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Abstract

An m × n cobweb network consists of n radial lines emanating from a center and
connected by m concentric n−sided polygons. A conjecture of Tan, Zhou and Yang
for the resistance from center to perimeter of the cobweb is proved by extending the
method used by the above authors to derive formulae for m = 1, 2 and 3 and general
n. The resistance of an m × (s + t + 1) fan network from the apex to a point on the
boundary distant s from the corner is also found.
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1 Introduction

The case m = 6, n = 8 of an m × n cobweb network is shown in figure 1. On the basis of
results for general n and m = 1, m = 2 [1] and m = 3 [2] it has been conjectured by Tan,
Zhou and Yang [2] that the resistance Rcob for general m between the center and perimeter
of the cobweb is given by equation (2.1). A proof for m = 4 has been given by Tan, Zhou
and Lou [3]. The conjecture for general m and n has recently been proved by Izmailian,
Kenna and Wu [4] as a special case of the resistance between an arbitrary pair of nodes.
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They use a modification of a method due to Wu [5] which determines the point to point
resistance of a general network of resistors. The new method avoids the zero eigenvalue of
the Kirchoff matrix by expressing the resistance in terms of the eigenvalues and eigenvectors
of a principal cofactor. The method when applied to the cobweb involves two eigenvalue
problems and results in a double summation.

The proof described here is an extension of the method of Tan et al [2] for the case m = 3
and is more direct and consequently shorter. The solution of only one eigenvalue problem
is required together with the solution of a linear recurrence relation. By changing only the
boundary conditions for the recurrence relation the resistance of a fan network, which is a
segment of the cobweb network (see figure 3), is also obtained.

The conjecture for the cobweb is stated in section 2.1 and proved in section 2.2 for
general m and n. The proof uses a Lemma which is proved in the Appendix. In section 3
the resistance of the fan network is obtained.

2 The m× n cobweb network

2.1 The conjecture

Let Rcob be the resistance from center to any point on the boundary of an m × n cobweb
network.

Rcob =
r

2m+ 1

m
∑

i=1

(2 + vi)
coth(n ln

√
λi)

λi − λ̄i
(2.1)

where r is the resistance of the transverse elements, vi = 2 cos[ (2i−1)π
2m+1

] and λi, λ̄i are the
greater and lesser solutions of

λ2i − uiλi + 1 = 0. (2.2)

Here ui = 2 + r
r0
(2 − vi) where r0 is the resistance of the radial elements. Notice that the

denominator in (2.1) is equal to
√

u2i − 4.
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Figure 1: A 6× 8 cobweb network

2.2 The proof

Here we extend the method used in [2] to general m. Label the radial lines of the cobweb
network by k = 1, 2, . . . n. To determine Rcob suppose that a current J is injected into vertex
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k = 1 of the perimeter and flows out from the center. Let Ik(i) be the resulting current in
the ith resistor from the edge of the kth radial line flowing towards the center (see figure 2).
Using Ohm’s law Rcob is given in terms of these currents by

Rcob =
r0
J

m
∑

i=1

I1(i) (2.3)
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Figure 2: The voltage loop ABEFCBEDA

To determine the radial currents consider the voltage loop ABEFCBEDA, shown in
figure 2, centered on the ith resistor of the kth radial line . Charge conservation gives

Ia + Ib = Ik(i)− Ik(i− 1) and Ic + Id = Ik(i)− Ik(i+ 1) (2.4)

For the moment we assume that current Jk is injected into perimeter vertex k so that when
i = 1 in (2.4), Ik(i − 1) = Jk. The sum of the voltage differences round the loop is zero so
using Ohm’s law

r0(2Ik(i)− Ik−1(i)− Ik+1(i)) + r(Ia + Ib) + r1(Ic + Id) = 0 (2.5)

where r1 = r for i < m and is zero for i = m. Combining these equations

Ik+1(i) = −hIk(i− 1) + (h+ h1 + 2)Ik(i)− h1Ik(i+ 1)− Ik−1(i) (2.6)

where h = r/r0, h1 = r1/r0.
Equation (2.6) may be written in matrix form

Ik+1 = [(2h+ 2)Um − hVm]Ik − Ik−1 − h{Jk, 0, 0, . . . , 0}T (2.7)

where Um is an m-dimensional unit matrix and

Vm =









0 1 0 0 . . . 0 0 0

1 0 1 0 . . . 0 0 0

0 1 0 1 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

.

.

0 0 0 0 . . . 0 1 0

0 0 0 0 . . . 1 0 1

0 0 0 0 . . . 0 1 1









(2.8)

Vm has eigenvalues vi = 2 cos[ (2i−1)π
2m+1

] and eigenvectors ψi, i = 1, 2, . . . , m. The jth component
of ψi , normalised so that ψi(1) = 1, is given by [4]

ψi(j) =
sin[ (2i−1)πj

2m+1
]

sin[ (2i−1)π
2m+1

]
(2.9)
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Lemma 1. For j = 1, 2, . . .m

m
∑

i=1

(2 + vi)ψi(j) = 2m+ 1 independently of j

The proof of this lemma is given in appendix A. Notice that vi = ψi(2).
Now let Ψ be the matrix with ith row ψi and define Xk = ΨIk. Using the lemma

m
∑

i=1

(2 + vi)Xk(i) =
m
∑

i=1

(2 + vi)
m
∑

j=1

ψi(j)Ik(j) = (2m+ 1)
m
∑

j=1

Ik(j) (2.10)

which combined with (2.3) gives the required resistance.

Rcob =
r0

(2m+ 1)J

m
∑

i=1

(2 + vi)X1(i) (2.11)

It remains to determine X1(i).
Multiplying (2.7) on the left by Ψ, noting that ΨVm is diagonal with diagonal elememts

vi and taking the ith component

Xk+1(i) = uiXk(i)−Xk−1(i)− hJk (2.12)

where ui = 2h + 2− hvi. To determine Rcob using (2.3) we must set Jk = Jδk,1 so for k ≥ 2
equation (2.12) has solution

Xk(i) = Aiλ
k
i + Āiλ̄

k
i (2.13)

where λi and λ̄i are as defined in the conjecture and from (2.2)

λi + λ̄i = ui and λ̄i = 1/λi. (2.14)

The coefficients Ai and Āi are determined in terms of X1(i) and X2(i) by

Ai =
λ̄i(X2(i)− λ̄iX1(i))

λi − λ̄i
Āi =

−λi(X2(i)− λiX1(i))

λi − λ̄i
(2.15)

Setting k = 1 in (2.12) and using symmetry about the k = 1 radial line, which gives
X0(i) = X2(i),

X2(i) =
1

2
(λi + λ̄i)X1(i)−

1

2
hJ. (2.16)

Using (2.16) to eliminate X2(i) from (2.15)

λiAi =
1

2

(

X1(i)−
hJ

λi − λ̄i

)

λ̄iĀi =
1

2

(

X1(i) +
hJ

λi − λ̄i

)

(2.17)

and using the periodicity Xn+1(i) = X1(i), with k = n in (2.13) together with (2.17)

X1(i) = Aiλ
n+1
i + Āiλ̄

n+1
i =

(λni − λ̄ni )hJ

(λni + λ̄ni − 2)(λi − λ̄i)
(2.18)

The final result (2.1) follows by cancellation of a factor (
√
λi)

n− (
√

λ̄i)
n and substitution in

(2.11).
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Figure 3: The s = t = 3 symmetric fan network

3 Resistance of the m× (s + t + 1) fan

The fan has s + t + 1 radial lines labelled from k = −s, to k = t. It is a segment of the
cobweb (see figure 3 ) and its resistance will be determined between the end of the k = 0
radial line and the apex.

Equation (2.7) now holds for −s < k < t with Jk = Jδk,0. For k = t we only use the loop
ABEDA in figure 2 to obtain the boundary equations

It−1(i) = (2h+ 1)It(i)−hIt(i− 1)− hIt(i+ 1) for i < m (3.1)

It−1(m) = (h + 1)It(m)−hIt(m− 1) (3.2)

or in matrix form

It−1 = ((2h+ 1)Um−hVm)It (3.3)

which on multiplying by Ψ and taking the ith component gives

Xt−1(i) = (ui − 1)Xt(i) and similarly X
−s+1(i) = (ui − 1)X

−s(i) (3.4)

In the region k > 0 the solution (2.13) will be used and in the k < 0 region different
coefficients are required. With ℓ = −k

X
−ℓ(i) = Biλ

ℓ
i + B̄iλ̄

ℓ
i (3.5)

On the k = 0 radial line where the current is injected equation (2.12) becomes

X
−1(i) +X1(i) = uiX0(i)− hJ (3.6)

Applying (3.4) and (3.6) to (2.13) and (3.5) produces the simultaneous equations

Āi = λ2t+1
i Ai B̄i = λ2s+1

i Bi (3.7)

X0(i) = Ai + Āi = Bi + B̄i (3.8)

Ai − B̄i =
−hJ
λi − λ̄i

(3.9)
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Now

Rfan =
r0

(2m+ 1)J

m
∑

i=1

(2 + vi)X0(i) =
r0

(2m+ 1)J

m
∑

i=1

(2 + vi)(Ai + Āi) (3.10)

Using (2.14) and solving the simultaneous equations for Ai and Āi gives the final result

Rfan =
r

2m+ 1

m
∑

i=1

(2 + vi)(λ
s+t+1
i + λ̄s+t+1

i + λt−s + λs−t)

(λi − λ̄i)(λ
s+t+1
i − λ̄s+t+1

i ))
(3.11)

With s+ t+ 1 = n, the number of radial lines, the symmetric case s = t reduces to

Rsym
fan =

r

2m+ 1

m
∑

i=1

(2 + vi)

λi − λ̄i

λ
n

2 + λ̄
n

2

λ
n

2 − λ̄
n

2

(3.12)

=
r

2m+ 1

m
∑

i=1

(2 + vi)

λi − λ̄i
coth(n ln

√

λi) = Rcob (3.13)

The resistance equality of the symmetric fan and cobweb networks having the same number
n of radial lines is at first surprising. However the initial and final radial lines of the fan
may be joined to form a cobweb and by symmetry the added resistors carry no current. The
current distributions in the two networks must therefore be the same.

4 Summary and discussion.

The method of Tan, Zhou and Yang [2] has been used to derive formulae (2.1) and (3.11) for
the resistance of the cobweb and fan networks shown in figures 1 and 3. In the case of the
cobweb network the formula is for the resistance between the center and any point on the
boundary. For the fan network the resistance is obtained between the apex and a point on
the boundary distant s from one corner and t from the other. In the symmetric case s = t,
shown in the figure, the resistance is the same as for a cobweb with s+ t + 1 radial lines.

The cobweb formula was conjectured in [2]. The conjecture has recently been proved [4] by
a method which gives the general point-to-point resistance in terms of a double summation.
Significant further analysis is then required to reduce this double summation to a single
summation and hence to (2.1). The method also requires the solution of two eigenvalue
problems.

By contrast the method of Tan et al splits the derivation into two parts. The first part
solves the radial equation and involves an eigenvalue problem. The second part uses a Lemma
which applies to both networks and states a surpising relation between the eigenvectors. This
Lemma enables the resistance to be expressed as a single sum the summand of which involves
only the solution of a second order recurrence relation. The same recurrence relation also
applies to both networks, only the boundary conditions are different.
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5 Appendix: Proof of Lemma 1

With M = 2m+ 1 let

fj ≡
m
∑

i=1

(2 + vi)ψi(j) = 2
m
∑

i=1

cot[
(2i− 1)π

2M
] sin[

(2i− 1)jπ

M
] (5.1)

The following sum will be needed below. For j = 1, 2, . . . , 2m

Sj ≡ 2
m
∑

i=1

cos[
(2i− 1)jπ

M
] =

sin[2mjπ

M
]

sin[ jπ
M
]

= (−1)j+1 (5.2)

The sum has been derived using complex exponentials. Thus for j = 1

f1 = 2

m
∑

i=1

(1 + cos[
(2i− 1)π

M
]) = 2m+ S1 = 2m+ 1 (5.3)

and for j = 1, 2, . . . , 2m− 1

fj+1 − fj = 2
m
∑

i=1

(

cos[
(2i− 1)jπ

M
] + cos[

(2i− 1)(j + 1)π

M
]

)

(5.4)

= Sj + Sj+1 = (−1)j+1 + (−1)j = 0 (5.5)

Hence fj = 2m+ 1 for j = 1, 2, . . . , 2m.
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