the graphs St,w

and S̄t,w exemplified in figures 1(e) and (f ). When referring to a general graph the symbol H
will be used. The number of n-walk Fermi configurations on the graph H will be denoted by
f Fermi

n (H).
The cells of the grids defined by W�,w and W̄�,w form normal Young diagrams in that

the rows of cells are left justified and of decreasing length. However, this is not so for the
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star graphs. In the subsequent discussion of the correspondence between Young tableaux
and Fermi walk configurations (section 3 ) the diagrams for stars will be obtained from the
graphs by adding an anti-diagonal staircase of edges connecting the possible endpoints of the
t-step walks. This results in the inclusion of an additional cell at the beginning of each row
of the diagram and a possible single cell row. In the case when a wall is present the initial
step common to all walks is removed in constructing the Young diagram. This clearly has no
effect on the number of configurations but the length of the top edge of the diagram is t − 1.
The resulting shifted Young diagrams characterized by the left-hand staircase will be denoted
by Yt, Ȳt , Yt,w and Ȳt,w. For watermelons the same notation will be used for the graph and
diagram. Examples of shifted Young diagrams are shown in figures 3(b), (d) and (e). When
referring to Young diagrams in general the symbol Y will be used.

Definition 1. A standard (shifted) Young tableau is an assignment of the numbers
1, 2, . . . , c(Y ) to a Young diagram Y having c(Y ) cells such that each number is used and the
entries are increasing to the right along the rows and downwards along the columns.

The results of our walk enumerations are summarized in the next section. The bijection
between maximal Fermi walk configurations and standard Young tableaux which makes these
enumerations possible is obtained in section 3 and the details are given in section 4. Finally
we discuss the connection between Fermi walks and directed percolation in section 5.

2. Results

The Fermi condition implies that there will be a limit to the number of walkers, depending on
the graph H, above which no configurations are possible. A maximal Fermi walk configuration
is one to which no walk may be added without violating the Fermi condition. Typical maximal
watermelon and star configurations are shown in figure 2.

Proposition 1. Every maximal Fermi walk configuration on the graph H has nmax = c(Y )+ 1
walks, where c(Y ) is the number of cells in the Young diagram corresponding to H.

The number f Fermi
nmax

(H) of maximal Fermi walk configurations is the main topic of this
paper. In section 3 a bijection will be established between maximal Fermi walk configurations
on H and standard Young tableaux on the corresponding Young diagram Y. This proves
proposition 1 and enables the maximal Fermi walk configurations on H to be counted using
Hook formulae [8, 16] for the numbers of Young tableaux.

In the following propositions the Pochhammer symbol (a)b = a(a + 1) · · · (a + b − 1)

is used. Also, using proposition 1, nmax = c(Y ) + 1 where in the case of watermelon
configurations Y is either W�,w or W�,w.

Proposition 2. Maximal Fermi walk configurations without a wall.

(a) For watermelon configurations without a wall c(W�,w) = �w and

f Fermi
nmax

(W�,w) = Cw,� = (�w)!∏w
k=1(k)�

= C�,w. (2.1)

These are multi-dimensional Catalan numbers, see [18]—sequence A005789.
(b) For star configurations without a wall c(Yt ) = 1

2 t (t + 1) and

f Fermi
nmax

(St ) =
(

1
2 t (t + 1)

)
!

∏t
k=1(k)k

. (2.2)

These are strict sense ballot numbers, see [18]—sequence A003121.
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Figure 2. Maximal Fermi walk configurations and the corresponding Young tableaux. (a) The
five maximal configurations on W2,3. (b) A typical maximal configuration on S4.

Note that Sulanke [19] attributes the formula for Cw,� to MacMahon (see [17], art.93–
103). Also note that C2,� is a Catalan number, which is well known to enumerate Dyck paths,
and Cw,� has been called a w-dimensional Catalan number [19].

Proposition 3. Maximal Fermi walk configurations above the wall y = x.

(a) For watermelon configurations above the wall y = x, introducing d = � − w � 0,
c(W�,w) = wd + 1

2w(w − 1) and

f Fermi
nmax

(W�,w) = 2
1
2 w(w−1)(c(W�,w))!∏w
k=1(k)d(d + k)k−1

= 2
1
2 w(w−1)(c(W�,w)!∏w

k=1(k)d+k−1
. (2.3)

Note that the sequence d = 0, w = � = 0, 1, 2, . . . is the sequence of numbers of
triangular standard Young tableaux, sequence A005118 of [18]. When � = 2, increasing
d gives a sequence of Catalan numbers and � = 3 gives sequence A1123555 of [18].

(b) For star configurations above the wall y = x

(i) with t = 2w, c(Y 2w) = w2 and

f Fermi
nmax

(S2w) = Cw,w = (w2)!∏w
k=1(k)w

= f Fermi
nmax

(Ww,w) (2.4)
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(ii) with t = 2w + 1, c(Y 2w+1) = w(w + 1) and

f Fermi
nmax

(S2w+1) = Cw+1,w = (w(w + 1))!∏w
k=1(k)w+1

= f Fermi
nmax

(Ww+1,w). (2.5)

Proposition 4. Maximal Fermi star configurations with � w y-steps.

(a) For star configurations with � w down steps c(Yt,w) = tw − 1
2w(w − 1) and

f Fermi
nmax

(St,w) =
(
tw − 1

2w(w − 1)
)
!

∏w
k=1(k)t−w+1(k + 2(t − w) + 1)k−1

. (2.6)

(b) For star configurations with � w down steps and above the wall y = xc(Y t,w) = (t−w)w

and

f Fermi
nmax

(St,w) = ((t − w)w)!∏w
k=1(k)t−w

= f Fermi
nmax

(Wt−w,w). (2.7)

Notes:

(i) The star configurations above the wall y = x with no width constraint are the special
cases t = 2w and t = 2w + 1 of part (b) of this proposition.

(ii) The equality of f Fermi
nmax

(St,w) and f Fermi
nmax

(Wt−w,w) will be shown to follow from a bijection
([11] proposition 8.11) between the corresponding standard Young tableaux.

The above propositions extend earlier work [3, 4] where H was the graph W�,w. In [3] these
results were used to prove and generalize certain results of Guttmann and Vöge [10] concerning
the rationality of an anisotropic generating function for vicious walk configurations.

3. Maximal Fermi walk configurations and Young tableaux

In this section a bijection between maximal Fermi walk configurations and standard Young
tableaux is established. For a general reference on Young tableaux see Fulton’s book [9].

The graphs W�,w and W̄�,w may be considered to be the cases of the general Young diagram
denoted by Y.

Bijection 1. There is a bijection between the maximal Fermi walk configurations, on the
graph H and the standard Young tableaux on the corresponding Young diagram Y such that
each walk, except the topmost, corresponds to an entry of the tableau.

Figure 2(a) shows the bijection between the five maximal walk configurations on W2,3

and the five standard tableaux. Note that in any one of these configurations each walk (except
the topmost) differs by just two steps from the walk directly above it. The two steps are the
sides of a unique cell and each cell is associated in this way with just one walk. Numbering
the walks 0, 1, 2, . . . 6 from the top determines, by association, a number for each of the six
cells of the Young diagram. By construction these numbers are increasing along the rows
and columns to form a standard tableau. The generality of this construction is proved below.
Figure 2(b) shows the correspondence between a maximal Fermi walk configuration on S4 and
a Young tableau on the diagram Y4 (imagined). Note that the fourth walk is obtained from the
third by replacing its final left step by a down step and its number is placed to the left of the
final down step which, by construction of Y4, is in the first cell of the second row of Y4.

The proof of the bijection is constructive and requires the following two lemmas.

5
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Lemma 1. Any maximal Fermi walk configuration on the graph H covers all of its edges.

Proof. Suppose that there exists a maximal Fermi set of walks F which does not cover all
the edges of H. An uncovered edge [u, v] can be chosen such that the vertex u is on a walk
f ∈ F . Now concatenate

(i) a segment of f from the its initial vertex to u,
(ii) the edge [u, v], and, either,

(iii) a segment of a another walk of F from v to its final vertex, or,
(iii’) a walk vertically down from v until it reaches a walk of F and then follows the segment

of this walk to its final vertex.

This procedure gives a new Fermi set larger than F and therefore contradicts its
maximality. �

Definition 2. The operation whereby a walk is converted into a lower walk by replacing an
adjacent left-down pair of steps by a down-left pair will be called a flop. In the case of a star
configuration replacing a final left step of a walk by a down step will also be called a flop.

Lemma 2. Let F = {f0, f1, . . .} be a maximal Fermi walk configuration with the walks
listed in descending order of height; then for k � 1, fk differs from the walk fk−1 by just a
single flop.

Proof. By lemma 1 all of the edges are covered so fk can only differ from fk−1 by a number
of flops. The Fermi condition implies that fk differs from the walk fk−1 by at least one flop.
Suppose that fk differs from fk−1 by more than one flop. A further walk may be constructed
from fk−1 by executing one of these flops. This walk uses a path distinct from that of fk−1

and lies above fk which contradicts the maximality assumption. �

Proof of bijection 1.
→ Given a maximal Fermi walk configuration F = {f0, f1, . . .} on the graph H, where

the walks are listed in the order of descending height, construct a labelling of the corresponding
Young diagram Y as follows. By lemma 2, for k � 1 the walk fk contains a unique pair of
steps obtained from fk−1 by a single flop. Label the cell of Y immediately to the left of the
down step created by the flop by k. The last label will be c(Y ) since when all the cells have
been labelled no more flops are possible. The resulting labelled diagram is a standard tableau
since by construction all of the numbers 1, 2, . . . , c(Y ) are used and the entries are increasing
to the right and downwards by the ordering of the walks.

← Given a standard tableau on Y the corresponding maximal Fermi walk configuration
F on the corresponding graph H is constructed as follows. f 0 is the uppermost walk. For
k = 1, 2, 3, . . . , c(Y ) construct fk by flopping the steps (or step in case of a final step) of fk−1

which border the cell with entry k. By the increasing condition this will add a walk which
uses a new path and avoids crossing previous walks. The resulting set therefore satisfies the
Fermi condition and contains c(Y ) + 1 walks. �

Proof of proposition 1. This proposition follows immediately from bijection 1. �

4. The enumeration of maximal Fermi walk configurations

Propositions 2–4 will now be established using bijection 1. That is the number of maximal
Fermi walk configurations on H is determined by counting standard Young tableau on the
corresponding diagram Y. This is achieved by using hook length formulae [8, 16]. The values

6
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Figure 3. Hook length tables for (a) W6,4 (b) Y4 (c) W 7,4 (d) Y 8 (e) Y7,4.

of nmax follow immediately from proposition 1 by counting the number of cells in Y. In this
section k ∈ {1, 2, . . . w} labels the rows of the Young tableaux contrary to its use as a cell
entry in the previous section.

4.1. Watermelons

The following theorem is proved in [8].

Theorem 1. The number of standard tableau on the normal Young diagram Y is given by
the hook length formula c(Y )!/

∏
σ∈Y hσ where c(Y ) is the number of cells of Y and the hook

length hσ of cell σ ∈ Y is 1 plus the number of cells to the right in the same row or below in
the same column as σ .

(i) Watermelons without a wall.
The hook lengths for W6,4 are given in figure 3(a) from which the general case is clear.

c(W�,w) = �w and the kth row has � terms which start at k and increase in unit steps. Thus,

∏

σ∈W�,w

hσ =
w∏

k=1

(k)�.

Theorem 1 together with bijection 1 derives proposition 2(a).
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(b)(a)

(c)

Figure 4. Young diagrams for star configurations. (a) For five step walks showing the hook of cell
(1, 3), (b) the modified hook of the same length. (c) For eight step walks above a surface.

(ii) Watermelons above the wall y = x.
The hook lengths for W 7,4 are given in figure 3(b). The product of hook lengths in the

kth row of the tableau W�,w may be obtained by inserting the numbers 2, 4, . . . , 2(k − 1) into
the row, the product of which is 2k−1(k − 1)!. The product of factors in the row after insertion
becomes (2k + d − 2)! and hence

∏

σ∈W�,w

hσ =
w∏

k=1

(2k + d − 2)!

2k−1(k − 1)!
=

w∏

k=1

(k)k+d−1

2k−1
(4.1)

which together with theorem 1 gives proposition 3(a).

4.2. Stars

The construction of hooks for shifted Young diagrams is described in [16].

Definition 3. The hook of cell σ of a shifted Young diagram includes all cells in the same row
and to the right of σ , or in the same column and below σ , σ included, but if this set contains
a cell on the main diagonal, say cell(k, k), then all the cells in the (k + 1)st row belong to the
hook.

(i) Stars without a wall.
A typical hook on the Young diagram for five step star walks in the absence of a surface

is shown in figure 4(a). This may be converted into an inverted L shape, as shown in
figure 4(b), having the same number of cells. This simplifies the hook length calculation and
the hook lengths for S4 are given in figure 3(c). The product of hook lengths arising from row
k of Yt is (k)k . Substitution in the formula of theorem 1 gives f Fermi

nmax
(St ) in proposition 2(b).

Note that the hook lengths are a subset of those for watermelons obtained by omitting hook
lengths in cells below the diagonal.

(ii) Stars above the wall y = x.
In the presence of a wall it is necessary to distinguish configurations with even and odd

numbers of steps.
First consider the even case t = 2w. Figure 4(c) shows a typical hook for eight step star

walks above a wall. The general Young diagram Y 2w has trapezoidal shape with top row of

8
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length 2w − 1 and w rows. The rows reduce in length by steps of 2 until the last row has a
single cell.

The hook lengths for Ȳ8 are shown in figure 3(d). From figure 3 it is clear that the odd
hook lengths on the right-hand side and central column are the same as on the right-hand
side of the tableau for W 7,4. In general, the product of these lengths is therefore obtained by
setting d = 1 in (4.1) which gives

∏w
k=1(k)k/2k−1. The lengths on the left side are even and

the product may be written as
∏w

k=1 2k−1(2k)w−k .

∏

σ∈Y 2w

hσ =
w∏

k=1

(2k)w−k(k)k =
w∏

k=1

(k)w. (4.2)

Using theorem 1 this reproduces (2.4).
Now consider the odd case t = 2w + 1. The general Young diagram Y 2w+1 again has

a trapezoidal shape but with top row of length 2w and w rows. The rows reduce in length
by steps of 2 until the last row has two cells. This time the last w + 1 columns of Y 2w+1 are
the same as for Ww+2,w for which d = 2 and from (4.1) the product of hook lengths from
these columns is

∏w
k=1(k)k+1/2k−1. The remaining w − 1 columns have even hook lengths

and removing factors of 2 leads to

w−1∏

k=1

(2k + 1)w−k

w∏

k=2

2k−1 =
w∏

k=1

(2k + 1)w−k2k−1

and hence the hook length product for Ȳ2w+1 is

∏

σ∈Y 2w+1

hσ =
w∏

k=1

(k)k+1(2k + 1)w−k =
w∏

k=1

(k)w+1. (4.3)

Using theorem 1 this reproduces (2.5).
The results for stars above the wall y = x also follow from the following bijection which

is part of proposition 8.11 of Haiman [11].

Proposition 5. There is a bijection between standard tableaux of rectangular shape having
w rows and � columns with w � � and standard shifted tableaux of trapezoidal shape with
top row of length � + w − 1 and w rows.

For the trapezoidal tableaux corresponding to S̄2w, � = w and from the proposition these
biject to those for Ww,w. For the trapezoidal tableaux corresponding to S̄2w+1, � = w + 1
and from the proposition they biject to those for Ww+1,w. The equality of f Fermi

nmax
(S2w+m) and

f Fermi
nmax

(Ww+m,w) for m = 0, 1 therefore follows from bijection 1 and proposition 5.

(iii) Stars with � w down steps.
The product of hook lengths has two components. The first from the t − w + 1 by w

rectangle is the same as for Wt−w+1,w which leaves an upper triangular section of width w − 1.
Numbering the rows of Yt,w from 1 to w from the bottom, row k of the triangular section has
k − 1 cells with contents increasing from k + 2(t − w) + 1.

∏

σ∈Yt,w

hσ =
w∏

k=1

(k)t−w+1(k + 2(t − w) + 1)k−1 (4.4)

using theorem 1 derives 4(a).

9
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(iv) Stars with � w down steps and above the wall y = x.
The Young diagram in this case has a trapezoidal shape with w rows and t − 1 cells in the

top row. Bijection 1 together with proposition 5 gives

f Fermi
nmax

(St,w) = f Fermi
nmax

(Wt−w,w), (4.5)

which is proposition 4(b).

5. Directed percolation and Fermi walk configurations

Let H be one of the graphs defined in the introduction, examples of which are shown in
figure 1. Recall that the horizontal edges are considered to be directed to the left and the
vertical edges are directed downwards. In directed bond percolation the edge e of H is open
with probability pe independently of the state of other edges. In site percolation the vertices
are randomly deleted and pv is the probability that vertex v is not deleted. More generally both
vertices and edges may be deleted at random and we denote the vector of probabilities by p.

Definition 4. The connectedness function C(H ; p) for the graph H is the probability that at
least one of the terminal vertices of H is connected by one or more open paths from the origin.

Note that the functions C(W�,w; p) and C(W̄�,w; p) are the pair connectedness functions
with and without a wall. These are also the pair connectedness functions for the site (−�,−w)

of the infinite directed square lattice since there are no directed paths on the lattice which leave
W�,w(W̄�,w).

Inui and Katori [12] considered the walkers to be interacting polymer chains and defined a
canonical partition function as a sum of Boltzmann factors over all configurations of n walks.
The Boltzmann weight included a factor exp(−1/(kBT )) for each edge used by at least one of
the walkers. Let Fn(H) be the set of all Fermi configurations of n walks and for η ∈ Fn(H)

let G(η) be the subgraph formed by the union of all walks in η. We then define a canonical
partition function by

ZFermi
n (H ; p) ≡

∑

η∈Fn(H)

∏

e∈E(η)

pe

∏

v∈V (η)

pv (5.1)

where E(η) and V (η) are respectively the vertex and edge sets of G(η). The partition function
of Inui and Katori is obtained by setting pe = p = exp(−1/(kBT )) and pv = 1. Thus, as the
absolute temperature T varies from zero to infinity p increases from zero to 1.

The following theorem is a generalization of that proved by Inui and Katori [12] who
considered the function C(W 1

2 t, 1
2 t , p) with pe = p and pv = 1 (see below).

Theorem 2. The connectedness function of the graph H is related to the Fermi partition
function by

C(H ; p) =
nmax∑

n=1

(−1)n+1ZFermi
n (H ; p). (5.2)

Proof. Let P(H) be the set of all directed paths from the origin to some terminal vertex of
H. Then, by inclusion and exclusion,

C(H ; p) = Pr (at least one path of P(H) is open)

=
∑

φ⊂η⊆P(H)

(−1)n(η)+1
∏

e∈E(η)

pe

∏

v∈V (η)

pv, (5.3)

where n(η) is the number of paths in the subset η.

10
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Note that Fermi walk configurations are the non-crossing subsets of P(H) so the theorem
is proven provided that we can show that subsets which contain crossing paths can be omitted
from the sum. To do this we split the crossing subsets into pairs of equal weight one with an
odd number of paths and one with an even number.

Let ξ be a subset with crossing paths and let u be a crossing point of ξ which is the least
number of steps away from the origin. In the case of more than one such crossing point choose
u to be the one which is the least number of vertical steps away. Let ξu be the subset of (two
or more) paths of ξ which cross at u. Let Gu be the subgraph of H which is the union of paths
in ξu. The subset ξ may or may not contain the uppermost path π on Gu. If it does then pair ξ

with the configuration obtained by deleting π . If not then pair ξ with the subset obtained by
adding π . This pairing has the required properties. We may therefore replace P(H) in (5.3)
by F(H), the set of all Fermi path configurations on H. Partitioning F(H) by the number of
walks establishes the theorem. �

Note that since maximal Fermi walk configurations cover the whole of the graph H the
last term in sum (5.2) is

ZFermi
n max(H, p) = f Fermi

n max (H)
∏

e∈E(H)

pe

∏

v∈V (H)

pv. (5.4)

The proof of (5.2) by Inui and Katori [12] was for bond percolation on H = W 1
2 t, 1

2 t with
pe = p. They showed that if Ft is the set of all Fermi walk configurations on W 1

2 t, 1
2 t , then

nmax∑

n=1

(−1)n+1ZFermi
n (W 1

2 t, 1
2 t ;p) =

∑

η∈Ft

(−1)c(η)pe(η) (5.5)

where e(η) and c(η) are the numbers of edges and independent cycles in G(η) and
nmax = 1 + ( 1

2 t)2. They then noted that this was the formula of Arrowsmith and Essam
[1] for the pair connectedness of W 1

2 t, 1
2 t . Combining these two proofs gives an alternative

proof of the AE formula (5.5).
The percolation probability P(p) of the square lattice is the probability that the origin

belongs to an infinite cluster; thus

P(p) = lim
t→∞ C(St ; p). (5.6)

Inui et al [13] conjectured the following surprising result for bond percolation (pe =
p, pv = 1) and site percolation (pe = 1, pv = p) by comparison of series expansions:

lim
t→∞ C(W 1

2 t, 1
2 t , p) = P(p)2. (5.7)

This result was subsequently proved by Katori et al [14]. To validate the result for both bond
and site problems the site at the origin must always be present or a compensating factor of p
must be included for the site problem.

6. Conclusion

We have developed the combinatorics of maximal Fermi walk configurations on the directed
square lattice and exhibited their equivalence with standard Young tableaux. This equivalence
is our main result since all our other results depend on it. Enumerations for watermelon and
star configurations have been carried out for various boundary conditions by use of hook length
formulae for the numbers of tableaux.

11
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The unexpected equality of proposition 3(b) was seen to be a result of a bijection, due to
Haiman [11], between the corresponding tableaux. A similar result for Bose configurations
exists but in order to obtain a bijective proof it would be necessary to find a bijection which
preserves ascents in the tableaux. Equation (5.7) for directed percolation is reminiscent of
proposition 3(b).

Inui and Katori [12] constructed partition functions for configurations of n Fermi walks
considered as interacting polymer chains and showed that these could be used to evaluate the
pair connectedness for the directed bond percolation. The probability p for an open bond
in percolation corresponded to the Boltzmann factor in the partition function. The number
of maximal Fermi configurations contributes to the coefficient of the highest power of p in
the pair connectedness polynomial. Corresponding formulae for the coefficients of the other
terms of the polynomial would require similar successful analysis for the non-maximal Fermi
walk configurations.

We have also obtained an alternative and more direct proof of the Inui–Katori expression
(5.2) for the connectedness function in terms of Fermi partition functions. The proof applies
to the more general graphs H considered in this paper and in particular the star graph formulae
determine the percolation probability.

Acknowledgments

DKA would like to thank the Institut Mittag Leffler, Stockholm, for an extended stay during
which work on this paper was carried out. FMB wishes to thank the mathematics department
of QMUL, University of London, for their kind hospitality; also the London Mathematical
Society for a travel grant under scheme 5 and LUMS Lahore for a partial travel grant.

References

[1] Arrowsmith D K and Essam J W 1977 Percolation theory on directed graphs J. Math. Phys. 18 235–8
[2] Arrowsmith D K, Mason P and Essam J W 1991 Vicious walkers, flows and directed percolation Physica

A 177 267–72
[3] Bhatti F M and Essam J W 2006 Generating function rationality for anisotropic vicious walk configurations on

the directed square lattice J. Phys: Conf. Ser. 42 25–34
[4] Bhatti F M and Essam J W 2005 Fermi, Bose and Vicious walk configurations on the directed square lattice

J. Prime Res. Math. 1 156–77
[5] Duplantier B 1986 Exact critical exponents for two-dimensional dense polymers J. Phys. A: Math.

Gen. 19 L1009–14
[6] Essam J W and Guttmann A J 1995 Vicious walkers and polymer networks in general dimension Phys. Rev.

E 52 5849–62
[7] Fisher M E 1984 Walks, walls, wetting and melting J. Stat. Phys. 34 667–729
[8] Frame J S, de B Robinson G and Thrall R M 1954 The hook graphs of the symmetric group Can. J. Math.

6 316–24
[9] Fulton W 1997 Young Tableaux (London Mathematical Society, Student texts 35) (Cambridge: Cambridge

University Press)
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