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Directed compact percolation near a wall: I. Biased growth 
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Abstract. The directed compact percolaIion cluster model of Domany and Kinzl is considered 
in the presence of a wall which is parallel to Ute growth direction and hence restricts the lateral 
growth of the cluster in one direction. The eritical exponenls are found to depend on whether the 
wall is wet or dry. In the former case the model is solved exactly for all the standard percolation 
functions and the critical behaviour is found to be the same as that for cluster growth with no 
wall present. With this boundary condition the cluster is completely attached lo the wall and the 
model may also be viewed as oneofsymmetric compact clustergrowth. In the case ofadry wall 
the cluster may repeatedly leave and mum to the wall as it grows and in this case the percolation 
probability has been derived exactly by Lin and found to have a crilical exponent different from 
that of the bulk, tin’s result is rederived and an exact formula for the percolarion probability 
is found for a more general model in which the cluster growth is biased either towards or away 
from the wall. It is found that the unbiased case is special in that any bias away from the wall 
recovers the bulk critical exponent and a bias towards the wall produces a problem in the same 
class as the wet-wall model. 

1. Introduction 

The directed compact cluster model in the absence of a wall has been investigated by 
Domany and Kinzel (1984) as a limiting case of a stochastic cellular automaton. They 
found exact expressions for the percolation probability, the cluster length distribution and 
the associated critical exponents. Their work was extended to biased growth and to the 
mean cluster size by Essam (1989) and then to non-nodal clusters and the cluster size 
distribution by Essam and TanlaKishani (1990). More recently an exact form for the 
percolation probability of directed compact clusters with a dry wall has been conjectured 
by Bidaux and Privman (1991) and derived by Lin (1992). 

The model is defined on a directed square lattice the sites of which are the points in 
the t ,  x plane with integer co-ordinates such that t 2 0, x > 0 and t + x even. The wall 
is represented by the sites with x = -1 and odd t > 1 which are either all wet (occupied 
by an atom) or all dry (unoccupied). A random cluster grows from a seed occupying m 
contiguous sites in the column t = 0 which in percolation terms is a compact source of fluid 
of width m. The growth rule is that the site ( t ,  x )  becomes wet (occupied) with certainty if 
both the sites (t - 1, x * 1) are wet, with probability p. if (t - 1, x - I )  is wet and (t - 1, 
x +  I )  is dry and with probability pd if (t - l , x  + I )  is wet and (t - 1, x - I )  is dry. These 
conditions imply that for any column t ,  the wet sites will be contiguous which is why the 
clusters are said to be compact. 

The percolation probability P ( p ) ,  where p = [p,, pd}. is the probability that the cluster 
never terminates. In standard percolation theory P(p)  is zero below a certain threshold 
which in the two-variable case becomes a critical curve in the pu-p,, plane. On approaching 
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the critical curve from the P ( p )  > 0 side, P ( p )  vanishes with critical exponent p.  In bulk- 
directed compact percolation the constraint x > 0 is not present and in this case it has been 
shown (Essam 1989) that the critical curve is the line p,, + p,j = 1 and p = I at all points 
on the curve. 

For the dry wall, it has been shown by Lin that in the unbiased case, p!, = p d  = p .  the 
percolation threshold p c  = ~ f  and the critical exponent p = 2. Here we extend Lin's work 
to obtain an exact expression for P ( p )  for arbitrary p .  and p d .  We show that the critical 
curve is now the union of two separate straight lines which meet at the unbiased critical 
point ( I ,  1) (see figure I). The first line is the part of the bulk curve pu + pd = 1 for 
which 0 < p,j 6 p.. In the region pd c p.. the growth is biased away from the wall and 
the model is in the same universality class as the bulk problem. At all points on this line, 
except the endpoint (1.f). p has its bulk value. The second part of the critical curve is the 
segment of the line p u  = f for which f < pd < I. Except for the end point (i, 4). this 
lies in the region p,, p .  in which there is a bias towards the surface and at all points of 
the critical curve in this region p = 1 again. It tums out that the other endpoint pd = 1 is 
isomorphic to the wet wall problem and we shall call this second line the surface transition 
line. The wet wall problem is much simpler than the dry wall in that only one variable p,, 
is involved but nevertheless it determines the critical behaviour for the surface transition 
line. We shall see that the recurrence relations which determine the growth near a wet wall 
are the same as for the bulk problem which is why p = 1. 
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Figure 1. The critical curve for direcled compact pexolation near a wall. 

Recurrence relations are obtained for the probability distribution function, r t ( p ) ,  of the 
cluster length. This is defined as the probability that the cluster terminates after exactly t 
growth stages and can be used to determine P ( p ) .  The wet surface problem is solved in 
detail in section 2 where in addition to the the percolation probability and the moments of 
the cluster length distribution we also determine the mean cluster size. An exact expression 
for the percolation probability of the general dry wall problem is found in section 3. 

2. Wet wall and symmetric clusters 

A typical compact cluster with a wet wall is shown in figure 2(a). We suppose for simplicity 
that the source consists of the m sites (0, x )  where x = 0,2, . . . , 2m - 2 and note that the 
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(b) 

Figure 2. A typical directed compact cluster near a wet wall with seed width in = 3 

cluster can only terminate after an even number of growth stages so that r,(m) = 0 for t 
odd. At each stage of the growth the upper edge moves up with probablity p .  and down 
with probability q. = 1 - p. and is therefore an asymmetric random walk. The lower 
edge moves up and down on alternate stages. Thus after two successive growth stages the 
height of the lower edge is unchanged so that the cluster width has either increased by I 
(probability pi ) ,  decreased by 1 (probability q:) or has not changed (probability 2p,,q,,). If 
in each case we multiply by the probability that the cluster grows for a further t - 2 stages 
and then terminates. we obtain the recurrence relations 

rf(m) = p:r,-z(m + I )  + 2puq,r,-2(m) + q,Zr,-Z(m - I )  
r f ( l )  = p,2rf-z(2) + p!,q,,r,-z(l). 

m 2 2 (2.1 ) 
(2.2) 

If the cluster initially has unity width, it will terminate immediately with probability qu, so 
that 

Defining the moment generating function by 
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R I ~ )  -ro( l )  = e-'(p$%(z)+ p.quRl(z)). (2.6) 

Substituting pd = p u .  c = p i  and d = q," in the recurrence relation for compact percolation 
clusters without a surface (Essam 1989) gives an equation identical to (2.5). The solution 
of (2.5) satisfying boundary condition (2.6) is 

I 
(2.7) m - i e z  Rm(z )  = k )  

where f(z) is the root of the quadratic 

c1* + ( I  - c - d - ez)l + d = 0 (2.8) 

which remains bounded as z + CO. The corresponding solution in the absence of a surface, 
which we here denote by R,(z, bulk), differs from R,(z) only by the factor I(z)''' 

Rm(z,  bulk) = 1(z)'"e2. (2.9) 

We may therefore take over the previous results for the bulk problem Essam (1989) by 
replacing m by m - f .  In particular the percolation probability P,(p)  = I - R,(O) is zero 
for p .  < and for p .  2 f 

pm(p) = 1 - (q./P")z"-' (4m - 2 ) ~  - ~ P J  (2.10) 

hence the critical probability pc  = 4 and the critical exponent p = 1. The moments of the 
cluster length distribution are defined by 

m 

/&(m, p )  = ( f ' )  = C(Zt')'ru,(m) = (-2)'R,"'(O) (2.1 1) 
,'=o 

The mean length of finite clusters is given by 

L ( P )  = 1 + . m h  p)/@o(m. P )  = 1 - 2(d/dz) W R m ( ~ ) l l z , ~  = (2m - ~ ) / I ~ P u  - 11. 
(2.12) 

This is symmetric about the critical value p .  = 4 and diverges with critical exponent t = 1, 
as for the bulk. The asymptotic form of the higher order moments may also be deduced 
from the bulk result (Essam 1989) and we find 

(2.13) 

which implies the existence of a scaling length with exponent q, = 2. 
In considering the cluster size distribution, where the size of a cluster is the number of 

sites it occupies, we calculate only the first moment. Following the method of Essam( 1989). 
the mean size Sm(p,) of clusters below the percolation threshold satisfies the equation 

S m ( P u ) =  PuSm+I(Pu) + 2 ~ u q u S m ( ~ n )  +qZSm-l(pu) +2m - 1 + P 2 m > 2 (2.14) 
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together with the boundary condition 

Sl(P")  = P:Sz(P") + Puq.sl(P,) + 1 + P.  (2.15) 

With the further requirement that S, remain bounded as m + 00. these relations may be 
solved to yield 

(2.16) 

This expression is symmetric about the critical point (cf the mean length) and in the 
percolating region it determines the mean cluster size given that the cluster is finite, which 
includes a normalizing factor of I/R,(O). See Essam (1989) for discussion of this symmetry 
property. 

Any compact cluster attached to the wet wall may be made symmetric by adding to it 
the sites obtained by reflecting it in the x = 0 line (see figure 2(h)). The critical exponents 
far symmetric compact clusters are therefore the same as for all compact clusters on the 
same base. At first sight, this fact is a little surprising since the symmetric clusters form 
only a vanishingly small subset of all compact clusters. 

drywall 

Figure 3. A typical directed compact cluster near a dry wall with seed widlh m = 2. 

3. Percolation probability for the dry wall boundary condition 

A typical compact cluster near a dry wall is shown in figure 3. Since gaps can occur 
between the cluster and the wall, to obtain a recurrence relation it is necessary to consider a 
source which is not necessarily in contact with the wall. Thus two parameters are required 
to define the sites which belong to the source. We take as the first parameter the number of 
sites in the source m, as before, and the second parameter y is defined as the position of the 
centre of mass. If y 2 m, at the first growth stage either m is unchanged and y increases or 
decreases by unity, or y stays the same and m increases or decreases by unity. The cluster 
is then completed by adding any cluster of length t - 1. Let r,(m, y )  be the probability that 
a cluster with source of width m and centre of mass y has exactly f growth stages before 
it terminates then, with a = puqd, b = qupd ,  c = pupd and d = qUqd 

rr@, Y) = w - l ( m ,  Y + 1) + br,-i(m. Y - I) + cr,-l(m + I ,  y) + dr,-l(m - 1. y )  
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y > m > l .  t > O  (3.1 ) 
r,(m, m - I )  = pur,-l(m, m) + qurI+,(m - I ,  m - I )  (3.2) 
ro ( l , y )=d  y > 1 (3.3) 
ro( l ,O)=q.  (3.4) 
rdm,  y )  = 0 Y > m > 2 (3.5) 
rI(O, y )  = 0 y > m - 1 .  (3.6) 

Since a + c = pu and b + d = qu equation (3.2) may be replaced by the simpler boundary 
condition 

m 2 I ,  f > 0 

r,(m + 1, m - 1) = rI(m, m )  m > 1, t > 0 (3 .2~)  

These equations correspond to a random walk in the m-y plane with an absorbing boundary 
at m = 0 and a reflecting boundary at y = m - 1. Introducing the moment generating 
function as before. 

Rm.?(Z) = e-z@Rm.y+i(z) +bRm.y-t(Z) fcRm+i,.dz) +dRm-i..dz)) y > m > 1 
(3.7) 

where in order to satisfy (3.3) and (3.4) we must have 

Ro..dz) =ez (3.8) 

and from (3.22) 

R m + t . m - ~ ( ~ )  = Rm.m(Z). (3.9) 

We now search for separable solutions of (3.7) in the form 

Rm.?(z) = M m ( z ) Y y ( z )  (3.10) 

which leads to 

cM,+~(z)+(l  - ~ - d + s - e ~ ) M ~ ( z ) + d M ~ - ~ ( z ) = O  (3.11) 

and 

aY,+l(z) - (a + b + s )Yx(z)  + bY?-l(z) = 0 (3.12) 

where s is a separation variable which may depend on z .  

z = 0. The choice s = 0 leads to the exponential solutions 
To find the percolation probability, it is only necessary to solve these equations with 

Mm(0) = 1 or (d/c)m and q.(O) = 1 or @/a)’ (3.13) 

which are sufficient to satisfy (3.8) but not (3.9). Guided by Link solution (Lin 1992) we 
found that s = c + d - a - b yields further solutions in terms of which it is possible to 
satisfy both boundary conditions. These are 

Mm(0) = (qu/p!~)~ Or ( q d / P d ) m  and Y,(O) = Q / P ~  or ( P d l q d ? .  (3.14 
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Figure 4. The percolation probability for a directed compact cluster with unity seed width, 
adjacent 10 the wall. 

For the symmetric growth problem, pu = pd = p .  the solutions for Mm(0)  in (3.14) 
become equal and, following standard analysis for second-order difference equations, a 
second independent solution is the one found by Lin (1992): 

Mot@) = m(q/pIm with Yy(0) = (q/p).' or ( p / q ) v .  (3.15) 

For the symmetric case we ny to satisfy the boundary conditions with the form 

Rm.y(O) = A ( q / p ) 2 m  t Bm(q/p)m+Y. (3.16) 

Imposing conditions (3.8) and (3.9) determines A and B and results in an expression for 
the percolation probability equivalent to that of Lin (1992) 

pm.,@) = 1 -~R,,(O) = 1 - ( q / p ) "  - ( 2 ~  - l )m(q /p )"+Y/p2 .  (3.17) 

In the asymmetric case we replace Lin's solution by a combination of those in (3.14) which 
vanishes at m = 0, thus 

= A(d/cY + B[(qu/PJ" - (qd/Pd)ml(qu/Pu) '  (3.18) 

and imposing the boundary conditions, we finally obtain 

p m . y ( P )  = 1 - - ( P u  - q d ) [ ( q u / P u ) "  - ( q d / P d ) " l ( q ~ / P . ) ~ + ' / ( 4 u  - q d ) ,  (3.19) 

Note that when p d  = 1 and y = m - 1, which corresponds to the lower edge of the source 
being at the origin, equation (3.19) reduces to the wet-wall formula (2.10). 
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In general, P,,(p) = 0 when either p .  = f or pu + pd = 1 and the positive P,,,,(p) 
region is to the right of both these lines (see figure 1). This may be seen explicitly in the 
case m = 1, y = 0 for which 

PI.O(P) = ( 2 P u  - U ( P ”  + Pd - W P h .  

The asymptotic form near the crossover point (i, 4) for any m and y is 

(3.20) 

’ pm.,(P) 8m(y + 1)(2Pu - f Pd - 1). (3.21) 

At a distance r from the crossover point along a line at an angle 8 to the p. axis we have 

P,,,,(p) Y 16m(y+ I)r*cosB(cos@ +sin@) (3.22) 

which shows that the exponent ,3 = 2 along any such line. At any other point on the 
critical curve only one of the factors vanishes and ,3 = 1. A three-dimensional plot of the 
percolation probability is shown in figure 4. 
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