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Abstract. Guttmann and Vöge introduced a model of f -friendly walkers and argued that a generating
function for the number of n-walker configurations making a total of k left steps is a rational function
with denominator (1 − xn)k+1. They also found that for f = 0, 1 and 2 the sums of the numerator
coefficients for watermelon configurations in which each of 3 walkers made w left steps were 3-dimensional
Catalan numbers. Here it is shown that for n vicious walker (f = 0) watermelon configurations the mth

coefficient of the numerator is the generalised Naryana number N(w, n, m) of Sulanke which is symmetric
under interchange of w and n. The sums, Cw,n, of these coefficients as a sequence indexed by w are
n-dimensional Catalan numbers or w-dimensional Catalan numbers if indexed by n. The unexpected
symmetry in n and w is seen to follow from duality.

Inui and Katori introduced Fermi walk configurations which are non-crossing subsets of the directed
random walks between opposite corners of a rectangular � × w grid. They related these to Bose
configurations which biject to vicious walker watermelon configurations. Bose configurations include
multisets. Here we consider generating functions for the numbers of configurations in which � and w
are fixed. It is found that the maximum number of walks in a Fermi configuration is �w +1 and the number
of configurations corresponding to this number of walks is C�,w. This limit on the number of walks in a
Fermi configuration leads to the rationality of the Bose generating function and by duality to the rationality
of the generating function of Guttmann and Vöge.

1. Background and definitions
Suppose that each of n walkers start at points of the square lattice such that x+y = 0 and simultaneously
make t steps with step vectors (1, 0) or (0, 1). The walkers therefore follow paths on a directed square
lattice. Let {xi(τ), yi(τ)} be the position of the ith walker after the first τ steps and Yi(τ) = yi(τ)−xi(τ).
The walks are said to be non-crossing if for each τ ≤ t

Yi+1(τ) ≥ Yi(τ) for each i ∈ {1, 2, . . . , n − 1}. (1.1)

Guttmann and Vöge [1] considered a series of walk models they called f -friendly. These are non-
crossing models with the further conditions that not more than two walkers are allowed occupy the same
lattice site and two walkers can only stay together for at most f consecutive sites. f = 0 corresponds to
vicious walkers and f = 1 to osculating walkers. The walkers were assumed [1] to start at the points
{(−(i − 1), i − 1), i ∈ {1, 2, . . . , n}}. Vicious walkers were introduced by Fisher in his Boltzmann
medal lecture [2] where he considered the probabilities of reunion and survival of drunken walkers

Institute of Physics Publishing Journal of Physics: Conference Series 42 (2006) 25–34
doi:10.1088/1742-6596/42/1/004 Counting Complexity

25© 2006 IOP Publishing Ltd

mailto:fmbhatti@lums.edu.pk
mailto:j.essam@rhul.ac.uk


on a one-dimensional lattice who shoot one another if they arrive at the same site. The space time
trajectories of these walkers correspond to walks on the directed square lattice. Fisher also described
applications including the commensurate-incommensurate phase transition. The walk configurations
may also be considered as representing polymer networks studied by Duplantier and Saleur {[3], [4], [5]}
who introduced the terms star and watermelon to describe configurations which contribute to survival
and reunion probabilities respectively. f -friendly walks with f = 0, 1 and 2 may be mapped {[1], [6]} to
lattice statistical vertex model configurations in which each vertex has five, six and ten states respectively.
These may be considered as models of ferroelctric materials. In the polymer context they represent
networks with loops. The case f > 0 is of interest since it is a lattice path problem the solution of which
may not be expressed as a Gessel-Viennot determinant {[7], [8]}.

Suppose that the steps are described as either right or left relative to the (1, 1) direction. The models
were made anisotropic by giving different weight to left and right steps which led to the definition of the
following “anisotropic generating functions”

Hf,k,n(x) ≡
∞∑

j=0

hf,k,j,nxj (1.2)

where hf,k,j,n is the number of f -friendly, n-walk configurations which between them make a total of
k left steps and j right steps. Two types of endpoint condition were considered and the corresponding
generating functions were distinguished by a superscript on H . Watermelon configurations were such
that each walk makes the same number, w, of left steps so that k = nw and for star configurations only
the total number of left steps was fixed.

Based on data for f = 0, 1 and 2 and a range of values of k and n Guttmann and Vöge [1] observed
that Hf,k,n(x) is a rational function of x

Hf,k,n(x) =
Pf,k,n(x)

(1 − xn)k+1
(1.3)

with a denominator which is independent of f . For vicious watermelons the numerator was observed
to have degree w − 1 as a function of x2 for n = 2 and 2(w − 1) as a function of x3 for n = 3.
They argued that the rational forms were due to the way in which the configurations grow on increasing
the lengths of the walks but keeping a fixed number of left steps. Roughly speaking the left steps
partition the configurations into at most k + 1 segments the lengths of which may be repeatedly
extended independently by adding stages consisting of n parallel right steps. The numerator arises
from configurations which cannot be obtained by increasing the length of a smaller configuration in
this way. There is an upper limit on the length of such configurations and hence the polynomial form of
the numerator.

Guttmann and Vöge also observed that for three walk watermelons the sum of the numerator
coefficients is

P watermelon
f,3w,3 (1) =

2(3w)!
w!(w + 1)!(w + 2)!

= C3,w, (1.4)

a three-dimensional Catalan number, independently of f . Similarly for stars they found the sum to be a
Motzkin number [9]

P star
f,k,3(1) =

1
k + 1

�(k+1)/2�∑
j=0

(
k + 1

j

)(
k + 1 − j

j − 1

)
. (1.5)

Sulanke [10] defined the d-dimensional Naryana number N(d, n, m) to be the number of
configurations of a d-dimensional lattice path of length dn from the origin to the point n = (n, n, . . . , n)
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lying in the region {(x1, x2, . . . , xd) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xd} and having m ascents (an ascent is a
move into a higher dimension). Proposition 1 of [10] states that these numbers are given by the formula

N(d, n, m) =
m∑

j=0

(−1)m−j

(
dn + 1
m − j

) d−1∏
i=0

(
n + i + j

n

)(
n + i

n

)−1

(1.6)

and they have the following properties

N(d, n, m) = 0 for m > (d − 1)(n − 1) (1.7)

N(d, n, (d − 1)(n − 1) − m) = N(d, n, m) for 0 ≤ m ≤ (d − 1)(n − 1) (1.8)
(d−1)(n−1)∑

m=0

N(d, n, m) = Cd,n ≡ (dn)!
d−1∏
i=0

i!
(n + i)!

(1.9)

Notes

• The first two are from Corollary 1 of [10].

• Cd,n is known as a d-dimensional Catalan number and determines the number of d-dimensional
lattice paths from the origin to n with no constraint on the number of ascents. For d = 2 this
is the ordinary Catalan number giving the number of Dyck paths [9]. Sulanke attributes (1.9) to
MacMahon (see [11], art. 93–103).

•
N(2, n, m) = N(n, m + 1) (1.10)

where

N(n, m) ≡ 1
n

(
n

m − 1

)(
n

m

)
=

(n − m + 1)m(n − m + 2)m

(m − 1)!m!
= Nn,n−m+1 (1.11)

is an ordinary Naryana number [12, 13, 14] introduced by Naryana in 1955 as counting the number
of parallelogram polyominoes of perimeter 2(n + 1) with m columns.

Here we prove the following proposition (see sections 2 and 5) which extends the above results of
Guttmann and Vöge in the case of vicious walker watermelon configurations (f = 0).

Proposition 1. The generating function for the number of n-walk watermelon configurations in which
each walk makes w left steps is

Hwatermelon
0,nw,n (x) =

Nw,n(xn)
(1 − xn)nw+1

where the numerator is the w-dimensional Naryana polynomial

Nw,n(z) =
(w−1)(n−1)∑

m=0

N(w, n, m)zm

and the sum of the numerator coefficients is

Nw,n(1) = Cw,n = (wn)!
w−1∏
i=0

i!
(n + i)!

.
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Figure 1. The two maximal Fermi walk configurations on a 2 × 2 grid.

Inui and Katori [15] considered two sets of n−walk non-crossing configurations in which all of the
walks start at the lattice origin and end at the point (�, w). The walks are thus confined to an � × w
rectangular grid. No further conditions are imposed on Bose configurations but Fermi configurations are
subject to the additional constraint that each of

(
�+w
w

)
directed lattice paths between the corners of the

rectangle may be used by at most one walker. Two of the Fermi configurations with � = w = 2 are
shown in figure 1.
The numbers of Bose and Fermi configurations will be denoted by fBose

�,w,n and fFermi
�,w,n respectively.

Bose configurations biject [16] to directed integer flows with a source of strength n at the origin and
a sink at (�, w) with the flow on a given lattice bond being equal to the number of walkers traversing
that bond. The number of flows, and hence the number of Bose configurations, was conjectured by
Arrowsmith et al [16] to be

fBose
�,w,n =

w∏
j=1

(� + w − j + 1)n

(j)n
=

w∏
j=1

(� + j)n

(j)n
(1.12)

where (a)k ≡ a(a + 1) . . . (a + k − 1). The first formula above was subsequently derived [17] by
enumerating the vicious walker configurations using a Lindstrom-Gessel-Viennot determinant [18, 7, 8].
It is clear from this result that for fixed w and n fBose

�,w,n is a polynomial of degree nw in �. The usual

convention (a)0 = 1 implies that fBose
�,w,0 = 1.

2. Outline of the proof of proposition 1
Vicious walk watermelon configurations biject [16] to Bose configurations by translating the ith walk by
the vector (i− 1,−(i− 1)) so that the starting points coincide. Therefore if we define a Bose generating
function by

HBose
w,n (z) ≡

∞∑
�=0

z�fBose
�,w,n (2.1)

the vicious watermelon generating function is given by

Hwatermelon
0,nw,n (x) = HBose

w,n (xn). (2.2)

It turns out to be more useful to work with the alternative generating function

GBose
�,w (z) ≡

∞∑
n=0

znfBose
�,w,n (2.3)

However by rearranging the formulae of (1.12) it may be seen (section 4) that fBose
�,w,n is invariant under

any permutation of its indices so that

HBose
w,n (z) = GBose

w,n (z) (2.4)
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The symmetry of fBose
�,w,n with respect to � and w is clear but the important invariance under interchange

of � and n is surprising. In section 4 we show, independently of the specific combinatorial formulae, that
this follows from duality. A further proof of this symmetry uses a bijection ( [7, 8] and [19, section
3.3]) to plane partitions. Plane partitions may be visualised [19] as stacks of unit cubes pushed into a
corner. Plane partitions which biject to Bose configurations correspond to stackings in the corner of the
rectangular parallelepiped with edges of lengths �, w and n. The number of such stackings is manifestly
invariant under any permutation of the edge lengths.

The following proposition states that GBose
�,w (z) is a rational function whose numerator is a Narayana

polynomial and as a result the coefficients are symmetric and sum to a w-dimensional Catalan number.

Proposition 2.

(a)

GBose
�,w (z) =

QBose
�,w (z)

(1 − z)�w+1

where QBose
�,w (z) is a polynomial of degree (� − 1)(w − 1)

(b) qBose
�,w,n ≡ [zn]QBose

�,w (z) =
∑n

k=0(−1)n−k
(
�w+1
n−k

)
fBose

�,w,k

(c) qBose
�,w,n = N(w, �, n) and QBose

�,w (z) = Nw,�(z)

(d) QBose
�,w (1) = fFermi

�,w,�w+1 = C�,w

(e) For n = 0, 1, . . . , (� − 1)(w − 1), qBose
�,w,(�−1)(w−1)−n = qBose

�,w,n.

(f) z(�−1)(w−1)QBose
�,w (1/z) = QBose

�,w (z)

Examples of QBose
�,w (z) are given in Appendix A.

The proof of proposition 2 in section 5 together with (2.2) and (2.4) establishes proposition 1 since
using parts (a) and (c)

Hwatermelon
0,nw,n (x) =

QBose
n,w (xn)

(1 − xn)nw+1
=

Nw,n(xn)
(1 − xn)nw+1

. (2.5)

and parts (d) and (e) show that the numerator coefficients of Hwatermelon
0,nw,n (x) are symmetric and sum to

Cn,w.
An important step in our proof of proposition 2 in section 5 requires a relation between the numbers

of Fermi and Bose configurations. Fermi walk configurations were first considered by Inui and Katori
[15] in the context of directed percolation (DP) theory: they found the following relation.

fBose
�,w,n =

n∑
k=1

(
n − 1
n − k

)
fFermi

�,w,k (2.6)

The factor
(
n−1
n−k

)
arises from the number of ways to assign a further n− k walks to the paths used by the

k Fermi walks. Möbius inversion [20] of (2.6) gives

fFermi
�,w,n =

n∑
k=1

(−1)n−k

(
n − 1
n − k

)
fBose

�,w,k. (2.7)

which, together with (1.12), is an explicit formula for the number of Fermi configurations
For a given rectangular grid there is clearly a limit to the number of walks in a Fermi configuration.

On the 2× 2 grid of figure 1 there can be be no more than 5 walks and the figure shows the two maximal
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configurations. Given � and w the maximal number of Fermi walks is �w+1 and the number of maximal
Fermi configurations is a w-dimensional Catalan number.

fFermi
�,w,�w+1 = C�,w (2.8)

This result is part of proposition 2 the proof of which uses the above properties of the Naryana numbers.
A direct proof based on equations (1.12) and (2.7) will be given in [21] where we also give product
formulae for the numbers of Fermi configurations having one, two and three less walks than the
maximum. A further proof will be given in [22] using a bijection to standard Young tableaux which
are enumerated by a product formula in terms of hook lengths [23].

The following generating function for the numbers of Fermi walks is therefore a polynomial of degree
�w + 1.

GFermi
�,w (z) ≡

�w+1∑
n=0

znfFermi
�,w,n . (2.9)

Equation (2.6) together with the convention fFermi
�,w,0 = 1 implies the relation

GBose
�,w (z) = GFermi

�,w

(
z

1 − z

)
. (2.10)

3. Rationality of a second generating function for Fermi walks
A generating function HFermi

w,n (z) may be defined in the same way as HBose
w,n (z) and it follows from (2.7)

and proposition 2(a) that

HFermi
w,n (z) ≡

∞∑
�=0

z�fFermi
�,w,n =

P Fermi
w,n (z)

(1 − z)wn+1
(3.1)

where P Fermi
w,n (z) is the polynomial

P Fermi
w,n (z) =

n∑
k=1

(−1)n−k

(
n − 1
k − 1

)
(1 − z)(n−k)wQBose

w,k (z) (3.2)

and we have used the symmetry of fBose
�,w,n. Setting z = 1 shows that the sum of the numerator coefficients

P Fermi
w,n (1) = QBose

w,n (1) = Cw,n and since QBose
w,k (z) has degree (k − 1)(w − 1), P Fermi

w,n (z) has degree
(n − 1)w arising from the term k = 1 in (3.2).

Tables of P Bose
w,n (z) and P Fermi

w,n (z) for low values of n and w are given in Appendix A.

4. Duality and the invariance of fBose
�,w,n

The second product of (1.12) may be arranged in the forms

fBose
�,w,n =

w∏
j=1

(� + j)n

(j)n
=

n∏
j=1

(� + j)w

(j)w
=

n∏
j=1

(w + j)�

(j)�
. (4.1)

which brings out the invariance of fBose
�,w,n under interchange any two of the indices �, w and n with the

third fixed and hence under any permutation of these indices. Invariance under interchange of � and w is
required by symmetry but the further invariance involving n is unexpected but follows from the following
duality.

Bose configurations biject [16] to Vicious walk watermelon configurations by translating the ith walk
by the vector (−(i − 1), i − 1). Consider a watermelon configuration ω of n vicious walkers which
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Figure 2. The four primary walks have � = 2 and w = 5. The corresponding five dual walks have �∗ = 4 and w∗ = 2

corresponds to a Bose configuration on an �×w grid. Each walk has w left steps and � right steps and in
order to define the dual configuration ω∗ we distort the walks so that they lie on a triangular lattice.

Define step vectors e1 = {2, 0}, e2 = {1,
√

3} and e3 = {1,−√
3} which are the nearest-neighbour

vectors of a directed triangular lattice .
Suppose that the right steps of ω have vector e1 and the left steps have vector e2 and that the ith

primary walk from the left, i ∈ {1, . . . n}, starts at ui = (i − 1)e3 and ends at vi = ui + �e1 + we2.
The dual walk configuration ω∗ is defined as follows (see fig 2 for example).

• The left step vector of ω∗ is e1, the right vector is e3 and the jth dual walk from the right,
j ∈ {1, . . . n∗}, starts at u∗

j = {0,
√

3} + (j − 1)e2 .

• For each left step of the primary walks draw a right step of the dual walks, so that these steps bisect
one another.

• Join the right steps of the dual walks by left steps and, if necessary, add further left steps so that the
dual walks end at v∗

j = u∗
j + �∗e3 + w∗e1 where

w∗ = � �∗ = n n∗ = w. (4.2)

The dual construction is bijective since given a dual configuration the primary configuration may be
recovered by interchanging right and left in the dual construction. Moreover the dual configurations are
also watermelon configurations with different parameters so

fBose
�,w,n = fBose

�∗,w∗,n∗ = fBose
n,�,w. (4.3)

5. Proof of proposition 2
Proof. Using (2.9) in (2.10) gives

(1 − z)�w+1GBose
�,w (z) =

�w+1∑
n=0

zn(1 − z)�w+1−nfFermi
�,w,n = QBose

�,w (z) (5.1)
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where QBose
�,w (z) is a polynomial of degree at most �w + 1. The actual degree is determined below. The

rationality of GBose
�,w (z) may thus be seen as a consequence of the upper limit on the number of walks in

a Fermi configuration.
The coefficient of zn on the left of (5.1) is the convolution of part (b).
The second product in (1.12) may be converted to the form

fBose
�,w,n =

w−1∏
j=0

(
� + j + n

�

)(
� + j

�

)−1

(5.2)

and substituting in part (b) gives the explicit expression for the numerator coefficients

qBose
�,w,n =

n∑
k=0

(−1)n−k

(
�w + 1
n − k

) w−1∏
j=0

(
� + j + k

�

)(
� + j

�

)−1

. (5.3)

Comparing this with the definition (1.6) establishes the connection (c) with the w-dimensional Naryana
numbers and the degree (� − 1)(d − 1) in (a) follows from property (1.7). QBose

�,w (z) is therefore the
Naryana polynomial Nw,�(z).

The first equality in (d) is obtained by setting z = 1 in (5.1)

QBose
�,w (1) =

�w+1∑
n=0

qBose
�,w,n = fFermi

�,w,�w+1 (5.4)

and the second follows from part (c) together with property (1.9) of the Naryana numbers.
Part (e) is Naryana property (1.8) which Sulanke [10] proved using a relation which transcribes to

fBose
�,w,−�−w−n = (−1)�wfBose

�,w,n. (5.5)

This follows from (1.12) which may be rewritten in the form

fBose
�,w,n =

w∏
j=1

(n + j)�

(j)�
. (5.6)

Part (f) follows simply from (e).

Notes:

• Notice that the degree of QBose
�,w (z) differs by �+w from the limit �w +1 implied by equations (2.9)

and (2.10).

• The inverse of part (b) is

fBose
�,w,n =

n∑
k=0

(
�w + n − k

�w

)
qBose
�,w,k (5.7)

which using (c) is a transcription of [10], proposition 4.
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6. An inversion relation for GBose
�,w (z)

Guttmann and Vöge noted that symmetry of the numerator coefficients (proposition 2(e)) is a property
of vicious walker watermelon configurations (f = 0) but of no other degree f of friendliness. They used
this to derive an inversion relation (their equation (7.71)) for the generating function of vicious walk
watermelon configurations with a given number of walkers. The general formula (2.5) is implicit in this
relation.

By the invariance of fBose
�,w,n under interchange of w and n this also applies to the generating function

Ww(z, y) ≡
∞∑

�=0

GBose
�,w (z)y�. (6.1)

The inversion relation follows from proposition 2(a) and (f) which is only valid for � ≥ 1.

Ww(z, y) +
1
zw

Ww(
1
z
, (−1)w y

z
) =

1 − z1−w

1 − z
. (6.2)

where the expression on the right arises from the anomalous term GBose
0,w = 1/(1 − z).

7. Summary and conclusion
The work of Guttmann and Vöge [1] on anisotropic generating functions for f -friendly walks has been
extended in the case f = 0 to an arbitrary number of walkers. The rationality of the generating function is
shown to follow from the existence of an upper limit to the number of walks in a Fermi walk configuration
together with the invariance of fBose

�,w,n under the interchange of � and n. This invariance was shown
to follow from duality. The binomial form of the denominator arises from a connection between the
generating functions for Bose and Fermi configurations and the degree is equal to the number of walks
in a maximal Fermi configuration. The same connection allowed us to show that the numerator for
n−walk configurations having w left steps is a generalised Naryana polynomial Nn,w(z) [10] which is
symmetric in n and w. Also the coefficients have reflection symmetry and sum to a generalised Catalan
number Cn,w in agreement with the observations [1] for configurations of three walks. A Fermi walk
generating function was shown to be a rational function similar to that for vicious walkers but with a
numerator of different degree. It should be possible to extend this work to star configurations. Also it
is hoped that the methods used here will throw some light on the more difficult problem of osculating
walkers whose generating functions were also found [1] to be rational with the same sum of numerator
coefficients.
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Appendix A. The polynomials PBose
w,n (z) and PFermi

w,n (z).
(a) PBose

w,n (z) = QBose
w,n (z)

w 1 2 3 4
n
1 1 1 1 1
2 1 1 + z 1 + 3z + z2 1 + 6z + 6z2 + z3

3 1 1 + 3z + z2 1 + 10z + 20z2 + 10z3 + z4 1 + 22z + 113z2 + 190z3 + 113z4 + 22z5 + z6

4 1 1 + 6z + 6z2 + z3 1 + 22z + 113z2 + 190z3 + 113z4 + 22z5 + z6 1 + 53z + 710z2 + 3548z3 + 7700x4 + . . .

(b) PFermi
w,n (z)

w 1 2 3 4
n
1 1 1 1 1
2 z 3z − z2 6z − 2z2 + z3 10z + 5z3 − z4

3 z2 z + 9z2 − 6z3 + z4 4z + 45z2 − 20z3 + 16z4 − 4z5 + z6 10z + 165z2 + 116z3 + 165z4 − 10z5

+25z6 − 10z7 + z8

4 z3 9z2 + 24z3 − 27z4 z + 92z2 + 394z3 − 166z4 + 184z5 5z + 509z2 + 4365z3 + 7055z4 + 7820z5 + 2960z6+
+9z5 − z6 −68z6 + 30z7 − 6z8 + z9 +1586z7 − 340z8 + 125z9 − 75z10 + 15z11 − z12
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