Grassmannian Codes and Quasirandom Hypergraphs

Simon R. Blackburn

Joint work with Tuvi Etzion

9th July 2012
Grassmannian codes

The Grassmannian $G_q(\ell, k)$ is the set of all k-dimensional subspaces of \mathbb{F}_q^ℓ.

Combinatorial problem

When ℓ, k, and a distance d are fixed, find the size $A_q(\ell, d, k)$ of the largest Grassmannian code of minimum distance d in $G(\ell, k)$.

Grassmannian codes

The Grassmannian $G_q(\ell, k)$ is the set of all k-dimensional subspaces of \mathbb{F}_q^ℓ. For $U, V \in G_q(\ell, k)$, define

$$d(U, V) = 2k - 2 \dim(U \cap V).$$
Grassmannian codes

The Grassmannian $G_q(\ell, k)$ is the set of all k-dimensional subspaces of \mathbb{F}_q^ℓ. For $U, V \in G_q(\ell, k)$, define

$$d(U, V) = 2k - 2 \dim(U \cap V).$$

A set $\mathcal{C} \subseteq G_q(\ell, k)$ is a Grassmannian code of minimum distance d if $d(U, V) \geq d$ for all $U, V \in \mathcal{C}$.
Grassmannian codes

The Grassmannian $G_q(\ell, k)$ is the set of all k-dimensional subspaces of \mathbb{F}_q^ℓ. For $U, V \in G_q(\ell, k)$, define

$$d(U, V) = 2k - 2 \dim(U \cap V).$$

A set $\mathbb{C} \subseteq G_q(\ell, k)$ is a Grassmannian code of minimum distance d if $d(U, V) \geq d$ for all $U, V \in \mathbb{C}$.

Combinatorial problem

When ℓ, k and a distance d are fixed, find the size $A_q(\ell, d, k)$ of the largest Grassmannian code of minimum distance d in $G(\ell, k)$.
Grassmannian codes

The Grassmannian $G_q(\ell, k)$ is the set of all k-dimensional subspaces of \mathbb{F}_{q}^ℓ. For $U, V \in G_q(\ell, k)$, define

$$d(U, V) = 2k - 2 \dim(U \cap V).$$

A set $C \subseteq G_q(\ell, k)$ is a Grassmannian code of minimum distance d if $d(U, V) \geq d$ for all $U, V \in C$.

Combinatorial problem

When ℓ, k and a distance d are fixed, find the size $A_q(\ell, d, k)$ of the largest Grassmannian code of minimum distance d in $G(\ell, k)$.

Important observation

A Grassmannian code C has minimum distance $2\delta + 2$ or more if and only if no subspace of dimension $k - \delta$ is contained in distinct $U, V \in C$.

Proof.

$d(U, V) = 2^{k-2 \dim(U \cap V)}$ so $d(U, V) \leq 2^{\delta}$ if and only if $\dim(U \cap V) \geq k - \delta$.

Define a hypergraph (V, E) where $V = G_{q}(\ell, k - \delta)$ and $E = G_{q}(\ell, k)$. We say $V \in E$ contains those $U \in V$ with $U \subseteq V$. Then C corresponds to a packing by hyperedges.
A Grassmannian code C has minimum distance $2\delta + 2$ or more if and only if no subspace of dimension $k - \delta$ is contained in distinct $U, V \in \mathbb{C}$.

Proof.

$$d(U, V) = 2k - 2 \dim(U \cap V)$$

so $d(U, V) \leq 2\delta$ if and only if $\dim(U \cap V) \geq k - \delta$. \qed
Upper bounds

Important observation

A Grassmannian code \mathcal{C} has minimum distance $2\delta + 2$ or more if and only if no subspace of dimension $k - \delta$ is contained in distinct $U, V \in \mathcal{C}$.

Proof.

$$d(U, V) = 2k - 2 \dim(U \cap V)$$

so $d(U, V) \leq 2\delta$ if and only if $\dim(U \cap V) \geq k - \delta$.

Define a **hypergraph** (V, E) where $V = G_q(\ell, k - \delta)$ and $E = G_q(\ell, k)$. We say $V \in E$ contains those $U \in V$ with $U \subseteq V$. Then \mathcal{C} corresponds to a packing by hyperedges.
Upper bounds

Write $\binom{\ell}{k}_q$ for the number of k-dimensional subspaces of an ℓ-dimensional vector space over \mathbb{F}_q.
Upper bounds

Write $\binom{\ell}{k}_q$ for the number of k-dimensional subspaces of an ℓ-dimensional vector space over \mathbb{F}_q.

Corollary (The packing bound)

$$A_q(\ell, 2\delta + 2, k) \leq \frac{\binom{\ell}{k-\delta}_q}{\binom{k}{k-\delta}_q}$$
Upper bounds

Write $\left[\begin{array}{c} \ell \\ k \end{array} \right]_q$ for the number of k-dimensional subspaces of an ℓ-dimensional vector space over \mathbb{F}_q.

Corollary (The packing bound)

$$A_q(\ell, 2\delta + 2, k) \leq \frac{\left[\begin{array}{c} \ell \\ k-\delta \end{array} \right]_q}{\left[\begin{array}{c} k \\ k-\delta \end{array} \right]_q}$$

Proof.

$|V| = \left[\begin{array}{c} \ell \\ k-\delta \end{array} \right]_q$, and each hyperedge contains $\left[\begin{array}{c} k \\ k-\delta \end{array} \right]_q$ vertices.

\qed
Upper bounds

Write $\left[\ell \atop k \right]_q$ for the number of k-dimensional subspaces of an ℓ-dimensional vector space over \mathbb{F}_q.

Corollary (The packing bound)

$$A_q(\ell, 2\delta + 2, k) \leq \frac{\left[\ell \atop k-\delta \right]_q}{\left[k \atop k-\delta \right]_q}$$

Proof.

$$|V| = \left[\ell \atop k-\delta \right]_q,$$ and each hyperedge contains $\left[k \atop k-\delta \right]_q$ vertices.

A version of the iterated Johnson bound for constant weight codes is a little better, but its asymptotics are the same.
Hypergraphs

Let V be a set of vertices, and E be a set of hyperedges.

- A hypergraph (V, E) is r-uniform if all hyperedges have cardinality r.
Hypergraphs

Let V be a set of vertices, and E be a set of hyperedges.

- A hypergraph (V, E) is r-uniform if all hyperedges have cardinality r. Our example: $r = \binom{k}{k-\delta}_q$.

The degree $\deg(v)$ of a vertex v is the number of hyperedges containing v.

The hypergraph (V, E) is d-regular if $\deg(v) = d$ for all $v \in V$. Our example: $d = \ell - k + \delta_q$ (large).

The codegree $\text{codeg}(u, v)$ of a pair of vertices is the number of hyperedges containing both u and v. Our example: number of k-dim subspaces containing u and v; small compared to degree.
Hypergraphs

Let \(V \) be a set of vertices, and \(E \) be a set of hyperedges.

- A hypergraph \((V, E)\) is \(r \)-uniform if all hyperedges have cardinality \(r \). Our example: \(r = \left[\frac{k}{k-\delta} \right]_q \).
- The degree \(\deg(v) \) of a vertex \(v \) is the number of hyperedges containing \(v \).
Let V be a set of vertices, and E be a set of hyperedges.

- A hypergraph (V, E) is r-uniform if all hyperedges have cardinality r. Our example: $r = \begin{bmatrix} k \\ k-\delta \end{bmatrix}_q$.
- The degree $\deg(v)$ of a vertex v is the number of hyperedges containing v.
- The hypergraph (V, E) is d-regular if $\deg(v) = d$ for all $v \in V$.

Our example: $d = \begin{bmatrix} \ell \end{bmatrix} - k + \delta$ (large).
Hypergraphs

Let V be a set of vertices, and E be a set of hyperedges.

- A hypergraph (V, E) is r-uniform if all hyperedges have cardinality r. Our example: $r = \binom{k}{k-\delta} q$.
- The degree $\deg(v)$ of a vertex v is the number of hyperedges containing v.
- The hypergraph (V, E) is d-regular if $\deg(v) = d$ for all $v \in V$. Our example: $d = \binom{\ell-k+\delta}{\delta} q$ (large).
Hypergraphs

Let V be a set of vertices, and E be a set of hyperedges.

- A hypergraph (V, E) is r-uniform if all hyperedges have cardinality r. Our example: $r = \binom{k}{k-\delta}_q$.
- The degree $\text{deg}(v)$ of a vertex v is the number of hyperedges containing v.
- The hypergraph (V, E) is d-regular if $\text{deg}(v) = d$ for all $v \in V$. Our example: $d = \binom{\ell-k+\delta}{\delta}_q$ (large).
- The codegree $\text{codeg}(u, v)$ of a pair of vertices is the number of hyperedges containing both u and v.

Hypergraphs

Let V be a set of vertices, and E be a set of hyperedges.

- A hypergraph (V, E) is r-uniform if all hyperedges have cardinality r. Our example: $r = \left[\frac{k}{k-\delta} \right]_q$.
- The degree $\deg(v)$ of a vertex v is the number of hyperedges containing v.
- The hypergraph (V, E) is d-regular if $\deg(v) = d$ for all $v \in V$. Our example: $d = \left[\frac{\ell-k+\delta}{\delta} \right]_q$ (large).
- The codegree $\text{codeg}(u, v)$ of a pair of vertices is the number of hyperedges containing both u and v. Our example: number of k-dim subspaces containing u and v; small compared to degree.
Covers and packings of hypergraphs

Suppose we have a large r-uniform d-regular hypergraph Γ. Suppose the codegree of a pair of vertices is always much smaller than d. Then there is a covering of the vertices by hyperedges that is about as small as we could hope for (about $\frac{|V|}{r}$ hyperedges). Similarly there is a large hyperedge packing.

Theorem (Rödl)

Fix an integer r and a positive real number δ. Then there exists an integer n_0 and a positive real number δ' with the following property. Let Γ be an r-uniform hypergraph on n vertices, where $n \geq n_0$. Suppose that all vertices of Γ have degree d for some integer d. Let $c = \max \text{codeg}(u, v)$, where the maximum is taken over all pairs of distinct vertices $u, v \in \Gamma$. If $c \leq \delta' d$, then there exists a hyperedge cover consisting of at most $(1 + \delta) \frac{n}{r}$ hyperedges, and a hyperedge packing consisting of at least $(1 - \delta) \frac{n}{r}$ hyperedges.
Covers and packings of hypergraphs

Suppose we have a large r-uniform d-regular hypergraph Γ. Suppose the codegree of a pair of vertices is always much smaller than d. Then there is a covering of the vertices by hyperedges that is about as small as we could hope for (about $|V|/r$ hyperedges). Similarly there is a large hyperedge packing.

Theorem (Rödl)

Fix an integer r and a positive real number δ. Then there exists an integer n_0 and a positive real number δ' with the following property. Let Γ be an r-uniform hypergraph on n vertices, where $n \geq n_0$. Suppose that all vertices of Γ have degree d for some integer d. Let $c = \max \text{codeg}(u, v)$, where the maximum is taken over all pairs of distinct vertices $u, v \in \Gamma$. If $c \leq \delta'd$, then there exists a hyperedge cover consisting of at most $(1 + \delta)n/r$ hyperedges, and a hyperedge packing consisting of at least $(1 - \delta)n/r$ hyperedges.
An existence result

Theorem (SRB Etzion 2012)

Let \(q, k \) and \(\delta \) be fixed integers, with \(0 \leq \delta \leq k \) and such that \(q \) is a prime power. Then

\[
\mathcal{A}_q(\ell, 2\delta + 2, k) \sim \frac{\binom{\ell}{k-\delta} q}{\binom{k}{k-\delta} q}
\]

(1)

as \(\ell \to \infty \).
An existence result

Theorem (SRB Etzion 2012)

Let q, k and δ be fixed integers, with $0 \leq \delta \leq k$ and such that q is a prime power. Then

$$A_q(\ell, 2\delta + 2, k) \sim \frac{\left[\frac{\ell}{k-\delta} \right] q}{\left[\frac{k}{k-\delta} \right] q}$$

(1)

as $\ell \to \infty$.

Proof.

Upper bound from packing bound. Lower bound from Rödl’s theorem on quasirandom hypergraphs.
An existence result

Theorem (SRB Etzion 2012)

Let q, k and δ be fixed integers, with $0 \leq \delta \leq k$ and such that q is a prime power. Then

$$\mathcal{A}_q(\ell, 2\delta + 2, k) \sim \frac{\left[\frac{\ell}{k-\delta} \right] q}{\left[\frac{k}{k-\delta} \right] q}$$

as $\ell \to \infty$.

Proof.

Upper bound from packing bound. Lower bound from Rödl’s theorem on quasirandom hypergraphs.

Explicit families are within a constant of the optimal size. Examples due to Koetter and Kschischang; larger codes by generalising these due to Etzion and Silberstein.
k-radius sequences

A 5-ary 2-radius sequence of length 7 is:

$0, 1, 2, 3, 4, 0, 1$
k-radius sequences

A 5-ary 2-radius sequence of length 7 is:

$$0, 1, 2, 3, 4, 0, 1$$

Definition (Jaromczyk, Lonc 2004)

Let $F = \{0, 1, \ldots, n - 1\}$. An *n-ary k-radius sequence* is a finite sequence

$$a_0, a_1, \ldots, a_{m-1}$$

over the alphabet F with the following property:

For all $x, y \in F$, there exist $i, j \in \{0, 1, \ldots, m - 1\}$ such that $a_i = x$, $a_j = y$ and $|i - j| \leq k$.
Another existence result

Let $f_k(q)$ be the shortest q-ary k-radius sequence.
Another existence result

Let $f_k(q)$ be the shortest q-ary k-radius sequence.

Theorem (SRB 2012)

Let k be fixed and $q \to \infty$. Then

$$f_k(q) \sim \frac{1}{k} \binom{q}{2}$$

Proof. Upper bound: every position can be the left-hand entry of at most k pairs.

Lower bound: from quasirandom hypergraph argument.

Remark: Jaromczyk, Lonc, Truszczynski (2012) have recently given an explicit asymptotically tight construction.
Another existence result

Let $f_k(q)$ be the shortest q-ary k-radius sequence.

Theorem (SRB 2012)

Let k be fixed and $q \to \infty$. Then

$$f_k(q) \sim \frac{1}{k} \binom{q}{2}$$

Proof.

Upper bound: every position can be the left-hand entry of at most k pairs.
Another existence result

Let $f_k(q)$ be the shortest q-ary k-radius sequence.

Theorem (SRB 2012)

Let k be fixed and $q \to \infty$. Then

$$f_k(q) \sim \frac{1}{k} \binom{q}{2}$$

Proof.

Upper bound: every position can be the left-hand entry of at most k pairs.
Lower bound: from quasirandom hypergraph argument.
Another existence result

Let $f_k(q)$ be the shortest q-ary k-radius sequence.

Theorem (SRB 2012)

Let k be fixed and $q \to \infty$. Then

$$f_k(q) \sim \frac{1}{k} \binom{q}{2}$$

Proof.

Upper bound: every position can be the left-hand entry of at most k pairs.
Lower bound: from quasirandom hypergraph argument.

Remark: Jaromczyk, Lonc, Truszczynski (2012) have recently given an explicit asymptotically tight construction.
Some Links

This talk will appear soon on my home page:

http://www.ma.rhul.ac.uk/sblackburn

http://arxiv.org/abs/1111.2713
