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Abstract. Inui and Katori introduced Fermi walk configurations which are non-crossing
subsets of the directed random walks between opposite corners of a rectangular � × w grid.
They related them to Bose configurations which are similarly defined except that they
include multisets. Bose configurations biject to vicious walker watermelon configurations.
It is found that the maximum number of walks in a Fermi configuration is �w + 1 and
the number of configurations corresponding to this number of walks is a w−dimensional
Catalan number C�,w. Product formulae for the numbers of Fermi configurations with �w

and �w − 1 walks are derived. We also consider generating functions for the numbers of
n−walk configurations as a function of � and w. The Bose generating function is rational
with denominator (1−z)�w+1. The Fermi generating function is a polynomial which is found
to have a factor (1+z)�+w. The complementary factor QFermi

�,w (z) is related to the numerator
of the Bose generating function which is a generalised Naryana polynomial introduced by
Sulanke. Recurrence relations for the numbers of Fermi walks and for the coefficients of the
polynomial QFermi

�,w (z) are obtained. Fermi configurations are such that only one walker can
follow a given path; extension to configurations in which the number of walkers on any path
is limited to m ≥ 1 is discussed.
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1. Background and definitions.

Suppose that each of n walkers start at points of the square lattice such that x + y = 0
and simultaneously make t steps with step vectors (1, 0) or (0, 1). Let {xi(τ), yi(τ)} be the
position of the ith walker after the first τ steps and Yi(τ) = yi(τ)−xi(τ). The walks are said
to be non-crossing if for each τ ≤ t

Yi+1(τ) ≥ Yi(τ) for each i ∈ {1, 2, . . . , n − 1}. (1.1)

Inui and Katori [1] considered two sets of n−walk non-crossing configurations, Bose and
Fermi, in which all of the walks start at the lattice origin and end at the point (
, w). The
walks are thus confined to an 
 × w rectangular grid. No further conditions are imposed on
Bose configurations but Fermi configurations are subject to the additional constraint that
each of

(
�+w
w

)
directed lattice paths between the corners of the rectangle may be used by at

most one walker. Five of the Fermi configurations with 
 = 2, w = 3 are shown in figure 1.

Figure 1. The five maximal Fermi walk configurations on a 2× 3 grid.

The numbers of Bose and Fermi configurations will be denoted by fBose
�,w,n and fFermi

�,w,n

respectively.
Bose configurations biject [2] to directed integer flows with a source of strength n at

the origin and a sink at (
, w) with the flow on a given lattice bond being equal to the
number of walkers traversing that bond. The number of flows, and hence the number of
Bose configurations, was conjectured by Arrowsmith et al [2] to be

fBose
�,w,n =

w∏
j=1

(
+ w − j + 1)n
(j)n

=
w∏

j=1

(
+ j)n
(j)n

(1.2)

where (a)k ≡ a(a + 1) . . . (a + k − 1). With the usual convention (a)0 = 1 it follows from
(1.2) that fBose

�,w,0 = 1. The first equality in (1.2) was subsequently derived [3] by enumerating
the vicious walker configurations [4] using a Lindstrom-Gessel-Viennot determinant [5],[6],
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[7]. It is clear from this result that for fixed w and n, fBose
�,w,n is a polynomial of degree nw in


.
Sulanke [8] defined the d−dimensional Naryana number N(d, n,m) to be the number

of configurations of a d-dimensional lattice path of length dn from the origin to the point
n = (n, n, . . . , n) lying in the region {(x1, x2, . . . , xd) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xd} and having
m ascents (an ascent is a move into a higher dimension). Proposition 1 of [8] states that
these numbers are given by the formula

N(d, n,m) =
m∑

j=0

(−1)m−j

(
dn+ 1
m − j

) d−1∏
i=0

(
n+ i+ j

n

)(
n+ i

n

)−1

. (1.3)

and they have the following properties

N(d, n,m) = 0 for m > (d − 1)(n − 1) (1.4)

N(d, n, (d − 1)(n − 1) − m) = N(d, n,m) for 0 ≤ m ≤ (d − 1)(n − 1) (1.5)(
n+ d − 1

d

)
N(d, n,m) =

d∑
h=0

(
(d − 1)(n − 1) − m+ h

h

)(
n+m+ d − h − 1

d − h

)
N(d, n − 1,m − h).

(1.6)

Equations (1.4) and (1.5) are from Corollary 1 of [8] and the recurrence relation is from
proposition 9 of [8]. The d−dimensional Naryana polynomial is the generating function

Nd,n(z) ≡
(d−1)(n−1)∑

m=0

N(d, n,m)zm (1.7)

and the sum of the Naryana numbers is the d−dimensional Catalan number

Nd,n(1) = Cd,n ≡ (dn)!
d−1∏
i=0

i!
(n+ i)!

(1.8)

which determines the number of d−dimensional lattice paths from the origin to n with no
constraint on the number of ascents. Sulanke attributes (1.8) to MacMahon (see [10], art.
93-103). Cd,2 is the ordinary Catalan number giving the number of Dyck paths [9].

N(2, n,m) = N(n,m+ 1) (1.9)

where

N(n,m) ≡ 1
n

(
n

m − 1

)(
n

m

)
=

(n − m+ 1)m(n − m+ 2)m
(m − 1)!m!

= Nn,n−m+1 (1.10)

is an ordinary Naryana number [11],[12],[13] introduced by Naryana in 1955 as counting the
number of parallelogram polyominoes of perimeter 2(n+ 1) with m columns.

Fermi configurations are the main subject of this paper. Inui and Katori [1] gave the
following relation between the numbers of Fermi and Bose configurations.

fBose
�,w,n =

n∑
k=1

(
n − 1
n − k

)
fFermi

�,w,k (1.11)
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The factor
(

n−1
n−k

)
arises from the number of ways to assign a further n−k walks to the paths

used by the k Fermi walks.
For a given rectangular grid there is clearly an upper limit to the number of walks in

a Fermi configuration. On the 2 × 3 grid of figure 1 there can be be no more than 7 walks
and the figure shows the five maximal configurations. Proposition 4 below states that given

 and w the maximum number of walks in a Fermi configuration is 
w + 1. The following
generating function for the numbers of Fermi walks is therefore a polynomial.

GFermi
�,w (z) ≡

�w+1∑
n=0

znfFermi
�,w,n (1.12)

For Bose walks the generating function GBose
�,w (z) is defined in a similar manner except that

the sum extends to infinity. Defining fFermi
�,w,0 = 1, equation (1.11) implies the relation

GBose
�,w (z) = GFermi

�,w

(
z

1 − z

)
. (1.13)

In a companion paper [14] this relation together with (1.2) was used to prove the following
proposition for Bose configurations which will be used here to obtain results for Fermi
configurations.

Proposition 1 (Bose).

(a) GBose
�,w (z) =

QBose
�,w (z)

(1−z)�w+1 where QBose
�,w (z) is a polynomial of degree (
 − 1)(w − 1)

(b) qBose
�,w,n ≡ [zn]QBose

�,w (z) =
∑n

k=0(−1)n−k
(

�w+1
n−k

)
fBose

�,w,k

(c) qBose
�,w,n = N(w, 
, n) and QBose

�,w (z) = Nw,�(z)

(d) QBose
�,w (1) = fFermi

�,w,�w+1 = Cw,�

(e) For n = 0, 1, . . . , (
 − 1)(w − 1), qBose
�,w,(�−1)(w−1)−n = qBose

�,w,n.

(f) z(�−1)(w−1)QBose
�,w (1/z) = QBose

�,w (z)

Notes:

• Part (b) shows that the obvious invariance of fBose
�,w,n under interchange of 
 and w is

inherited by qBose
�,w,n. Consequently, by part (c), the Naryana numbers are invariant under

interchange of their first two parameters which is not obvious from their walk definition.
Also C�,w = Cw,� and for given w, C�,w, 
 = 0, 1, 2, . . . is a sequence of w−dimensional
Catalan numbers.

• The proposition may be stated as: the Bose generating function is a rational function
with denominator (1−z)�w+1 whose numerator is a Narayana polynomial and as a result
the coefficients are symmetric and sum to a w−dimensional Catalan number.

• The second equality of (d) is proved independently here as part of proposition 4.
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2. Results

In section 3, proposition 4 also gives product formulae for the numbers of Fermi configurations
having one and two less walks than the maximum. A formula for the number with three less
walks is also conjectured. These formulae become increasingly complicated as the number
of walks is reduced.

In addition to proposition 4 we obtain further results for Fermi configurations. The
following proposition is proved in section 4.

Proposition 2 (Fermi).

(a) GFermi
�,w (z) = (1+z)�+wQFermi

�,w (z) where QFermi
�,w (z) is a polynomial of degree (
−1)(w−1)

(b) QFermi
�,w (−z) = (−1)(�−1)(w−1)QFermi

�,w (z − 1)

(c) fFermi
�,w,n =

∑n
k=0

(
�w−k+1

n−k

)
qBose
�,w,k =

∑n
k=1(−1)n−k

(
n−1
n−k

)
fBose

�,w,k .

(d) qFermi
�,w,n ≡ [zn]QFermi

�,w (z) =
∑n

k=0

((�−1)(w−1)−k
n−k

)
qBose
�,w,k =

∑n
k=0(−1)n−k

(
n+�+w−1

n−k

)
fBose

�,w,k

(e) qFermi
�,w,(�−1)(w−1)−n =

∑(�−1)(w−1)
k=n

(
k
n

)
N(w, 
, k) = 1

n!

∑n
m=0 s(n,m)µ�,w(m) where µ�,w(m)is

the mth moment of the w-dimensional Naryana distribution
µ�,w(m) ≡ ∑(�−1)(w−1)

k=0 kmN(w, 
, k)
and s(v,m) is a Stirling number of the first kind [15]

(f) qFermi
�,w,(�−1)(w−1) = C�,w

(g) z(�−1)(w−1)QFermi
�,w

(
1
z

)
= QBose

�,w (1 + z) and hence QFermi
�,w (1) = QBose

�,w (2)

Notes:

• From part (d) qFermi
�,w,n inherits the symmetry of fBose

�,w,n under interchange of 
 and w.

• The sequences QBose
�,w (2), 
 = 0, 1, 2, . . . are the little w−Schröder numbers [8] which

generalise the little Schröder numbers [13] [16] obtained by setting w = 2.

Examples of proposition 2(a) are

GFermi
2,4 (z) = (1 + z)6(1 + 2z)(1 + 7z + 7z2)

GFermi
3,4 (z) = (1 + z)7(1 + 28z + 238z2 + 882z3 + 1596z4 + 1386z5 + 462z6)

GFermi
4,4 (z) = (1 + z)8(1 + 2z)(1 + 60z + 1050z2 + 7986z3 + 31020z4 + 66066z5 + 78078z6 + 48048z7 + 12012z8)

The additional factor (1 + 2z) always appears when both indices are even.
In section 5 we consider recurrence relations and prove the following proposition.

Proposition 3 (Recurrence relations).

(a)
(

�+w−1
w

)
fBose

�,w,n =
(

�+w+n−1
w

)
fBose

�−1,w,n

(b)
(

�+w−1
w

)
qBose
�,w,n =

∑w
h=0

(
�+w+n−h−1

w−h

)((�−1)(w−1)−n+h
h

)
qBose
�−1,w,n−h

(c)
(

�+w−1
w

)
qFermi
�,w,n =

(
�+w+n−1

w

) ∑w−1
h=0

(
w−1

h

)
qFermi
�−1,w,n−h

(d)
(

�+w−1
w

)
fFermi

�,w,n =
∑w

h=0

(
�+w+n−h−1

w−h

)(
n−1

h

)
fFermi

�−1,w,n−h.
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By proposition 1(c), recurrence relation (b) is the Naryana recurrence (1.6). It is
reported in [8] that this was obtained using the Mathematica package MULTISUM written
by Wegschaider [17]. The package yielded a recurrence relation for the sum in proposition
1(b) in the cases w = 3, 4 and 5 and the general result was then conjectured and proved
by substitution of the sum. Here we obtain the relations (c) and (d) in the same way. The
second binomial coefficient in the sum of part (b) is zero for n > (
− 1)(w− 1) in agreement
with proposition 1(a).

The case w =2
Equation (1.2) shows that fBose

�,w,n is hypergeometric which together with proposition
1(b) and proposition 2, parts (c) and (d) means that qBose

�,w,n, f
fermi
�,w,n and qFermi

�,w,n are sums
of hypergeometric terms. By Zeilberger’s algorithm [18], [19] these sequences therefore
satisfy linear recurrence relations with polynomial coefficients. An excellent account of the
algorithm is given in the lecture notes of Wilf [20]. Using Paule and Schorn’s Mathematica
implementation [23] of the algorithm the recurrence relations found for qBose

�,2,n and qFermi
�,2,n are

first order leading to the product forms

qBose
�,2,n =

(
 − n)n(
 − n+ 1)n
(1)n(2)n

=
1



(



n

)(



n+ 1

)
= N(
, n+ 1) (2.1)

and

qFermi
�,2,n =

(
 − n)n(
+ 2)n
(1)n(2)n

=
1



(

+ n+ 1

n

)(



n+ 1

)
= c�,�−n−1. (2.2)

where the c�,n are Kirkman numbers [24]

c�,n =
1



(



n

)(
2
 − n


+ 1

)
. (2.3)

The sum of these coefficients is a small Schröder number [16]

QFermi
�,2 (1) = QBose

�,2 (2) =
�−1∑
n=0

N�,n+12n = sn

A number of other occurrences of the small Schröder numbers are listed in [9] on page 239.
The recurrence relation found in the case of f fermi

�,2,n was second order

n(n+ 1)fFermi
�,2,n = (
(
+ 1) − 2n(n − 2) + 2
n)fFermi

�,2,n−1 − (n − 2)(n − 2
 − 3)fFermi
�,2,n−2. (2.4)

Equation (2.1) also follows from proposition 1(c) and (1.9). Setting w = 2 in proposition
2(e)

qFermi
�,2,�−n−1 =

�−1∑
k=n

(
k

n

)
N(
, k + 1) = c�,n (2.5)

in agreement with (2.2). This sum was performed [13] by applying a Vandermonde
convolution formula.
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In section 6 the number of configurations in which each path is used by at most m walks
is considered and will be denoted by f

(m)
�,w,n. This interpolates between the Fermi and Bose

configurations, m = 1 corresponds to Fermi configurations and replacing m by ∞ gives Bose
configurations. Each path in a Fermi configuration may be replaced by between 1 and m

paths so the generating function for these multi-walks is

G
(m)
�,w (z) ≡

m(�w+1)∑
n=0

znf
(m)
�,w,n = GFermi

�,w (z + z2 + · · · + zm) (2.6)

which generalises (1.13). Expanding in powers of z relates the numbers of configurations to
the numbers of Fermi configurations.

f
(m)
�,w,n =

n∑
k=� n

m
�
C

(m)
k,n−kf

(Fermi)
�,w,k (2.7)

where C
(m)
k,i is the coefficient of zi in the expansion of (1 + z + z2 + · · · + zm−1)k. The

C
(2)
k,i are clearly binomial coefficients. For higher values of m the expansion was considered

by Leonhard Euler [21] who called the m = 3, 4, 5, . . . coefficients trinomial, quadrinomial,
quintinomial, . . . and obtained the recurrence relation

C
(m)
k,i =

i∑
�=� i

m−1 �

(
k




)
C

(m−1)
�,i−� (2.8)

and the symmetry property C
(m)
k,i = C

(m)
k,(m−1)k−i. The recurrence may be initialised by C

(1)
k,i =

δi,0. Clearly the coefficients vanish outside the range [0, (m− 1)k] and C
(m)
k,0 = C

(m)
k,(m−1)k = 1.

By proposition 2(a), G(m)
�,w (z) is a polynomial with factor (1 + z + z2 + · · · + zm)�+w. It will

be shown that the alternative generating function

H(m)
w,n (z) ≡

∞∑
�=0

z�f
(m)
�,w,n (2.9)

is a rational function with denominator (1−z)wn+1 and numerator of degree at most (n−1)w
the coefficients of which sum to Cw,n. In the case of Bose configurations (infinite m) the
rationality of this generating follows from proposition 1(a) since it was shown in [14] that
fBose

�,w,n is invariant under any permutation of its subscripts and hence HBose
w,n (z) = GBose

w,n (z).
The surprisng symmetry with respect to interchange of 
 and n was shown to follow from
duality. Similar rational generating functions were found by Guttmann and Vöge [22] for
f−friendly walks which include vicious walkers and osculating walkers as the cases f = 0 and
f = 1. As noted earlier, vicious walk watermelon configurations biject to Bose configurations.

3. Maximal and near maximal Fermi walk configurations.

For w = 1 the Fermi walk configurations are easily enumerated. The possible paths are
determined by the 
 + 1 positions at which a single left step can be made. When there are



Fermi, Bose and Vicious walk configurations 8

n walks the possible configurations are determined by choosing subsets of n of these paths
leading to n walks which use different paths and are non-crossing as required.

fFermi
�,1,n =

(

+ 1
n

)
for n ≤ 
+ 1. (3.1)

For more than 
 + 1 walks at least one path must be used more than once so no Fermi
configurations are possible.

Sample data for w = 2, 3 and 4 are given in appendix Appendix A. Notice that for
w = 2 the maximum number of walks in a Fermi configuration is 2
+ 1 and the number of
maximal Fermi walk configurations as a function of 
 is given by the Catalan number C�.
Parts (a) and (b) of proposition 4 extend these observations to general width and state that
the maximum number of walks is nmax

�,w = 
w+ 1 and the number of maximal configurations
is the w−dimensional Catalan number C�,w. A direct proof of these results here is based on
equations (1.2) and (1.11). A second proof will be given in [25] using a bijection to standard
Young tableaux [26] which are enumerated by a product formula in terms of hook lengths
[27].

Equation (1.2) may be used to write fBose
�,w,k in the form

fBose
�,w,n =

(
!)w

(
w)!
C�,w

w−1∏
j=0

(

+ j + n




)
. (3.2)

Möbius inversion [28] of (1.11) gives

fFermi
�,w,n =

n∑
k=1

(−1)n−k

(
n − 1
n − k

)
fBose

�,w,k . (3.3)

Let

f�,w(x) ≡ fFermi
�,w,nmax

�,w −x (3.4)

We will show that f
(w)
� (x) = 0 if and only if x < 0 which implies that nmax

�,w is the maximum
number of walks in a Fermi walk configuration. Thus x measures the distance from the
maximal configuration.

Substituting (3.2) into (3.3)

f�,w(x) =
(
w − x)!
(
w)!

C�,w g
(w)
� (x) (3.5)

where

g
(w)
� (x) =

(
!)w

(
w − x)!

�w−x∑
k=0

(−1)�w−x−k

(

w − x

k

) w∏
j=1

(

+ j + k




)
. (3.6)
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3.1. Product formulae for x = 0, 1, 2 and 3.

Proposition 4. Given 
 ≥ 0 and w ≥ 1

(i) The maximum number of walks in a Fermi walk configuration is 
w + 1.

(ii) The number of maximal Fermi walk configurations is given by the w-dimensional Catalan
number

f�,w(0) = C�,w (3.7)

(iii) The number of configurations with one less than the maximimum number of walks is

f�,w(1) =
1
2
(w + 1)(
+ 1)C�,w (3.8)

(iv) The number of configurations with two less than the maximum number of walks is

f�,w(2) =
(w + 1) (
+ 1) (3 
 w (
+ w + 
 w) − 5 
 w − 4 (
+ w − 1))C�,w

24(
w − 1)
(3.9)

Note: All formulae are symmetric under interchange of 
 and w as expected.
The proposition follows from the following lemma together with equation (3.12) below

by using (3.6).

Lemma 1. For any non-negative integers {r} ≡ {r1, r2, . . . , rw} and {
} ≡ {
1, 
2, . . . , 
w}
define

D(L, {
}, {r}) ≡ (
∏w

j=1 
j!)
L!

L∑
k=0

(−1)L−k

(
L

k

) w∏
j=1

(
rj + k


j

)

then

D(L, {
}, {r}) =




0, L > 
1 + 
2 + · · · + 
w

1, L = 
1 + 
2 + · · · + 
w∑w
i=1 
iri +

∑
1≤i<j≤w 
i
j, L = 
1 + 
2 + · · · + 
w − 1

Proof. Now

(
rj + k


j

)
=

1

j!

�j∑
mj=1

s(
j,mj)(k + rj)mj =
1

j!

�j∑
mj=1

s(
j,mj)
mj∑

nj=0

(
mj

nj

)
knjr

mj−nj

j

where s(
j,mj) is a Stirling number of the first kind [15]. Substituting in the definition of
D leads to

D(L, {
}, {r}) =
�1∑

n1=0

. . .
�w∑

nw=0

S(n1 + n2 + . . . nw, L) ×

�1∑
m1=n1

· · ·
�w∑

mw=nw

w∏
j=1

(
s(
j,mj)

(
mj

nj

)
r

mj−nj

j

)
(3.10)
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where

S(n, L) ≡ 1
L!

L∑
k=0

(−1)L−k

(
L

k

)
kn

is a Stirling number of the second kind [15].
Notice that nj ≤ mj ≤ 
j and it is a property of Stirling numbers that if L > n then

S(n, L) = 0. Hence

D = 0 unless
w∑

j=1


i ≥
w∑

j=1

mi ≥
w∑

j=1

ni ≥ L (3.11)

(i) L >
∑w

j=1 
j. In this case D = 0 follows directly from (3.11).

(ii) L =
∑w

j=1 
j. The only indices which satisfy this condition and (3.11) are given by
nj = mj = 
j and since S(L,L) = s(
, 
) = 1 the multiple sum in (3.10) evaluates to
unity as required.

(iii) L =
∑w

j=1 
j − 1. There are now two possibilities.

(a)
∑

j nj = L + 1 =
∑

j 
j. Again nj = mj = 
j and this case contributes
S(L+ 1, L) = 1

2(L+ 1)L to D.
(b)

∑
j nj = L =

∑
j 
j − 1. In this case ni = 
i − 1 for some i and nj = mj = 
j for

j �= i. Either mi = 
i or 
i − 1 and s(
, 
 − 1) = −1
2
(
 − 1) so the contribution to

D is
w∑

i=1

(

iri − 1

2

i(
i − 1)

)

which combined with (a) gives the stated result.

The formulae for higher values of L become increasingly complicated. When L =∑w
j=1 
j − 2. the formula for D is

S(L+ 2, L) + S(L+ 1, L)
w∑

i=1

(
iri + s(
i, 
i − 1))

+
w∑

i=1

((

i

2

)
r2
i + (
i − 1)ris(
i, 
i − 1) + s(
i, 
i − 2)

)

+
∑

1≤i1<i2≤w

(
i1ri1 + s(
i1 , 
i1 − 1)) (
i2ri2 + s(
i2 , 
i2 − 1)) (3.12)

Proof of the proposition. Using the lemma with L = 
w − x, 
j = 
 and rj = 
 + j shows
that g

(w)
� (x) = 0 for x < 0, g(w)

� (0) = 1 and g
(w)
� (1) = 1

2w(w + 1)
(
 + 1). The case x = 2
requires the results

S(L+ 2, L) = h2(1, 2, . . . , L) =
∑

1≤i≤j≤L

ij = L(L+ 1)(L+ 2)(3L+ 1)/24,

s(
, 
 − 2) = e2(1, 2, . . . , 
 − 1) =
∑

1≤i<j≤�−1

ij = 
(
 − 1)(
 − 2)(3
 − 1)/24.
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which together with (3.12) yields

g
(w)
� (2) =

1
24

w (w + 1) 
 (
+ 1)
(
3w(w + 1)
2 + (3w2 − 5w − 4)
 − 4(w − 1)

)
.

Here h2(e2) is the complete(elementary) symmetric function of degree 2. Extension to greater
values of x would involve higher degree symmetric functions.

The proposition follows from equations (3.6) and (3.5).

We observe that for given x,w > 0, g
(w)
� (x) is a polynomial in 
 of degree 2x which

contains a factor
� 1

w
(x−1)�∏
i=0

(
 − i)(
 − i+ 1) (3.13)

and that further linear factors occur, for example when x = 3

g
(w)
� (3) =

1
48

w(w + 1)
(
+ 1) ×
(
w − 2)(
w + w − 2)(
(w + 1) − 2) (
(w + 1) + w − 1) . (3.14)

Notice the expected symmetry under interchange of 
 and w. Assuming this result gives

f�,w(3) =
(w + 1) (
+ 1) (
w + w − 2)(
(w + 1) − 2) (
(w + 1) + w − 1)C�,w

48(
w − 1)
(3.15)

The polynomials g
(w)
� (x) for x = 4, 5 and early values of w are listed in appendix

Appendix B. Similar data was used to obtain the formula for x = 3 and data for higher odd
values of x is consistent with the occurrence of the four factors

(
w − x+ 1)(
w + w − x+ 1)(
(w + 1) − x+ 1)(
(w + 1) + w − x+ 2). (3.16)

Finally equation (3.1) yields the w = 1 formula for general x

g
(1)
� (x) =

1
x!

x−1∏
i=0

(
 − i)(
 − i+ 1) (3.17)

4. Proof of proposition 2.

(a) Combining (1.13) with proposition 1(a)

GFermi
�,w (z) = (1 + z)�w+1QBose

�,w

(
z

1 + z

)
(4.1)

= (1 + z)�+wQFermi
�,w (z) (4.2)

where

QFermi
�,w (z) =

(�−1)w−1)∑
k=0

qBose
�,w,kz

k(1 + z)(�−1)(w−1)−k (4.3)

is a polynomial of degree (
 − 1)(w − 1).
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(b) Replace z by −z in (4.3)

(c) The first equality is obtained by expanding (4.1) in powers of z and the second is (3.3).

(d) The first equation follows by expanding the factor (1+z)(�−1)(w−1)−k in (4.3). Combining
(4.2) and (1.13) gives

QFermi
�,w (z) = (1 + z)−(�+w)GBose

�,w

(
z

1 + z

)
(4.4)

and the second equation follows by expanding in powers of z.

(e) The first equality is obtained on replacing n by (
− 1)(w − 1)−n in part (d) and using
proposition 1, parts (e) and (c). The second is obtained by expanding the binomial
coefficient in terms of Stirling numbers using

k(k − 1) . . . (k − n+ 1) =
n∑

m=0

s(n,m)km. (4.5)

(f) Set n = 0 in part (e) and use (1.8).

(g) Replace z by 1/z in (4.3) and use proposition 1(e).

5. Recurrence Relations.

5.1. Proof of proposition 3.

(a) In [14] it was shown that by duality that fBose
�,w,n is invariant under any permutation of

its indices. Equation (1.2) can therefore be rewritten in the form

fBose
�,w,n =

�∏
j=1

(j + k)w
(j)w

(5.1)

and hence

fBose
�,w,k =

(
+ k)w
(
)w

fBose
�−1,w,k. (5.2)

from which the result follows.

(b) The proof of this part may be found in [8] and uses the Pfaff-Saalschütz identity [29]
(

+ w + k − 1

w

)(

w + 1
n − k

)
=

w∑
h=0

(−1)h
(
(
 − 1)(w − 1) − n − h

h

)(

+ w + n − h − 1

w − h

)(
(
 − 1)w + 1
n − h − k

)
. (5.3)

Our proof of parts (c) and (d) uses a similar technique.

(c) The proposition may be written in the form

qFermi
�,w,n =

(
+ n)w
(
)w

w−1∑
h=0

(
w − 1

h

)
qFermi
�−1,w,n−h (5.4)
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A variant of the Vandermonde convolution ([30] section 1.3, equation (5)) gives

(

+ n − 1
n − k

)
=

w−1∑
h=0

(−1)h
(
w − 1

h

)(
n − h+ 
+ w − 2

n − h − k

)
(5.5)

Combining this with (5.2) gives
(
n+ 
+ w − 1

n − k

)
fBose

�,w,k =
(
+ n)w
(
)w

(

+ n − 1
n − k

)
fBose

�−1,w,k

=
(
+ n)w
(
)w

w−1∑
h=0

(
w − 1

h

)
(−1)h

(
n − h+ 
+ w − 2

n − h − k

)
fBose

�−1,w,k

(5.6)

Multiplying by (−1)n−k, summing over k and using proposition 2(d) completes the proof.

(d) The following identity has been verified using Paule and Schorn’s Mathematica
implementation [23] of Zeilberger’s algorithm [18].

(

+ w + k − 1

w

)(
n − 1
n − k

)
=

w∑
h=0

(−1)h
(
n − 1
h

)(

+ w + n − h − 1

w − h

)(
n − h − 1
n − h − k

)
. (5.7)

Using part (a)
(

+ w − 1

w

)(
n − 1
n − k

)
fBose

�,w,k =

w∑
h=0

(−1)h
(
n − 1
h

)(

+ w + n − h − 1

w − h

)(
n − h − 1
n − h − k

)
fBose

�−1,w,k.

(5.8)

Multiplying by (−1)n−k, summing over k and using proposition 2(c) completes the proof.

5.2. Recurrence relations for generating functions.

Equation 9 of [8] is a recurrence relation for the Naryana polynomials which translates to

(
+ 1)QBose
�,2 (z) = (2
 − 1)(1 + z)QBose

�−1,2(z) − (
 − 2)(1 − z)2QBose
�−2,2(z) (5.9)

Now using (4.1) and (4.2)

QBose
�,w

(
z

1 + z

)
=

QFermi
�,w (z)

(1 − z)(w−1)(�−1) . (5.10)

Replacing z by z/(1+ z) in the recurrence relation and using (5.10) with w = 2 leads to the
corresponding Fermi recurrence relation

(
+ 1)QFermi
�,2 (z) = (2
 − 1)(1 + 2z)QFermi

�−1,2 (z) − (
 − 2)QFermi
�−2,2 (z). (5.11)
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For w = 3, Proposition 7 of [8] gives

(3
 − 4)(
+ 1)2(
+ 2)QBose
�,3 (z) =

(
+ 1) (3
 − 2)
[
4

(
1 + z + z2) + 
 (3
 − 5)

(
1 + 7z + z2)]QBose

�−1,3(z)

+ (
 − 2)
(
12 − 29 
+ 30 
2 − 9 
3) (1 − z)4QBose

�−2,3(z)

+ (
 − 2) (
 − 3) (
 − 4) (3
 − 1) (1 − z)6QBose
�−3,3(z) (5.12)

and the corresponding Fermi recurrence is

(3
 − 4)(
+ 1)2(
+ 2)QFermi
�,3 (z) =

(
+ 1) (3
 − 2)
[
4

(
1 + 3z + 3z2) + 
 (3
 − 5)

(
1 + 9z + 9z2)]QFermi

�−1,3 (z)

+ (
 − 2)
(
12 − 29 
+ 30 
2 − 9 
3)QFermi

�−2,3 (z)

+ (
 − 2) (
 − 3) (
 − 4) (3
 − 1)QFermi
�−3,3 (z) (5.13)

These relations are valid for 
 ≥ 2 and may be initialised by QBose
1,w (z) = QFermi

1,w (z) = 1
and arbitrary values for 
 ≤ 0. Notice that in the Fermi case only the coefficient of QFermi

�−1,w (z)
depends on z.

6. Configurations in which each path is used at most m times

In this section we examine the generating function H
(m)
w,n (z) defined by equation (2.9). It was

shown in [14] that

HFermi
w,n (z) ≡ H(1)

w,n(z) =
P Fermi

w,n (z)
(1 − z)wn+1 (6.1)

where

P Fermi
w,n (z) =

n∑
k=1

(−1)n−k

(
n − 1
k − 1

)
(1 − z)(n−k)wQBose

w,k (z). (6.2)

The proof used the previously mentioned symmetry of fBose
�,w,n under interchange of 
 and n.

The degree (n − 1)w of this polynomial is determined by the k = 1 term and the coefficient
of z(n−1)w is (−1)(n−1)(w+1). Setting z = 1 gives P Fermi

w,n (1) = QBose
w,n (1) = Cw,n. Tables of

QBose
w,n (z) and P Fermi

w,n (z) for low values of n and w are given in an appendix to [14].
The extension to general m follows from (6.1) by using (2.7) to show that

H(m)
w,n (z) =

n∑
k=� n

m
�
C

(m)
k,n−kH

Fermi
w,k (z) (6.3)

=
P

(m)
w,n (z)

(1 − z)wn+1 (6.4)

where

P (m)
w,n (z) =

n∑
k=� n

m
�
C

(m)
k,n−k(1 − z)(n−k)wP Fermi

w,k (z). (6.5)
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w 1 2 3 4
n
1 1 1 1 1
2 1 1 + z 1 + 3z + z2 1 + 6z + 6z2 + z3

3 2z − z2 7z − 5z2 + 4z3 − z4 16z + 5z2 + 30z3 − 14z4 + 6z5 − z6 30z + 85z2 + 246z3 + 43z4 + 78z5 − 27z6 + 8z7 − z
4 z + z2 − z3 6z + 17z2 − 23z3 19z + 153z2 + 68z3 + 299z4 − 142z5 45z + 804z2 + 3198z3 + 8407z4 + 6796z5 + 4360z6

+21z4 − 8z5 + z6 +89z6 − 30z7 + 7z8 − z9 +130z7 + 418z8 − 191z9 + 70z10 − 14z11 + z12

Table 1. The polynomials P
(2)
w,n(z)

Setting z = 1 shows that the sum of the numerator coefficients is an n−dimensional Catalan
number, P (m)

w,n (1) = P Fermi
w,n (1) = Cw,n.

Now the degree of each term in (6.5) is (n− 1)w but expanding the factor (1− z)w(n−k)

gives positive and negative terms so that the degree of P
(m)
w,n (1) is at most (n − 1)w. The

coefficient of z(n−1)w in P
(m)
w,n (z) is

[z(n−1)w]P (m)
w,n (z) = (−1)(n−1)w−1

m∑
k=� n

m
�
(−1)kC(m)

k,n−k (6.6)

= (−1)(n−1)w−1




1 n = 0 mod m+ 1
−1 n = 1 mod m+ 1
0 otherwise

(6.7)

The maximum degree is therefore only achieved when n = 0 or 1 mod m+1. Table 6 shows
a sample of the numerator polynomials in the case m = 2.

Now C
(m)
k,i becomes independent of m for m ≥ k + i. From (6.5) it follows that for

m ≥ n, P (m)
w,n (z) is independent of m as expected since there are not enough walks to exceed

the upper limit. In this case the configurations enumerated by H
(m)
w,n (z) using (6.3) are just

the Bose configurations so that for m ≥ n, P (m)
w,n (z) = QBose

w,n (z) and the degree is therefore
(n − 1)(w − 1).

7. Summary and conclusion

The number of configurations of n fully directed walks between the corners of an 
 by
w rectangular grid and subject to the Fermi condition of Inui and Katori [1] has beeen
investigated. It has been shown that the maximum number of walks in such a configuration
is 
w+1 and the number of maximal configurations is the generalised Catalan number C�,w.
Product formulae have been found for fixed numbers of walks close to the maximum but
complete factorisation eventually fails as the number of walks is reduced (see Appendix B).
As a consequence of the upper limit on the number of walks in a Fermi configuration the
generating function GFermi

�,w (z) is a polynomial whereas the Bose generating function is an
infinite series. In a companion paper [14] this led to proposition 1 which shows that GBose

�,w (z)
is a rational function whose numeratorQBose

�,w (z) is a generalised Naryana polynomial [8]. Here
we use this to show (proposition 2) that GFermi

�,w (z) may be factorised as (1+ z)�+wQFermi
�,w (z)

where the second factor is related to QBose
�,w (z). The number of Fermi configurations fFermi

�,w,n

is found to satisfy a recurrence relation (proposition 3) similar to that obtained by Sulanke
for the generalised Narayana numbers. The coefficients of the polynomial QFermi

�,w (z) satisfy
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a recurrence relation simpler than that for fFermi
�,w,n . The generating function H

(m)
w,n (z) for the

number of configurations of non-crossing walkers, with fixed w and n, in which the number of
walkers on a given path is at most m is also considered. It is shown to be a rational function
similar to GBose

�,w (z). It is clear from the results of this paper that there is considerable scope
for bijective combinatorics involving Fermi configurations. This will be investigated in a
subsequent study [25].
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Appendix A. The numbers of Fermi walk configurations for w = 2, 3 and 4.

(a) w = 2

� 0 1 2 3 4 5 6 7 8
n
1 1 3 6 10 15 21 28 36 45
2 0 3 14 40 90 175 308 504 780
3 0 1 16 85 295 805 1876 3906 7470
4 0 0 9 105 594 2331 7280 19404 45990
5 0 0 2 76 771 4529 19348 66780 197484
6 0 0 0 30 650 6083 36644 166608 621180
7 0 0 0 5 345 5685 50464 309537 1476135
8 0 0 0 0 105 3640 50813 434493 2701610
9 0 0 0 0 14 1526 37100 462952 3849715
10 0 0 0 0 0 378 19152 372708 4288140
11 0 0 0 0 0 42 6636 223272 3724140
12 0 0 0 0 0 0 1386 96558 2497110
13 0 0 0 0 0 0 132 28512 1268190
14 0 0 0 0 0 0 0 5148 471900
15 0 0 0 0 0 0 0 429 121407
16 0 0 0 0 0 0 0 0 19305
17 0 0 0 0 0 0 0 0 1430



Fermi, Bose and Vicious walk configurations 18

(b) w = 3

� 0 1 2 3 4 5 6 7 8
n
1 1 4 10 20 35 56 84 120 165
2 0 6 40 155 455 1120 2436 4830 8910
3 0 4 85 650 3171 11816 36624 99120 241560
4 0 1 105 1681 13783 77560 340116 1245300 3972144
5 0 0 76 2848 40411 346136 2147412 10600248 44034606
6 0 0 30 3235 83475 1107352 9776688 65119605 351728685
7 0 0 5 2450 124265 2624240 33351627 301118850 2117140795
8 0 0 0 1190 134288 4698883 87461913 1079098615 9912173425
9 0 0 0 336 104608 6421968 179322472 3059222880 36934857883
10 0 0 0 42 57330 6711852 290434872 6960555504 111397726440
11 0 0 0 0 21000 5329632 373396758 12834078180 275329223610
12 0 0 0 0 4620 3162390 380973582 19287937350 562596057870
13 0 0 0 0 462 1359072 306746088 23681211840 956041192260
14 0 0 0 0 0 399828 192564372 23726383395 1355652938211
15 0 0 0 0 0 72072 92303211 19305532818 1605558804135
16 0 0 0 0 0 6006 32636604 12640617990 1585882849980
17 0 0 0 0 0 0 8024016 6561755200 1301064338860
18 0 0 0 0 0 0 1225224 2638656020 880193482740
19 0 0 0 0 0 0 87516 792603240 485591190084

(c) w = 4

� 0 1 2 3 4 5 6 7
n
1 1 5 15 35 70 126 210 330
2 0 10 90 455 1694 5166 13650 32340
3 0 10 295 3171 21238 105966 429870 1492260
4 0 5 594 13783 163982 1313046 8012850 39963792
5 0 1 771 40411 856366 10909746 98928336 699551061
6 0 0 650 83475 3201050 64848960 868345125 8632370175
7 0 0 345 124265 8877688 287867997 5684065080 79065603265
8 0 0 105 134288 18689069 982887633 28699196855 557695903325
9 0 0 14 104608 30269162 2634822946 114539208070 3113010521852
10 0 0 0 57330 37940910 5623892190 367901819460 14036581816950
11 0 0 0 21000 36765750 9644235300 963715352250 51935620238250
12 0 0 0 4620 27306048 13350415452 2078439922680 159600327635430
13 0 0 0 462 15263226 14929494822 3714545258820 411116322541815
14 0 0 0 0 6216210 13442303160 5522111069475 893801821197285
15 0 0 0 0 1741740 9667362705 6837708147270 1648096898999265
16 0 0 0 0 300300 5476390920 7043966829900 2585470479091500
17 0 0 0 0 24024 2389583196 6013865497640 3455749990733040
18 0 0 0 0 0 774954180 4225562012100 3934689718087700
19 0 0 0 0 0 175907160 2416869569400 3809080075647132
20 0 0 0 0 0 24942060 1107021739824 3123364634717184
21 0 0 0 0 0 1662804 396290534640 2156256587104620
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Appendix B. The polynomials g
(w)
� (x)

g
(w)
� (x) =

1
x!

w(w + 1)
(
+ 1)f (w)
� (x)

(a) x = 4
w f (w)

� (4)
1 1

2 (−3+ 
) (−2+ 
)2 (−1+ 
)2 


2 1
2 (−1+ 
)2 
 (4+ 4 
 − 45 
2 + 27 
3)

3 2 (−1+ 
) 
 (4+ 9 
 − 22 
2 − 36 
3 + 54 
4)
4 2

5 (−18 − 57 
+ 212 
2 + 393 
3 − 850 
4 − 750 
5 + 1250 
6)
5 1

10 (−288+ 28 
+ 3512 
2 − 577 
3 − 13475 
4 + 1125 
5 + 16875 
6)
6 1

2 (−144+ 292 
+ 1556 
2 − 2407 
3 − 6209 
4 + 4851 
5 + 9261 
6)
(b) x = 5

w f (w)
� (5)

1 1
2 (−4+ 
) (−3+ 
)2 (−2+ 
)2 (−1+ 
)2 


2 1
2 (−2+ 
) (−1+ 
)2 
 (−4+ 3 
) (−1+ 3 
) (−2 − 13 
+ 9 
2)

3 4 (−1+ 
)2 
 (−4+ 3 
) (−1+ 3 
) (−2 − 7 
 − 2 
2 + 18 
3)
4 4 (−1+ 
) 
 (−4+ 5 
) (1+ 5 
) (6+ 5 
 − 29 
2 − 20 
3 + 50 
4)
5 1

2 (−2+ 3 
) (1+ 3 
) (−4+ 5 
) (1+ 5 
) (24 − 6 
 − 133 
2 + 10 
3 + 225 
4)
6 1

2 (−2+ 3 
) (1+ 3 
) (−4+ 7 
) (3+ 7 
) (40 − 46 
 − 229 
2 + 154 
3 + 441 
4)
7 (−2+ 4 
) (2+ 4 
) (−4+ 7 
) (3+ 7 
) (30 − 59 
 − 167 
2 + 224 
3 + 392 
4)
8 (−2+ 4 
) (2+ 4 
) (−4+ 9 
) (5+ 9 
) (42 − 115 
 − 215 
2 + 480 
3 + 648 
4)
9 1

2 (−2+ 5 
) (3+ 5 
) (−4+ 9 
) (5+ 9 
) (112 − 390 
 − 493 
2 + 1770 
3 + 2025 
4)
10 1

2 (−2+ 5 
) (3+ 5 
) (−4+ 11 
) (7+ 11 
) (144 − 606 
 − 493 
2 + 2970 
3 + 3025 
4)
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