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Abstract

The number, fCn (H), of n−walk configurations of type C is inves-
tigated on certain two-rooted directed planar graphs H which will be
always realized as plane graphs in R2. C may be Bose or Fermi as
defined by Inui and Katori. Both types of configuration are collec-
tions of non-crossing walks which follow the directed paths between
the roots of the plane graph H. In the case of configurations of Fermi
type each walk may be included only once. The number fBosen (H)
is shown to be a polynomial in n of degree nmax − 1 where nmax is
the maximum number of walks in a Fermi configuration. The coeffi-
cient of the highest power of n in this polynomial is simply related to
the number of maximal Fermi walk configurations. It is also shown
that nmax = c(H) + 1 where c(H) is the number of finite faces on H.
Extension of these results to multi-rooted graphs is also discussed.

When H is the union of paths between two sites of the directed
square lattice subject to various boundary conditions Kreweras showed
that the number of Bose configurations is equal to the number of
n−element multi-chains on segments of Young’s lattice. He expressed
this number as a determinant the elements of which are polynomials in
n. We evaluate this determinant by the method of LU decomposition
in the case of “watermelon” configurations above a wall. In this case
the polynomial is a product of linear factors but on introducing a
second wall the polynomial does not completely factorise but has a
factor which is the number of watermelon configurations on the largest
rectangular subgraph.

The number of two-rooted “star” configurations is found to be the
product of the numbers of watermelon configurations on the three
rectangular subgraphs into which it may be partitioned.

PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e Key words: Fermi walks,

Bose walks, vicious walkers, interacting random walks, lattice paths,
partially ordered sets, Young diagrams.
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1 Introduction

1.1 Background and definitions

The subject of interacting random walks on a directed square lattice was
introduced by Fisher in his Boltzmann Medal lecture [13] where a number
of physical applications are described. He introduced the term “vicious” to
describe an interaction where if two walkers meet then they annihilate one
another. Thus for the walkers to continue they must avoid one another.
Vicious walker configurations also arise in the theory of plane polymer net-
works [11], [12] where the critical exponents which describe the asymptotic
behaviour of long chains depend on the topology of the network. The contin-
uum analogue of vicious walker configurations is non-intersecting Brownian
paths which are relevant [21] to random matrix theory. Vicious walker con-
figurations correspond to Bose configurations considered here (see below).
Fermi configurations arise in directed percolation theory [20].

Inui and Katori [20] considered the space-time trajectories of n random
walks which, at each tick of a clock, make unit steps to the left or right
on a one-dimensional lattice. The walkers all start at the origin and may
occupy the same site (thus known as friendly walkers) but may not pass one
another. In space-time the walkers follow paths on a directed square lattice
and their trajectories are non-crossing. Suppose that the vertices of the one
dimensional lattice are (i,−i), where i is an integer, and the time axis is in the
direction (−1,−1). If all walkers make ` positive steps and w negative steps
their walks will be from the top right to the bottom left corner of the `× w
rectangular grid W`,w an example of which is shown in figure 1(a). The set of
walks in the case ` = w = 3 is shown in figure 2. Two types of configuration
were considered in [20]. Bose configurations need only satisfy the condition
that the walks are non-crossing, in addition Fermi configurations are such
that no two walks have the same trajectory. If the walks are also restricted
to the sites i ≥ 0 of the one-dimensional lattice the trajectories are confined
to the sites of the square lattice with y ≥ x as shown in figure 1(b). We call
these walks above a wall. Introducing a second restriction i ≤ h reduces the
region of the square lattice available to the trajectories as shown in figures
1(c) and (f).

Here we extend the concept of Bose and Fermi walk configurations on
standard grids to those which follow paths between the roots of a directed
plane two-rooted coverable graph H.

Definition 1. The plane two-rooted graph H will be said to be coverable (by
paths) if

1. every arc belongs to at least one directed path between the roots,

2. it has no directed cycles.

A plane graph H has no crossing of arcs so that the non-crossing condition
for Bose and Fermi configurations can be applied to pairs of walks on H.
Graphs of this type arise in directed percolation theory [2].
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Figure 1: The graphs(a) W7,4 (b) W 7,4 (c) W
↓
3,4 (d) S4 (e) S9,3 (f) W

↑
5,3. The

graphs are considered to be directed to the left and down.

 
 

   
a(0,0,0) b(1,0,0) c(2,0,0) d(3,0,0) 

    

    
e(1,1,0) f(2,1,0) g(3,1,0) h(2,2,0) 

    

    
i(3,2,0) j(3,3,0) k(1,1,1) l(2,1,1) 

    

    
m(3,1,1) n(2,2,1) o(3,2,1) p(3,3,1) 

    
q(2,2,2) r(3,2,2) s(3,3,2) t(3,3,3) 

 

Figure 2: Walks on W3,3 labeled by partitions. The walks are considered to
be directed from top to bottom.
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Assuming that the plane graph H is not trivial, i.e. consisting of a single
walk, there will be two bounding paths connecting its source and sink roots
and they will be allocated the complementary labels lowest and highest. This
enables us to introduce a partial order for the set of walks between the roots.
If walks w1 and w2 do not cross and are distinct, then one is greater than
the other with the ordering induced by the choice of bounding path labels.

For the case of multi-rooted graphs with several sinks, the corresponding
coverability condition for H is that each of its edges is part of at least one
walk between the source and a sink.

In the case that H is a subgraph of the square lattice the walks all have
the same length but in general the walks may have different numbers of
steps depending on length of the paths between the roots. This would arise
when thinking of the Bose walk configurations as integer flows [2]. Graphs

(a), (b), (c) and (f) in figure 1 will be denoted W`,w, W `,w, W
↓
h,w and W

↑
h,w

respectively.
The numbers of n−walk Bose and Fermi configurations on the graph H

will be denoted by fBosen (H) and fFermin (H) respectively.
Kreweras [27] coded the square lattice walks by listing the positions of

the vertical steps measured horizontally from the lower left corner. If the
positions are listed in the order in which they occur in the walk they form
a weakly decreasing sequence known as a partition. See figure 2 for the case
` = w = 3. These partitions form a partially ordered set (POSET) which is
Young’s lattice developed in [38], see also [33], p. 288. Fermi configurations
correspond to chains and Bose configurations correspond to multi-chains on
this POSET. Kreweras [27] expressed the number of n element multi-chains
in a chosen segment of this POSET as a determinant (3.3) the binomial
coefficient elements of which are polynomials in n. The dimension of the
determinant is the same for all n and is equal to the number of vertical steps
w. The number of n−walk Bose configurations on the ` × w rectangle is
equal to the number of n element multi-chains for the segment bounded by
the partitions {0, 0, . . . , 0} and {`, `, . . . , `} where each partition has w parts.
Call this segment P`,w. See figure 3 for three examples with w = 3. For
` < 3 only partitions with parts ≤ ` are included in the POSET. In the case
` = 2 (` = 1) the corresponding walks are obtained from those in figure 2 by
removing the first step (two steps).

For walks above a wall (figure 1(b)) the upper partition is replaced by
{`−1, `−2, . . . , `−w}. In general for a segment bounded by partitions µ and
λ the number of multi-chains is equal to the number of Bose configurations of
walks from the top right to the bottom left corner of the skew Young diagram
Yλ/µ [14] (see for example figure 4(a)).

1.2 Main results

Notice that Kreweras’s determinant (3.3) is a polynomial in n which implies
that the number of n−walk Bose configurations on a general Young diagram
also has this polynomial property. The polynomial property for the square
lattice was derived in [2] by expressing the number of multi-chains on the
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Figure 3: The Hasse diagrams (a) P1,3, (b) P2,3 and (c) P3,3.

(a)

(b)

(c)

Figure 4: (a) The skew Young diagram defined by partitions {5, 4, 2} and
{2, 1, 0}, (b) A Bose/Fermi configuration of four walks on (a), (c) The cor-
responding vicious walker configuration.
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POSET of walks in terms of the number of chains. The same method applies
to a coverable graph H by noting that the walks on H also form a POSET
P (H). In section 2.1 (Proposition 1) the polynomial property for H is proven
directly using a relation [20] between the number of Bose and Fermi configu-
rations which is extended to multi-rooted graphs in section 2.2 (Proposition
2). It is also shown that the degree of the polynomial is equal to nmax − 1
where nmax is the maximum number of walks in a Fermi configuration. The
coefficient of the highest power of n determines the number of maximal Fermi
walk configurations. Further it is shown that nmax = c(H) + 1 where c(H)
is the number finite faces of H or the number of independent cycles. Thus
fBosen (H) is a polynomial in n of degree c(H). The result is illustrated by
considering the graph consisting of a chain of multi-arcs (see figure 7).

On the square lattice there is a bijection between Bose and vicious walker
configurations obtained by shifting the ith walk from the bottom of a Bose
configuration through a distance

√
2(i−1) in the direction (−1, 1) (see figure

4 for example). An early example of this bijection may be found in [10].
It follows that the number of n−walk vicious walker configurations is also
polynomial in n. The vicious walker configurations which biject to Bose
configurations on W`,w were known as watermelon configurations [13], hence
the W label.

Figures 1(d) and (e) are examples of graphs formed by the union of t−step
paths beginning at the root with no constraint on the endpoints. In case (e)
the paths have at most w vertical steps and must not cross the wall y = x.
Graphs of type (d) are denoted by St and those of type (e) by S̄t,w. It is
assumed that t ≥ 2w. The vicious walker configurations which biject to the
Bose configurations on St were known [13] as star configurations. Another set
of vicious walker configurations, known as banana configurations (cf. [21]),
biject to Bose configurations on St with the constraint that the number of

walks terminating at each endpoint must be even. An example of a banana
configuration is shown in figure 5.

Figure 5: A banana configuration with t = 8 steps which bijects to a
Bose configuration on S8 in which the possible endpoints have multiplicities
{0, 0, 0, 2, 4, 2, 0, 0}. The table is the corresponding Young tableau.

The number of vicious walker configurations for the square lattice is
known for several boundary conditions [2], [7], [10], [18], [22], [25], [26]. In
some cases these results are not manifestly polynomials in n as they are pre-
dicted to be by part (a) of proposition 1. However we have reorganised them
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into products of factors which are linear in n and they are listed in the first
part of table 1. We have then used proposition 1(a) to determine the numbers
of maximal Fermi walk configurations which are listed in the second part of
table 1. The different boundary conditions described above also occur in the
case of non-intersecting Brownian paths where they correspond to different
types of random matrix , see for example [21] and [9]. They also naturally
occur in polymer network theory [11] [12] where the chains may be confined
by physical boundaries.

watermelons stars

fBosen (W`,w) =
∏w

k=1
(n+k)`

(k)`
fBosen (St) =

∏t
k=1

(n+k)k

(k)k

fBosen (W `,w) = fBosen (Wd,w)
∏w

k=1
(2n+d+k)k−1

(d+k)k−1
fBosen (St,w) = fBosen (Wt−w,w)

fFerminmax
(W`,w) = (`w)!Qw

k=1(k)`
fFerminmax

(St) =
( 1
2
t(t+1))!Qt
k=1(k)k

fFerminmax
(W `,w) =

2
1
2 w(w−1)(wd+ 1

2
w(w−1))!Qw

k=1(k)d+k−1
fFerminmax

(St,w) = fFerminmax
(Wt−w,w)

Table 1: The numbers of n-walk Bose and maximal Fermi configurations.
Note that d = `− w.

In section 3.1 we evaluate Kreweras’s determinant for wateremelon con-
figurations on the rectangle and above a wall by the method of LU decom-
position. In the former case the determinant is easily evaluated by row and
column operations but we have been unable to do this in the latter. The
resulting formulae form part of table 1. These results have been obtained
before [12] [7] [22] in the context of vicious walks using the Lindström-Gessel-
Viennot determinant [28] [15] which does not have elements which are poly-
nomial in n. The LU method has also been investigated for walks between
two walls but fails to give a general result. Evaluation of the determinant for
small examples shows that the complete factorisation of the polynomial into
linear factors with rational coefficients which occurs in the first two exam-
ples is not repeated when a second wall is present. However some surprising
factorisations do occur.

There is no single determinant formula for the number of star configura-
tions which has elements which are polynomial in n. Single determinantal
formulae do exist, [30] and [36], being squares of Pfaffians. In section 3.2 we
discuss the polynomial property of the results in table 1 and review implicit
bijections between star and watermelon configurations.

In section 3.3 we consider an extension of watermelon configurations in
which n1 of the t−step walks make w1 vertical steps and n2 = n − n1 of
the walks make w2 vertical steps. The corresponding Bose configurations are
such that the walks terminate at one of two different vertices. We call these
configurations 2−point stars. The union of the possible paths for these walks
gives rise to a graph W `2,w2

`1,w1
with one initial root and two final roots. See for

example figure 6. This is a special case of the multi-rooted graph considered
in section 2.2 where it is shown that the number of configurations is polyno-
mial in the ni variables. The number of 2−point stars as a polynomial in n1
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l1 = t - w1

w2 = t - l2

w1

l2

d
d

Figure 6: The two-point star graph W 6,6
9,3

and n2 factorises in a surprisingly simple way.

fBosen1,n2
(W `2,w2

`1,w1
) =

fBosen1
(Wd,w1)f

Bose
n2

(W`2,d)f
Bose
n+d (W`2,w1)

fBosed (W`2,w1)
, (1.1)

where d = `1 − `2 = w2 − w1.
The result is derived from the general formula [12] for stars in which the

ith walk makes qi vertical steps. The degree of fBosen (W`,w) is c(W`,w) = `w

which means that fBosen1,n2
(W `2,w2

`1,w1
) has degree dw1 + `2w1 = `1w1 = c1 in n1

and similarly degree `2w2 = c2 in n2. ci is the number of finite faces in the
graph formed from the union of paths which terminate at (`i, wi). This is as
predicted by proposition 2.

2 The number of Bose and Fermi configura-

tions for a coverable plane graph

2.1 The polynomial property of fBose
n (H)

The observation that the number of walks in a Fermi configuration is finite
leads to part (a) of the following proposition.

Proposition 1. Let nmax be the maximum number of walks in a Fermi
configuration on the coverable plane graph H then:

(a) fBosen (H) is a polynomial in n of degree nmax − 1 and the coefficient of
nnmax−1 is fFerminmax

(H)/(nmax − 1)!.

(b) nmax = c(H) + 1 where c(H) is the number of finite faces of H.

Proof.

(a) Any n−walk Bose configuration corresponds to a unique Fermi config-
uration which uses the same paths. The corresponding configuration
is obtained by replacing walks which use the same path by a single
walk. The number of Bose configurations which correspond to a given
k−walk Fermi configuration is obtained by distributing the n walks

9



over the k paths used by the Fermi walks such that each path is used
at least once. Hence [20]

fBosen (H) =
nmax∑
k=1

(
n− 1

k − 1

)
fFermik (H) (2.1)

=
nmax∑
k=1

(n− k + 1)k−1

(k − 1)!
fFermik (H) (2.2)

where the Pochhammer symbol is defined by (a)k ≡ a(a + 1) . . . (a +
k− 1). The kth term of the sum is a polynomial in n of degree k− 1 so
the highest power of n comes from the term k = nmax with coefficient
fFerminmax

(H)/(nmax − 1)!.

Note the formula 2.2 also holds for the enumeration of Bose walks for
n = 0, i.e. FBose

0 (H) = 1, even though the summation is for positive
configurations of Fermi walks, see lemma 1 following Proposition 3.

(b) Imagine that all arcs of H are directed from right to left. All maximal
Fermi walk configurations include the walk which follows the uppermost
path. Label this walk zero. We will label the remaining walks 1, 2, . . .
from the top down. A maximal configuration may be constructed as
follows. For i ≥ 1, an ith walk may be obtained by choosing a face
adjacent to walk i− 1 on two consecutive sides and diverting this walk
from above to below the chosen face. Label the walk and the chosen
face i. The process terminates when all the faces are labelled so the
number of walks is c(H) + 1. Every walk uses a different path and no
further walks may be inserted so the configuration is maximal.

Note: In the case of the square lattice this sequential labelling of the
faces produces a standard Young tableau. In [3] the numbers of maximal
Fermi walk configurations for the examples in figures 1 (a), (b), (d) and (e)
were obtained by enumerating the corresponding numbers of standard Young
tableaux. The results agree with those in table 1 obtained using proposition
1(a).

Example Series parallel
Consider a graph V`,p which is the series combination of ` multiedges

of multiplicity p. The n walks must pass through every multi-edge and
the number of configurations for each multi-edge is the number of weak p-
compositions of n [33].

fBosen (V`,p) =

(
n+ p− 1

p− 1

)`
. (2.3)

The number of finite faces c(V`,p) = (p − 1)` which is also the degree of
fBosen (V`,p) in agreement with proposition 1(b). Using proposition 1(a) the
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Figure 7: The graph V3,4

number of maximal Fermi configurations is

fFerminmax
(V`,p) =

[(p− 1)`]!

[(p− 1)!]`
(2.4)

2.2 Extension to multi-rooted graphs

Suppose that Hs is a directed graph with a single source u and s sinks
{v1, v2 . . . vs}. We consider walk configurations in which the walks start at
the source and end at one of the sinks. There are two cases.

(a) The n walks end at any one of the sinks.

Hs may be converted to a two-rooted graph H by adding a sink vertex
v and a path from each sink of Hs to v. The numbers of Bose and
Fermi walk configurations are respectively the same for both H and Hs

so proposition 1 may be used. It follows that fBosen (Hs) is a polynomial
in n of degree c(H) = c(Hs) + s − 1 since s − 1 additional faces are
created in the conversion.

(b) ni of the walks end at the ith sink

The following is an extension of proposition 1 to the case when the
number of walks terminating at each root is specified.

Proposition 2. Let f
(C)
n1,n2,...,ns(Hs) be the number of walk configura-

tions, subject to constraint C, such that ni walks terminate at vi then
f

(Bose)
n1,n2,...,ns(Hs) is a polynomial in ni of degree ci where ci is the number

of finite faces in the graph formed by the union of all paths from u to
vi.

Proof. Any Bose configuration corresponds to unique a Fermi con-
figuration which uses the same paths. The required number of Bose
configurations which correspond to a Fermi configuration in which ki
walks terminate at vi is obtained by distributing ni walks over the ki
paths used by the Fermi walks such that each path is used at least
once. Hence

fBosen1,...,ns
(Hs) =

c1+1∑
k1=1

· · ·
cs+1∑
ks=1

fFermik1,...,ks
(Hs)

s∏
i=1

(
ni − 1

ki − 1

)
(2.5)

=

c1+1∑
k1=1

· · ·
cs+1∑
ks=1

fFermik1,...,ks
(Hs)

s∏
i=1

(ni − ki + 1)ki−1

(ki − 1)!
(2.6)
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Example A graph H2 having two sinks. For the graph in figure 8a we
find the numbers of Fermi configurations in table 2 by direct enumeration.
Using equation (2.5) gives the result

fBosen1,n2
(H2) =

1

2
(1 + n1)(1 + n2)(2 + n1 + n2). (2.7)

Evaluation of this formula for small integers n1 and n2 gives the results in
table 2. This is a special case of the formula derived in the next section.

Summing over n1 and n2 with the constraint n1 + n2 = n gives

1

12
(1 + n)(2 + n)2(3 + n)

which is the number of n−walk Bose configurations with no constraint on
which of the two sinks the walks terminate. With no constraint, nmax = 5 and
there are two maximal Fermi configurations in agreement with proposition
1.

Fermi Bose
k2 k1 0 1 2 3 n2 n1 0 1 2 3
0 1 3 3 1 0 1 3 6 10
1 3 8 7 2 1 3 8 15 24
2 3 7 5 1 2 6 15 27 42
3 1 2 1 0 3 10 24 42 64

Table 2: fFermik1,k2
and fBosen1,n2

for the graph in figure 8(a).

It should be noted that the numbers in the row n2 = 0 of table 2 which
were obtained by evaluating formula (2.6) are given by fBosen1

(H1), where
H1 is the union of all paths from u to v1. This is despite the fact that
the summation in 2.6 refers only to configurations of positive numbers of
Fermi walks. The reduced configurations are obtained by deleting the edges
which only have walks to the sink i where ni = 0. We now show that these
reductions hold generally for arbitrary n = n1 + n2 and the observation
extends to a general plane coverable multi-rooted graph.

Proposition 3. With fBosen1,n2,...,ns
(Hs) defined by (2.5)

fBosen1,n2,...,ns−1,0
(Hs) = fBosen1,n2,...,ns−1

(Hs−1)

where Hs−1 is the union of all paths which terminate at one of the first s− 1
sinks.

Proof. Consider the case of just two sinks. The extension is clear. From (2.5)

fBosen1,0
(H2) =

c1+1∑
k1=1

(
n1 − 1

k1 − 1

) c2+1∑
k2=1

(−1)k2−1fFermik1,k2
(H2) (2.8)
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Let Pi be the set of paths from u to vi. For p ∈ P1 let K1(p) be the subgraph
obtained by taking the union of all paths in P1 above p (excluding p) and
let K2(p) be the subgraph formed by the union of all paths in P2 excluding
paths which are partly in K1(p). By partitioning the Fermi k1−subsets of
paths from u to v1 according to the lowest path used

fFermik1,k2
(H2) =

∑
p∈P1

fFermik1−1 (K1(p))f
Fermi
k2

(K2(p)) (2.9)

Substituting in (2.8) and using

c2+1∑
k2=1

(−1)k2−1fFermik2
(K2(p)) = 1, (2.10)

see lemma 1 below, we obtain

fBosen1,0
(H2) =

c1+1∑
k1=1

(
n1 − 1

k1 − 1

)∑
p∈P1

fFermik1−1 (K1(p)) (2.11)

=

c1+1∑
k1=1

(
n1 − 1

k1 − 1

)
fFermik1

(H1) = fBosen1
(H1) (2.12)

u

v

v

1

2
(a)

u

v

v

1

2

V

V

1

2

p
Region K (p)

1

Region K  (p)
2

u

(b)

Figure 8: (a) A multi-rooted graph with paths from vertex u to either v1

or v2; (b) The split of the two intersecting walk rectangles into regions with
initial vertices u1 the final vertices v1 and v2 respectively.

Note that setting n2 = 0 in (1.1) and using the proposition 3 gives the
identity

fBosen1
(Wd,w1)f

Bose
n1+d(W`2,w1) = fBosen1

(Wd+`2,w1)f
Bose
d (W`2,w1) (2.13)

13



Lemma 1. The number fFermik (H) of k-tuples of Fermi walk configurations
on a two-rooted directed plane graph H satisfy∑

k≥1

(−1)k−1fFermik (H) = 1.

Proof. Consider the POSET F of walks between two vertices of a graph H
where the ordering on F is such that if walk w is above walk w′ and distinct
in at least one edge, then w > w′. A Fermi k−walk configuration is a k-
subset {w1, w2, . . . wk} of F which is a proper chain in F , i.e a collection of
k distinct walks with, say w1 > w2 > · · · > wk.

Stanley 35 proves that: if P is a POSET with Möbius function µ, with
minimum element 0̄, and maximum element 1̄ then

µ(0̄, 1̄) =
∑
k≥0

(−1)kck (2.14)

where ck is the number of chains of length k of the type 0̄ = x0 < x1 < · · · <
xk = 1̄. We observe that c0=0 unless |P | = 1 and when |P | > 1, then c1 = 1
with the only chain 0̄ = x0 < x1 = 1̄.

Note the chains in Stanley’s theorem are special in that they always
include 0̄ and 1̄. To relate the counts of Fermi walk configurations fFermik (H)
and the ck we attach (i.e. add) a 0̄ and and a 1̄ to the Fermi partially
ordered set F to make an enlarged POSET F̄ . The element 0̄ is less than
the lowest walk and the 1̄ is greater than the highest walk. All other partial
orderings in F̄ are induced from F . We then observe that there is a 1 − 1
correspondence between the fixed-end chains of length k + 1 in F̄ and the
free chains containing k elements in F . Using Stanley’s result with P = F̄ ,
we have

µ(0̄, 1̄) =
∑
k≥0

(−1)kck = −1 +
∑
k≥1

(−1)k−1fFermik (H), (2.15)

which gives the result∑
k≥1

(−1)k−1fFermik (H) = µ(0̄, 1̄) + 1. (2.16)

Checking the evaluation of the Möbius function for µ on the POSET F̄
we find that µ(0̄, 1̄) = 0.

Note the Möbius function of all such F̄ has the property of µ(0̄, 1̄) =
0 follows from the fact that the POSET F̄ has a single element of rank
1, namely the lowest walk w̄ in H. Thus µ(0̄, 0̄) = 1 by definition, and
µ(0̄, w̄) = −1. All other walks satisfy w > w̄ > 0̄ and therefore satisfy
µ(0̄, w) = 0. In particular, µ(0̄, 1̄) = 0.

Note that lemma 1 also validates equation 2.2 for n = 0.
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3 Application to the directed square lattice

3.1 Evaluation of Kreweras’s determinant

Kreweras [27] considered the segment of Young’s lattice Pλ/µ bounded by
two partitions which we denote by µ and λ with µi ≤ λi. Kreweras proved
the following results, (3.1) and (3.3), for the number of saturated chains
(puissance) and the number of n−element multichains in Pλ/µ (in the case
n = 1 the latter number was called the richesse). These are respectively the
number of maximal Fermi walk configurations and the number of n−walk
Bose configurations on the graph H = λ/µ which is the union of all paths
corresponding to partitions in Pλ/µ. λ/µ is a skew Young diagram [14].

fFerminmax
(λ/µ) = c(λ/µ)! det

[
1

(λi − µj − i+ j)!

]
1≤i,j≤w

(3.1)

where the number of finite faces in the diagram of shape λ/µ is given by

c(λ/µ) =
w∑
i=1

(λi − µi). (3.2)

fBosen (λ/µ) = det

[(
λi − µj + n

i− j + n

)]
1≤i,j≤w

(3.3)

= det

[
(i− j + n+ 1)λi−µj−i+j

(λi − µj − i+ j)!

]
1≤i,j≤w

(3.4)

The determinant (3.4) is clearly a polynomial in n of degree at most c(λ/µ)
which is consistent with proposition 1(b). Equation (3.1) was derived inde-
pendently by Kreweras but follows from (3.4) using proposition 1(a).

In the case µi = 0 the determinant (3.1) may be reduced to a single
product

fFerminmax
(λ/0) =

c(λ/0)!∏w
i=1(λi + w − i)!

det [(λi − i+ 2)w−j]1≤i,j≤w (3.5)

=
c(λ/0)!

∏
1≤i<j≤w(λi − λj + j − i)∏w
i=1(λi + w − i)!

(3.6)

This is applied below to graphs (a) and (b) in figure 1. Macdonald, [29] 2nd

ed. page 10 Example 1, shows that this formula is equivalent to the hook
length formula

fFerminmax
(λ/0) =

c(λ/0)!∏
x∈λ h(x)

(3.7)

where the hook length h(x) of cell x of the Young diagram λ is one more
than the number of cells to the right or below x.
Example 1. In the case λi = `, µi = 0 all possible directed paths on the
rectangular grid W`,w may be used for walks and the corresponding vicious
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walker configurations are known as watermelons [13]. Substituting λi = `
in (3.6) immediately gives the number of maximal Fermi configurations in
agreement with the result in table 1 obtained using proposition 1.

From (3.3)

fBosen (W`,w) = det

[(
`+ n

`+ i− j

)]
1≤i,j≤w

(3.8)

which may be simply evaluated using row and column operations to give

fBosen (W`,w) =
w∏
i=1

(n+ i)`
(i)`

. (3.9)

Kreweras derives the following equivalent expression ([27] equation (54)).

fBosen (W`,w) =
`!!w!!

(`+ w)!!

w∏
j=1

(n+ `+ j − 1)!

(n+ j − 1)!
(3.10)

where k!! =
∏k

j=1(j − 1)!.
In example 2 below, evaluation of the relevant determinant by row and

column operations is not a simple matter. Instead the method of LU fac-
torisation [8] will be used. The method is widely used by Andrews in the
enumeration of plane partitions, for example see [1]. The application to
combinatorics is described in detail by Krattenthaler [24]. We illustrate the
method by first deriving (3.9). Notice that the elements of the required
determinant are independent of w and using Mathematica to perform the
decomposition for w = 9 we conjectured the general result

fBosen (W`,w) = det(LU) (3.11)

where L and U have dimension w with elements independent of w and given
by

Lij =

(
n

i− j

)
(j)`
(i)`

and Uij =

(
`

j − i

)
(n+ j)i−j+`

(j)i−j+`
(3.12)

where the binomial coefficients are taken to be zero outside their usual lim-
its. Thus L is lower triangular with unit diagonal elements and U is upper
triangular. Hence det(LU) =

∏w
i=1 Uii from which (3.9) follows.

To prove this conjecture let LU = m so that

mij =
∑

1≤k≤min(i,j)

Li,kUkj. (3.13)

The summand is hypergeometric in both indices j and k and we have used
Paule and Schorn’s Mathematica implementation [31] of Zeilberger’s algo-
rithm [39], [40] to prove that the sum satisfies the recurrence relation

mij =
`+ i− j + 1

n+ j − i
mi,j−1 (3.14)
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which is the recurrence relation satisfied by
(
`+n
`+i−j

)
. Also mi,1 = Li1U11 =(

`+n
`+i−1

)
so by induction on j

mij =

(
`+ n

`+ i− j

)
(3.15)

which proves the conjecture. An excellent account of Zeilberger’s algorithm
is given in the lecture notes of Wilf [37].

Equation (3.9) may also be obtained [12] using an alternative determinant
[28], [15] but the polynomial dependence on n is not so obvious since it
appears as the dimension of the determinant.

Example 2. Now suppose that the walks on W`,w are not allowed to go below
the “wall” y = x and that ` − w = d ≥ 0. We refer to these as watermelon
configurations above a wall (see figure 1(b) for example). Notice that first
step is common to all walks and is deleted in forming the Young diagram.
This is the case µi = 0, λi = ` − i and the graph λ/µ will be denoted by
W `,w where the bar suggests the wall.

A product formula for fBosen (W `,w) was obtained in [25] (equation 7.2) and
[7] (equation 2.9). In the latter case the number of configurations having a
given number of contacts with the wall was also found. These results were
not obviously polynomials in n but they may be rearranged into the form
given in table 1. We now rederive this formula directly from Kreweras’s
determinant.

We note in passing that substituting λi = `−i into (3.6) gives the number
of maximal Fermi walk configurations

fFerminmax
(W `,w) =

c!
∏

1≤i<j≤w(2i− 2j)∏w
i=1(`+ w − 2i)!

(3.16)

=
c!2

1
2
w(w−1)

∏w
j=2(j − 1)!∏w

j=1(d+ 2j − 2)!
=

c!2
1
2
w(w−1)∏w

j=1(j)d+j−1

. (3.17)

This also follows from proposition 1(a) using fBosen (W `,w) from table 1 as
expected.

Evaluation of Kreweras’s the determinant is not as straightforward as in
example 1. Substituting λi = `− i and µi = 0 in (3.3)

fBosen (W `,w) = det

[(
`− i+ n

`− 2i+ j

)]
1≤i,j≤w

(3.18)

= det

[(
n+ i+ d− 1

2i− j + d− 1

)]
1≤i,j≤w

(3.19)

where we have reversed the order of rows and columns so that, for fixed d,
the elements are independent of w. It is important in what follows that w
appears only as the size of the determinant. Removing common factors from
each row of the determinant

fBosen (Ww+d,w) = fBosen (Wd,w) detM (d)(n) (3.20)
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where

M (d)(n) =
[(

n+i−1
2i−j−1

) (i)d

(2i−j)d

]
1≤i,j≤w

(3.21)

=
[

(n−i+j+1)2i−j−1(i)d

(2i−j+d−1)!

]
1≤i,j≤w

(3.22)

Following the method of example 1 leads to the following proposition.

Proposition 4. The matrix

M (d)(n) = L(d)(n)U (d)(n)

where L(d) and U (d) are lower and upper triangular matrices respectively of
size w × w. Moreover, the lower triangular matrix L(d), for i ≥ j, has
elements given by

L
(d)
i,j (n) =

(
n+ i− 1

i− j

)
(n− i+ j + 1)i−j(j + d)i−j

(2j + d− 1)2i−2j

. (3.23)

Proof.
The case d = 0

This is the case of non-crossing Dyck paths. Computation of the LU -
decomposition of M (0)(n) for small values of w leads to the further conjecture

U
(0)
ij (n) =

(
i− 1

j − i

)
(2n+ j)2i−j−1

(j)2i−j−1

. (3.24)

Both conjectures are proven, as in example 1, by using Zeilberger’s algorithm
to show that L(0)(n)U (0)(n) = M (0)(n).

The case d > 0
In contrast with the case d = 0, U

(d)
i,j for d > 0 and j > 1 no longer has

a simple factorisation. However to prove the conjecture it is only necessary
show that (L(d))−1(n)M (d)(n) is upper triangular. That is to show that

U
(d)
ij (n) =

i∑
k=1

(L(d))−1
i,k (n)M

(d)
k,j (n), (3.25)

is zero for i > j.
The inverse of L(d)(n) can be checked to be lower triangular with entries

(L(d))−1
i,j (n) = (−1)i−j

(
n+ i− 1

i− j

)
(n)i−j(j + d)i−j
(2j + d− 1)2i−2j

. (3.26)

and M
(d)
k,j (n) is given by (3.21) which leads to

U
(d)
i,j (n) =

(−1)i(i+ d− 1)!(i+ n− 1)!

(n− 1)!(2i+ d− 2)!
U r
i,j (3.27)
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where

U r
i,j =

i∑
k=1

(−1)k(−2 + d+ 2k)!(−1− k + n+ i)!

(−1 + k)!(−1 + d− j + 2k)!(j − k + n)!(−k + i)!
(3.28)

For the case j = i− 1 Zeilberger’s algorithm , see ([39]), gives the recur-
rence

(d+ i)U r
i,i−1 = (2− i)U r

i−1,i−2 (3.29)

and noting that U r
2,1 = 0 and (d + i) > 0 we deduce that U r

i,i−1 = 0 for all
i ≥ 2.

Further use of Zeilberger’s algorithm gives the following recurrence rela-
tion for U r

i,j

(−1 + i)(−2 + d− j + 2i)(−1 + d− j + 2i)U r
i,j =

− [30− 16n+ d2(3 + j − 2i)− 56i+ 22ni+ 36i2 − 8ni2

− 8i3 − j2(−2 + n+ i) + j(20− 11n− 25i+ 8ni+ 8i2)

+ d(−19 + 6n+ 24i− 4ni− 8i2 + j(−9 + 2n+ 6i))]U r
i−1,j

+ (2 + j − i)(−5 + d+ 2n+ 2i)(d+ 2(−2 + n+ i))U r
i−2,j. (3.30)

Setting i = j + 1 the relation expresses U r
j+2,j in terms of U r

j+1,j and U r
j,j.

U r
j+1,j = 0, resulting from the previous recurrence, and although U r

j,j is not
zero it has a zero coefficient. Hence U r

j+2,j = 0.
Having shown that there are two successive zeros in moving down column

j from the diagonal (3.30) shows that the next element is zero and so on which
gives the desired result that U r

i,j = 0 for any i > j. From (3.27) it follows

that U
(d)
i,j (n) = 0 for i > j and we conclude that U (d) is upper triangular.

It follows from the proposition that

detM (d)(n) =
w∏
j=1

U
(d)
jj (n) (3.31)

The required diagonal elements are determined by setting i = j in (3.27) and
(3.28) which gives

U
(d)
jj (n) =

(n)j(j + d− 1)!

(2j + d− 2)!

j∑
k=1

(−1)j−k(2k + d− 2)!

(n− k + j)(k − 1)!(j − k)!(2k − j + d− 1)!
.

(3.32)
Zeilberger’s algorithm [39], [40] yields the following second order recurrence
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relation satisfied by the sum (3.32).

(−5 + d+ 2i)4(−1 + d+ j + 2n)(−6 + d+ 3j + 2n)U
(d)
jj =

+ (−5 + d+ 2i)2(15i4 + i3(32d+ 43n− 87) + j2(24d2 + 4d(−35 + 17n)

+ 40n2 − 187n+ 186) + j(8d3 + d2(−71 + 35n) + d(199− 199n+ 44n2)

+ 2(−87 + 133n− 57n2 + 6n3)) + (d− 2)(d3 + 2d2(−5 + 3n)

+ d(31− 40n+ 12n2)− 30 + 62n− 40n2 + 8n3))U
(d)
j−1,j−1

− (j − 2)(d+ j − 2)(j + n− 2)(d+ 3j + 2n− 3)(−5 + d+ 2j + 2n)2U
(d)
j−2,j−2.

(3.33)

This leads to the result

U
(d)
jj (n) =

(2n+ d+ j)j−1

(d+ j)j−1

. (3.34)

which satisfies 3.33 and agrees with (3.32) for j = 1 and 2 and therefore for
all j. Setting d = 0 gives a formula which agrees with (3.24). Combining
(3.34) with ( 3.31 ) and (3.20) gives the result in table 1.

From (3.34) it may be seen that U
(d)
jj satisfies the first order recurrence

U
(d)
jj (n) =

(j + d− 1)(2n+ 2j + d− 3)2

(2n+ j + d− 1)(2j + d− 3)2

U
(d)
j−1,j−1(n). (3.35)

Zeilberger’s algorithm as implemented by Paule and Schorn [31] failed to

yield the first order relation (3.35) for U
(d)
jj even though it satisfies the second

order relation (3.33) induced by it. A simple example which shows that the
algorithm does not always produce the recurrence of lowest order is given in
[31].

Example 3. Non crossing walks between two walls.
Now consider two sets of n walks which start at the origin and are not

allowed to go below the wall y = x or above the wall y = x+ h. In the first
case (a) the walks end on the upper wall after 2w+h steps and the resulting

graph will be denoted W
↑
h,w. See figure 1(f) for the case h = 5, w = 3. In the

second case (b) the walks follow Dyck paths (rotated through π
4
) ending on

the lower wall after 2w steps. Call the graph which is the union of all such

walks W
↓
h,w. See figure 1(c) for the case h = 3, w = 4.

When h = 2 both graphs are special cases of the series parallel graph
with p = 2 discussed in section 2 so fBosen = (n+ 1)` and fFerminmax

= `!. In case
(a), ` = w and in case (b), ` = w − 1 .

When h = 3 the corresponding Young diagrams are known [34] as stair-
case border strips. There is a bijection, [34], the solution to example 7.64,
between standard Young tableaux on these strips and alternating permuta-
tions of {1, 2, . . . c} where c is the number of faces of the strip. These are
enumerated by the Euler numbers Ec which are shown, [33] section 3.16, to
have generating function∑

c≥0

Ecx
c/c! = tan x+ secx (3.36)
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and satisfy the recurrence relation

2Ec+1 =
c∑
i=1

(
c

i

)
EiEc−i c ≥ 1 (3.37)

The proof of part (b) of proposition 1 describes a correspondence between
standard Young tableaux and maximal Fermi walk configurations which leads
to the results

fFerminmax
(W

↑
3,w) = E2w and fFerminmax

(W
↓
3,w) = E2w−3. (3.38)

Extension of these results to fBosen is unlikely to be found since the polyno-
mials do not completely factorise over the integers (see below).

In case (a) the relevant Young diagram has λi = w + h − i − 1 and
µi = w − i so

fBosen (W
↑
h,w) = det

[(
h− i+ j + n− 1

i− j + n

)]
1≤i,j≤w

(3.39)

= det

[
(i− j + n+ 1)h−2(i−j)−1

(h− 2(i− j)− 1)!

]
1≤i,j≤w

(3.40)

Notice that the elements of the matrix are independent of w and that, for
2i ≤ h, the ith row has factor (n + i)h−2i+1. It follows using (3.9) that for
2w ≤ h the determinant has a factor fBosen (Wh−w,w). In the case 2w > h
the factor is fBosen (Wdh

2
e,bh

2
c). It is interesting that the factor is the Bose

polynomial for the largest rectangular graph which is part of the Young
diagram. For example, in the case h = 5, w = 3 (see figure 1(f))

fBose
n (W

↑
5,3)

fBose
n (W3,2)

=
(100800 + 220800n+ 205210n2 + 103545n3 + 29917n4 + 4695n5 + 313n6)

100800
. (3.41)

W
↑
5,3 has 12 faces and fBosen (W

↑
5,3) is a polynomial of degree 12 in agreement

with proposition 1 but complete factorisation over the integers fails to occur.

In case (b), if h ≥ w the second wall is never crossed so fBosen (W
↓
h,w) =

fBosen (Ww,w). Assuming h < w the corresponding skew Young diagram has
λi = w − i, µi = w − h− i+ 1 for 1 ≤ i ≤ w − h and µi = 0 for w − h+ 1 ≤
i ≤ w. Mathematica evaluation of the resulting determinant (3.3) in the case
h = 3, w = 4 gives

fBosen (W
↓
3,4) =

1

30
(1 + n)(2 + n)(3 + 2n)(5 + 6n+ 2n2) (3.42)

=
1

5
(5 + 6n+ 2n2)fBosen (W 3,3). (3.43)

Inspection of results for greater values of w and h leads to the conjecture

that fBosen (W h,h) is a factor of fBosen (W
↓
h,w). In this case the factor is the

Bose polynomial for the largest single surface subgraph.
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3.2 The polynomial property for star configurations

As was noted before the number of star configurations has not been expressed
as a single determinant with elements that are polynomial in n. However
proposition 1 may still be applied by converting the graphs St and S̄t,w into
two-rooted graphs by connecting the possible terminal vertices to an addi-
tional root vertex. In the case of St the resulting graph has an additional
t faces making the total 1

2
t(t + 1). For S̄t,w the number of additional faces

is w so that the total number is w(t − w). In both cases the number is
in agreement with the degree of the formula in table 1. We now recall the
surprising bijective relations between the numbers of star and watermelon
configurations which also lead to the polynomial property.

3.2.1 The number of star configurations

In the case of St a conjectured formula [2] (see table 1) was proved [25]
by showing a correspondence with plane partitions the number of which
was conjectured by Bender and Knuth [5] and proved by Gordon [17]. An
alternative approach via Young tableaux shows the following equalities.

fBose2m+1(St) = 2tfBose,banana2m,t (St) = 2tfBosem (W t+1,t+1) (3.44)

where f banana2m,t is the number of banana configurations consisting of 2m walks

having t steps. Because fBosem (W t+1,t+1) is polynomial in m the equality
determines fBosen (St) for all n with the result in table 1. The number of
banana configurations is

fBose,banana2m,t (St) =
∏

1≤i≤j≤t

2m+ i+ j

i+ j
=

t+1∏
k=1

(2m+ k)k−1

(k)k−1

. (3.45)

The bijection between square lattice walk configurations and Young tableaux,
which leads to (3.44), is illustrated in [18]. Briefly, if the steps of each walk
are labelled 1 to t, the ith column of the corresponding tableau is a list of
the labels of the vertical steps of the ith walk from the bottom. The tableau
entries are strictly increasing down the columns and weakly increasing along
the rows. The tableau for the banana configuration in figure 5 is also shown
in the figure. In general the number of banana configurations of 2m−walks,
each with t steps, is equal to the number of tableaux with entries ≤ t having
rows of even length ≤ 2m (the inequality is due to the fact that some of
the walks may have no left steps). In [10] the number of such tableaux
(actually the transposed tableaux) is denoted by bt,m and the tableaux are
shown to biject to nested Dyck paths of length 2t + 2, which are the Bose
configurations on W t+1,t+1. The bijection is illustrated diagrammatically on
page 95 of Krattenthaler’s book [23]. The first part of (3.44) follows from a
Pieri formula [14].
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3.2.2 The number of star configurations above a wall

The graph St,w, t ≥ 2w may be converted to a shifted Young diagram Y t,w by
removing the common first step and adding staircase to the left hand side.
The diagram has trapezoidal shape with top edge of length t−1 and width w.
The number of faces in this diagram is c(Y t,w) = w(t−w) which is the same
as for Wt−w,w. Theorem 1 of Proctor [32] states that the number of shifted
plane partitions on Y t,w is equal to the number of ordinary plane partitions
on Wt−w,w with part size bounded by n in both cases. Using a correspon-
dence between plane partitions, potentials, flows and Bose configurations [4]
it follows that

fBosen (St,w) = fBosen (Wt−w,w). (3.46)

It is possible that this relation can be proved bijectively but Proctor found the
question of such a bijection to be a complete mystery. However Haiman [19]
obtained a bijection between standard Young tableaux on Y t,w and Wt−w,w.
By the construction described in the proof of proposition 1 this yields a
bijection between maximal Fermi walk configurations on St,w and Wt−w,w so
that

fFerminmax
(St,w) = fFerminmax

(Wt−w,w). (3.47)

3.3 The number of two-point stars

In [12] it is shown that the number of vicious walk configurations on the
square lattice in which the ith walk makes qi vertical steps (in the current
description) is given by

wt(q1, q2, . . . , qn) =
∏

1≤i<j≤n

(qj − qi + j − i)
n∏
k=1

(t+ k − 1)!

(qk + k − 1)!(t− qk + n− k)!

(3.48)
The number of watermelon configurations is obtained by setting qi = w and
t− qi = `

fBosen (W`,w) =
n∏
j=1

(j − 1)!(`+ w + j − 1)!

(w + j − 1)!(`+ j − 1)!
(3.49)

which may be rearranged to give the formula in table 1.
For two-point stars (see figure 6) we set qi = w1 for i = 1 to n1 and

qi = w2 for i = n1 + 1 to n with w1 ≤ w2∏
1≤i<j≤n

(qj − qi + j − i) =

n1∏
i=1

(i− 1)!(d+ i)n2

n2∏
j=1

(j − 1)! (3.50)

where d = w2 − w1. The number of two-point stars may be written as
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fBosen1,n2
(W `2,w2

`1,w1
) = f1f2 where, with `i = t− wi

f1 =

n1∏
j=1

(j − 1)!(`1 + w1 + j − 1)!(d+ j)n2

(w1 + j − 1)!(`1 + n2 + j − 1)!
(3.51)

= fBosen1
(Wd,w1)

n1∏
j=1

(d+ j + w1)`2(d+ j)n2

(d+ j)`2+n2

(3.52)

= fBosen1
(Wd,w1)

n1∏
j=1

(d+ j + w1)`2
(d+ j + n2)`2

(3.53)

and

f2 =

n2∏
j=1

(`2 + d+ w1 + n1 + j − 1)!(j − 1)!

(`2 + j − 1)!(d+ w1 + n1 + j − 1)!
(3.54)

= fBosen2
(Wd,`2)

n2∏
j=1

(`2 + d+ j)n1+w1

(d+ j)n1+w1

(3.55)

= fBosen2
(Wd,`2)

n2∏
j=1

(d+ j + w1 + n1)`2
(d+ j)`2

. (3.56)

which leads to

fBosen1,n2
(W `2,w2

`1,w1
) = fBosen1

(Wd,w1)f
Bose
n2

(W`2,d)

`2∏
j=1

(d+ n+ j)w1

(d+ j)w1

(3.57)

=
fBosen1

(Wd,w1)f
Bose
n2

(W`2,d)f
Bose
n+d (W`2,w1)

fBosed (W`2,w1)
(3.58)

where we have used the formula for fBosen (W`,w) in table 1. We note that
fBosen (W`,w) is invariant under any permutation of the variables `, w and
n, a result of duality [6]. It is interesting that the three numerator factors
correspond to the three rectangular areas into which W `2,w2

`1,w1
naturally divides

(see figure 6). The third factor is polynomial in n relating to the fact that all
n walks pass through the corresponding area. The polynomial dependence
on n1 and n2 is in agreement with proposition 2. For example the highest
power of n1 is c(Wd,w1)+ c(W`2,w1). The denominator normalises the formula
to unity when n1 = n2 = 0.

4 Discussion

Previous results [2] for Bose and Fermi configurations on the directed square
lattice have been extended to two-rooted coverable plane graphs. In particu-
lar the number of n-walk Bose configurations is shown to be a polynomial in
n whose degree is the number of finite faces of the underlying graph. Krew-
eras [27] showed that the number of n−element multichains on the segment
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of Young’s lattice Pλ/µ bounded by the partitions µ and λ could be expressed
as a determinant the elements of which are polynomials in n. He also showed
that the paths on the rectangular graph W`,w can be mapped to partitions so
that multichains on Young’s lattice correspond to Bose walk configurations
on W`,w. Multichains on the segment Pλ/µ correspond to Bose configurations
on the skew Young diagram λ/µ the number of which is a polynomial in n
in agreement with our general result.

Previous results for vicious walks, which correspond to Bose configu-
rations, were based on the Lindstöm-Gessel-Viennot determinant [28],[16]
which has dimension equal to the number of walks and is therefore not man-
ifestly polynomial in n. We have arranged these into polynomial form and
summarised the results in table 1. In the case of Dyck walks between two
walls the following formula obtained by Krattenthaler et al [26] is not easily
so arranged.

fBosen (W
↓
h,w) =

∞∑
k1,k2,...,kn=−∞

n∏
i=1

Ai
∏

1≤i<j≤n

Bi,j (4.1)

where

Ai =
(2i− 1 + 2ki(h+ 2n))(2w + 2i− 2)!

(w + i+ n− 1 + ki(h+ 2n))!(w − i+ n− ki(h+ 2n))!
(4.2)

and

Bi,j = [j − i+ (h+ 2n)(kj − ki)][i+ j − 1 + (h+ 2n)(ki + kj)] (4.3)

We have applied Kreweras’s determinant formula to the special subgraphs

W `,w and W
↓
h,w corresponding respectively to walks above the wall y = x

and between two walls y = x and y = x + h. It is shown that fBosen (W `,w)
completely factorises with rational coefficients and for ` > w has a factor

fBosen (W`−w,w). fBosen (W
↓
h,w) has no such complete factorisation but when

h ≤ w it is found to have a factor fBosen (W h,h).
The polynomial property of the number of Bose configurations for two-

rooted graphs has been extended to graphs with several terminal roots where
the number ni of walks terminating at the ith root is given. This is illustrated
by the exact formula for two-point stars on the square lattice which shows a
remarkable factorisation into the Bose polynomials for rectangles into which
it naturally partitions.
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