Finding Delours is Fixedparameter Tractable

Ivona Bezáková, Radu Curticapean, Holger Dell, Fedor V. Fomin

Gregory60

Longest Path: Given a graph G and integer k, decide whether G contains a path of length at least k?

Longest Path: Fixed-parameter tractability

Longest Path: Fixed-parameter tractability

Win/Win: If the treewidth is large,
 there is a long path

Longest Path: Fixed-parameter tractability

- Win/Win: If the treewidth is large, there is a long path
- o Otherwise do DP

o Monien [1982], Bodlaender [1984]: kk. n0(1)

- o Monien [1982], Bodlaender [1984]: kk. n0(1)
- Papadimitriou and Yannakakis [1996]: Is in P for k=log n?

- o Monien [1982], Bodlaender [1984]: kk. n0(1)
- Papadimitriou and Yannakakis [1996]: Is in P for k=log n?
- o Alon, Yuster, and Zwick [1995]: 0(20(k). n)

- o Monien [1982], Bodlaender [1984]: kk. no(1)
- Papadimitriou and Yannakakis [1996]: Is in P for k=log n?
- o Alon, Yuster, and Zwick [1995]: 0(20(k). n)

0

- o Monien [1982], Bodlaender [1984]: kk. n0(1)
- Papadimitriou and Yannakakis [1996]: Is in P for k=log n?
- a Alon, Yuster, and Zwick [1995]: 0(20(k). n)
- 0
- Randomized: 1.657k. n⁰⁽¹⁾ Björklund, Husfeldt, Kaski, and Koivisto [2010]

- o Monien [1982], Bodlaender [1984]: kk. n0(1)
- Papadimitriou and Yannakakis [1996]: Is in P for k=log n?
- o Alon, Yuster, and Zwick [1995]: 0(20(k). n)
- 0 ...
- Randomized: 1.657k. n⁰⁽¹⁾ Björklund, Husfeldt, Kaski, and Koivisto [2010]
- o Determenistic: 2.597k · n⁰⁽¹⁾ Zehavi [2013]

Citations

From References: 12 From Reviews: 0

MR738059 (85m:05048) 05C45 05C20 Gutin, G. M. [Gutin, Gregory] (2-GOME)

Criterion for complete bipartite digraphs to be Hamiltonian. (Russian. English summary)

Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1984, no. 1, 109–110.

From the text (translated from the Russian): "A complete bipartite digraph B=(V,W;A) has a set of vertices $X=V\cup W$, where V and W form a partition of the points of B and A is the set of arcs. By B^d we denote a digraph obtained from B after redirection of all its arcs. With every complete bipartite digraph B=(V,W;A) we associate a bipartite nondirected graph $\mathrm{GR}(B)$. V and W form a partition of the points of $\mathrm{GR}(B)$ and the edge $\{v,w\}$ enters into $\mathrm{GR}(B)$ if and only if the arc $(v,w)\in A$ and $v\in V,\ w\in W$. Theorem: A necessary and sufficient condition for a complete bipartite digraph B=(V,W;A) to have a Hamiltonian cycle is that B be strong and the graphs $\mathrm{GR}(B)$ and $\mathrm{GR}(B^d)$ have 1-factors."

© Copyright American Mathematical Society 1985, 2017

Citations

From References: 12 From Reviews: 0

MR738059 (85m:05048) 05C45 05C20 Gutin, G. M. [Gutin, Gregory] (2-GOME)

Criterion for complete bipartite digraphs to be Hamiltonian. (Russian. English summary)

Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1984, no. 1, 109–110.

From the text (translated from the Russian): "A complete bipartite digraph $B=\{V,W;A\}$ has a set of vertices $X=V\cup W$, where V and W form a partition of the points of B and A is the set of arcs. By B^d we denote a digraph obtained from B after redirection of all its arcs. With every complete bipartite digraph B=(V,W;A) we associate a bipartite nondirected graph $\mathrm{GR}(B)$. V and W form a partition of the points of $\mathrm{GR}(B)$ and the edge $\{v,w\}$ enters into $\mathrm{GR}(B)$ if and only if the arc $(v,w)\in A$ and $v\in V, w\in W$. Theorem: A necessary and sufficient condition for a complete bipartite digraph B=(V,W;A) to have a Hamiltonian cycle is that B be strong and the graphs $\mathrm{GR}(B)$ and $\mathrm{GR}(B^d)$ have 1-factors."

© Copyright American Mathematical Society 1985, 2017

MathSciNet
Mathematical Reviews
Previous Up Next

Citations

From References: 5 From Reviews: 1

MR769101 (86b:05035) 05C20 05C38 Gutin, G. M. [Gutin, Gregory] (2-GOME)

Cycles in strong n-partite tournaments. (Russian. English summary) Vestri Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1984, no. 5, 105–106.

It is proved that every strong n-partite tournament (i.e. a strongly directed complete n-partite graph) with $n \geq 4$, all of whose parts have at least two vertices, contains a cycle of length n+1 or n+2. However, for every integer $n \geq 2$ there exists a strong n-partite tournament with all parts of cardinality 2 containing no cycle of length n+1. Thus a problem posed by J. A. Bondy [J. London Math. Soc. (2) 14 (1976), no. 2, 277–282; MR0450115] is solved.

There are misprints on page 106.

J. Bosák

© Copyright American Mathematical Society 1986, 2017

Citations

From References: 12 From Reviews: 0

MR738059 (85m:05048) 05C45 05C20 Gutin, G. M. [Gutin, Gregory] (2-GOME)

Criterion for complete bipartite digraphs to be Hamiltonian. (Russian. English summary)

Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1984, no. 1, 109–110.

From the text (translated from the Russian): "A complete bipartite digraph B=(V,W;A) has a set of vertices $X=V\cup W$, where V and W form a partition of the points of B and A is the set of arcs. By B^d we denote a digraph obtained from B after redirection of all its arcs. With every complete bipartite digraph B=(V,W;A) we associate a bipartite nondirected graph $\mathrm{GR}(B)$. V and W form a partition of the points of $\mathrm{GR}(B)$ and the edge $\{v,w\}$ enters into $\mathrm{GR}(B)$ if and only if the arc $(v,w)\in A$ and $v\in V,w\in W$. Theorem: A necessary and sufficient condition for a complete bipartite digraph B=(V,W;A) to have a Hamiltonian cycle is that B be strong and the graphs $\mathrm{GR}(B)$ and $\mathrm{GR}(B^d)$ have 1-factors."

© Copyright American Mathematical Society 1985, 2017

MathSciNet
Mathematical Reviews
Previous Up Next

Citations

From References: 5 From Reviews: 1

MR769101 (86b:05035) 05C20 05C38 Gutin, G. M. [Gutin, Gregory] (2-GOME)

Cycles in strong n-partite tournaments. (Russian. English summary) Vestri Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1984, no. 5, 105–106.

It is proved that every strong n-partite tournament (i.e. a strongly directed complete n-partite graph) with $n \geq 4$, all of whose parts have at least two vertices, contains a cycle of length n+1 or n+2. However, for every integer $n \geq 2$ there exists a strong n-partite tournament with all parts of cardinality 2 containing no cycle of length n+1. Thus a problem posed by J. A. Bondy [J. London Math. Soc. (2) 14 (1976), no. 2, 277–282; MR0450115] is solved.

There are misprints on page 106.

J. Bosák

© Copyright American Mathematical Society 1986, 2017

MathSciNet
Mathematical Reviews
Previous Up Next

Citations

From References: 1 From Reviews: 0

MR811155 (87b:05060) 05C20 05C45 68R10 Gutin, G. M. [Gutin, Gregory]

Effective characterization of complete bipartite digraphs having Hamiltonian paths. (Russian)

Kibernetika (Kiev) 1985, no. 4, 124-125.

A bipartite directed graph D is said to be complete bipartite if each pair of vertices from different bipartition classes of D is joined by at least one edge. A directed almostfactor of D is a spanning subgraph F of D such that one of its connected components is a directed path while the others are directed circuits. A directed graph is said to be traceable if it has a directed Hamiltonian path.

The main theorem states that a complete bipartite directed graph D is traceable if and only if it has an almost-factor. Another theorem, obtained as a corollary of the main theorem, enables one, with the help of results of J. Hopcroft and R. Karp, to find an effective algorithm to decide whether a given graph has a directed Hamiltonian path.

B. Zelinko

© Copyright American Mathematical Society 1987, 2017

MR: Publications results for "Author=(gutin, g*) AND Anywhe...
Click here to activate Remote Access

http://www.ams.org/mathscinet/search/publications.html?pg4...

Matches: 33 Show all results

OUBB

Publications results for "Author=(gutin, g*) AND Anywhere=(path)"

MR3466628 Pending Barbero, Florian; Gutin, Gregory; Jones, Mark; Sheng, Bin; Yeo, Anders Linear-vertex kernel for the problem of packing r-stars into a graph without long induced paths. *Inform. Process. Lett.* 116 (2016), no. 6, 433–436. 94C15 (05C85 68Q25 68R10)

MR2787937 Reviewed Gutin, Gregory; Mansour, Toufik; Severini, Simone A characterization of horizontal visibility graphs and combinatorics on words. Phys. A 390 (2011), no. 12, 2421–2428. 05C75 (05A05 05C30 05C45 05E15 68R10)

MR2721735 Indexed Gutin, Gregory; Kim, Eun Jung Properly coloured cycles and paths: results and open problems. Graph theory, computational intelligence and thought, 200–208, Lecture Notes in Comput. Sci., 5420, Springer, Berlin, 2009. 05C15 (05C38)

MR2559006 Reviewed Balister, P.; Gerke, S.; Gutin, G.; Johnstone, A.; Reddington, J.; Scott, E.; Soleimanfallah, A.; Yeo, A. Algorithms for generating convex sets in acyclic digraphs. J. Discrete Algorithms 7 (2009), no. 4, 509–518. 05C85 (05C10 05C20)

MR2569708 Reviewed Gutin, Gregory; Razgon, Igor; Kim, Eun Jung Minimum leaf out-branching and related problems. *Theoret. Comput. Sci.* 410 (2009), no. 45, 4571–4579. 68Q25 (05C20 05C85 68Q17)

MR2537504 Reviewed Dankelmann, Peter; Gutin, Gregory; Kim, Eun Jung On complexity of minimum leaf out-branching problem. *Discrete Appl. Math.* 157 (2009), no. 13, 3000–3004. 05C85 (05C20)

MR2510249 Reviewed Gutin, Gregory; Yeo, Anders On the number of connected convex subgraphs of a connected acyclic digraph. Discrete Appl. Math. 157 (2009), no. 7, 1660–1662. 05C30 (05C20 05C40)

Another Longest Path of Gregory: Parameterization above guarantee

MR: Publications results for "Author=(gutin, g*) AND Anywhe... Click here to activate Remote Access

http://www.ams.org/mathscinet/search/publications.html?pg4...

Matches: 25 Show all results

Publications results for "Author=(gutin, g*) AND Anywhere=(above)"

MR3439249 Reviewed Crowston, R.; Gutin, G.; Jones, M.; Muciaccia, G.; Yeo, A. Parameterizations of test cover with bounded test sizes. Algorithmica 74 (2016), no. 1, 367–384. 05C85 (05C65 68Q25)

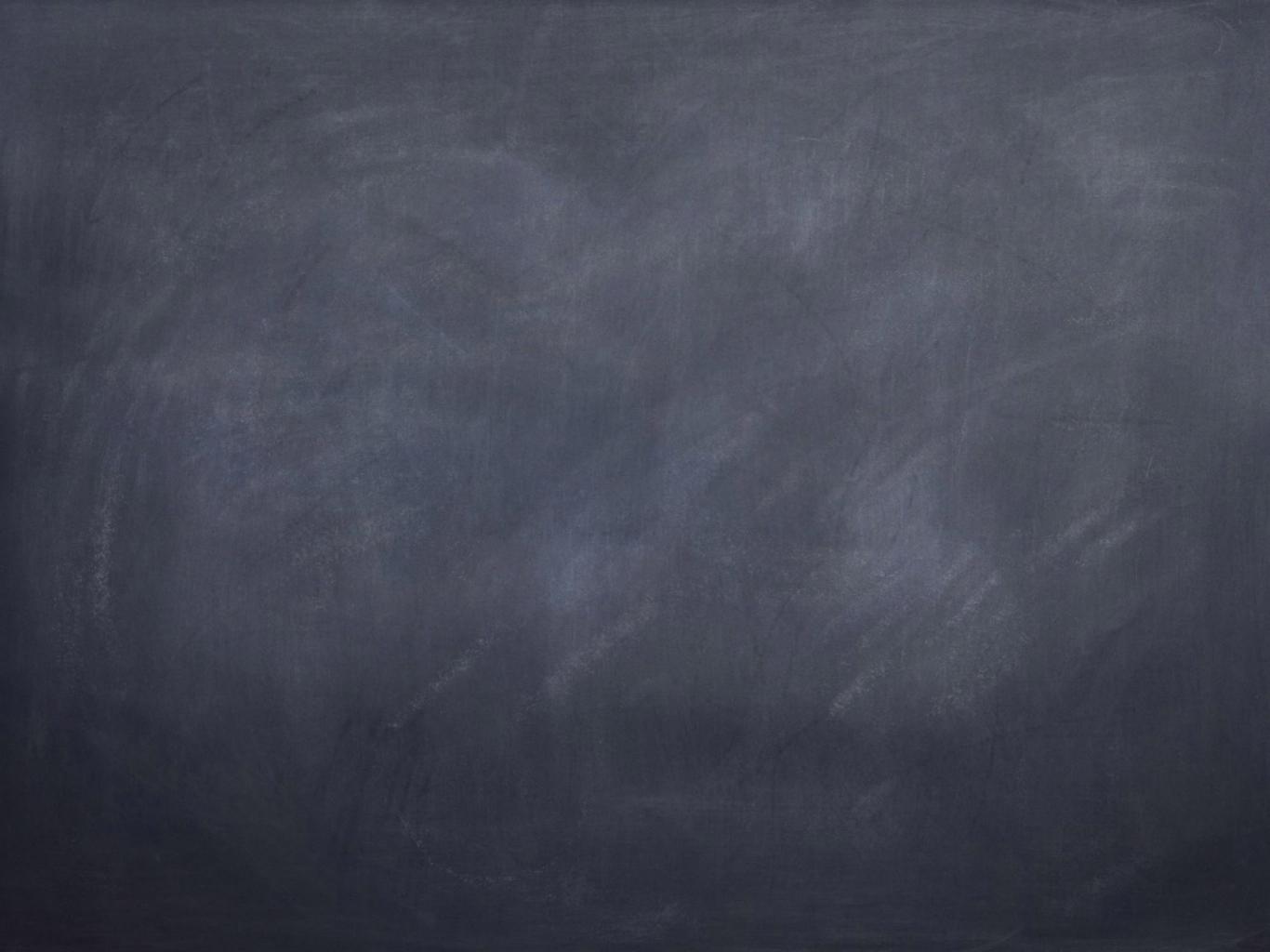
Ø UBB

MR3107105 Reviewed Crowston, Robert; Gutin, Gregory; Jones, Mark; Muciaccia, Gabriele Maximum balanced subgraph problem parameterized above lower bound. Computing and combinatorics, 434–445, Lecture Notes in Comput. Sci., 7936, Springer, Heidelberg, 2013. 68025 (05C78)

Ø UBB

MR3128945 Reviewed Crowston, R.; Gutin, G.; Jones, M.; Muciaccia, G. Maximum balanced subgraph problem parameterized above lower bound. *Theoret. Comput. Sci.* 513 (2013), 53–64. (Reviewer: Vladimír Lacko) 05C85 (05C22 05C60 68Q25)

MR3126919 Reviewed Crowston, Robert; Gutin, Gregory; Jones, Mark; Raman, Venkatesh; Saurabh, Saket Parameterized complexity of MaxSat Above Average. Theoret. Comput. Sci. 511 (2013), 77–84. 68Q25


MR3084359 Reviewed Gutin, Gregory; Rafiey, Arash; Szeider, Stefan; Yeo, Anders Corrigendum. The linear arrangement problem parameterized above guaranteed value [MR2352546]. *Theory Comput. Syst.* 53 (2013), no. 4, 690–691. 68Q25 (05C78 05C85 68Q15)

MR2979045 Reviewed Crowston, Robert; Gutin, Gregory; Jones, Mark; Raman, Venkatesh; Saurabh, Saket Parameterized complexity of MaxSat above average. LATIN 2012: theoretical informatics, 184–194, Lecture Notes in Comput. Sci., 7256, Springer, Heidelberg, 2012. 68Q25

MR3019008 Reviewed Crowston, Robert; Gutin, Gregory; Jones, Mark Directed acyclic subgraph problem parameterized above the Poljak-Turzík bound. 32nd International Conference on Foundations of Software Technology and Theoretical Computer Science,

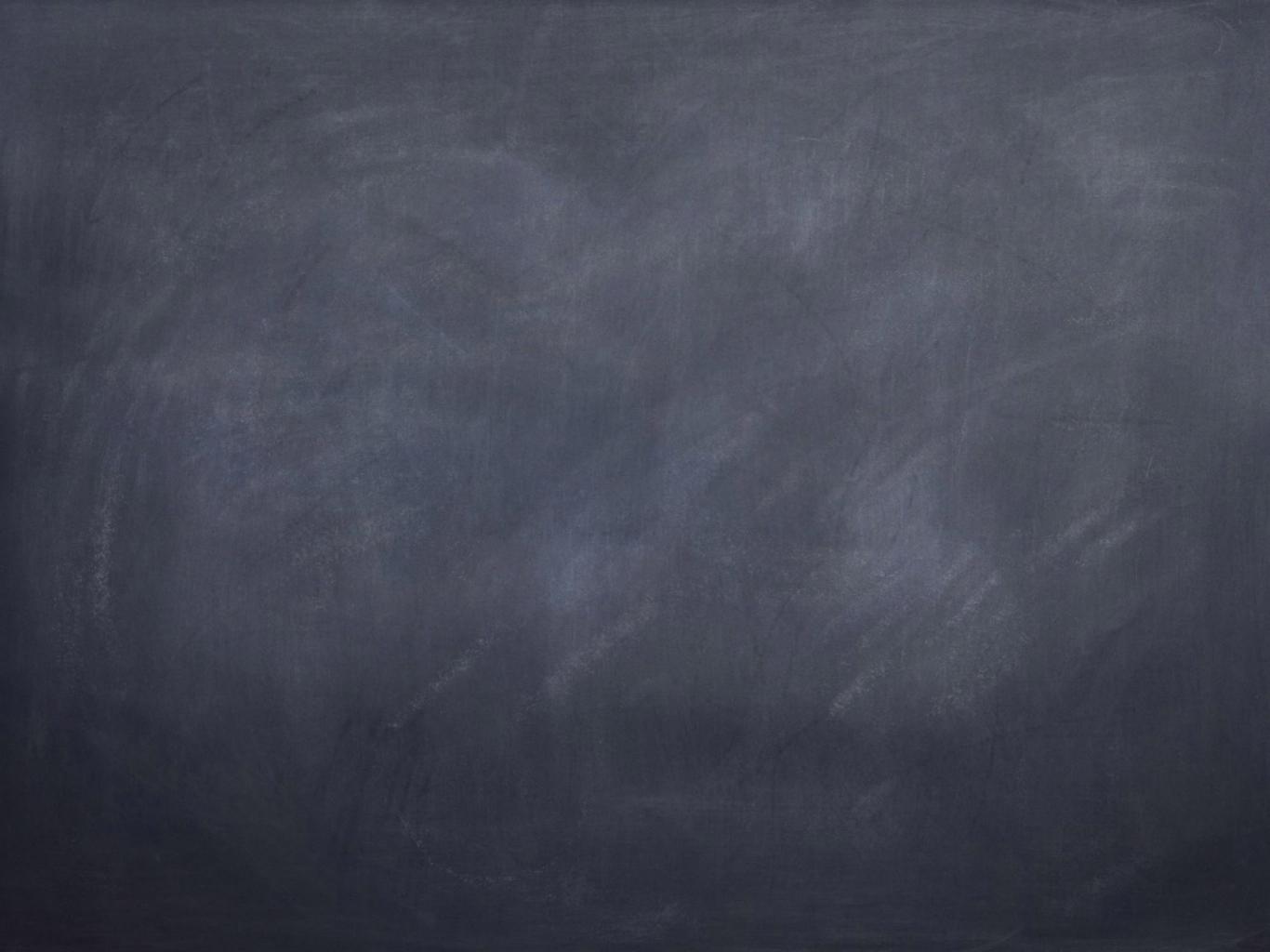
This talk

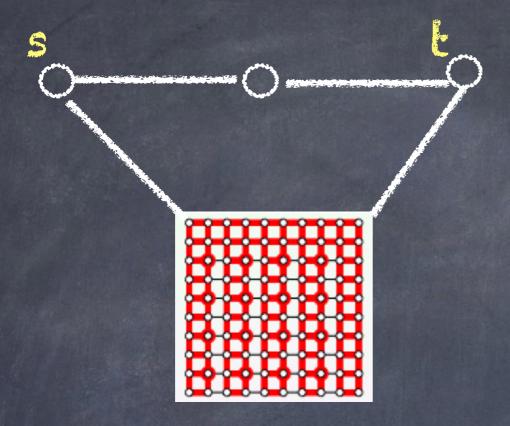
Longest Path + Above guarantee parameterization

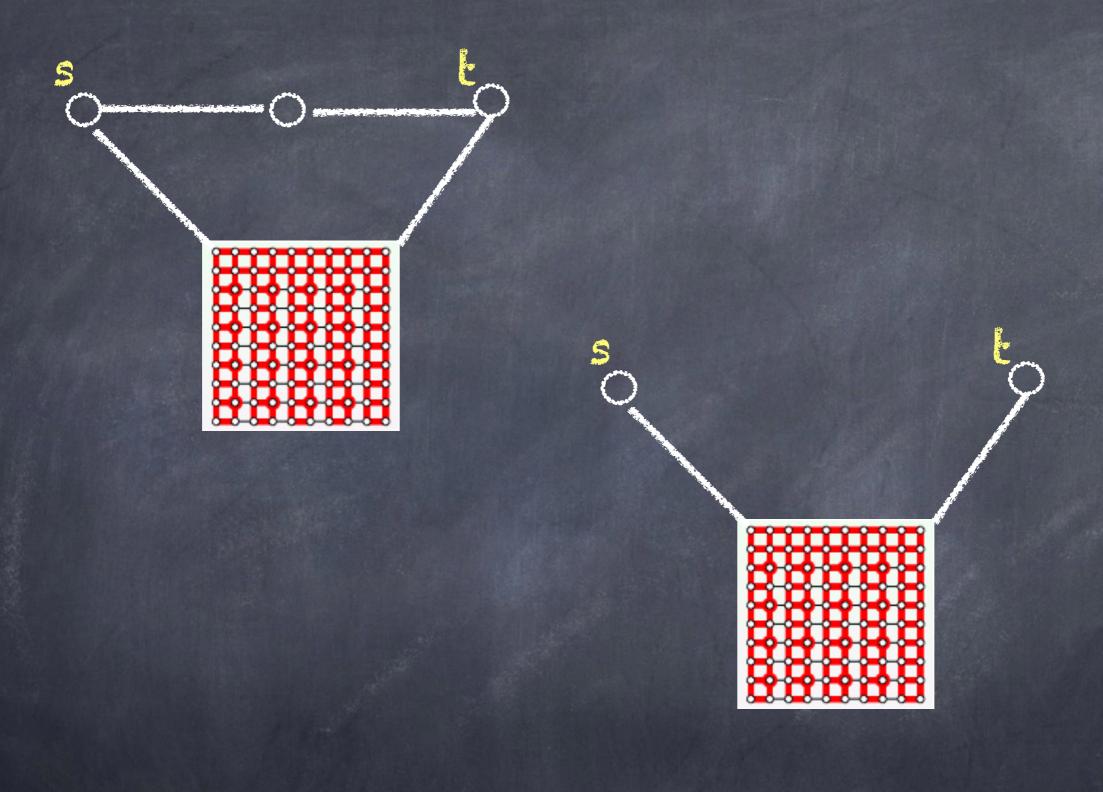
Longest Detour: Given graph G, vertices s and t, and integer k. Is there an (s,t)- path in G of length at least dist(s,t)+k

- Longest Detour: Given graph G, vertices s and t, and integer k. Is there an (s,t)- path in G of length at least dist(s,t)+k
- o Is the problem in P for fixed k?

- Longest Detour: Given graph G, vertices s and t, and integer k. Is there an (s,t)- path in G of length at least dist(s,t)+k
- o Is the problem in P for fixed k?
- o Is the problem FPT parameterized by k?


- Longest Detour: Given graph G, vertices s and t, and integer k. Is there an (s,t)- path in G of length at least dist(s,t)+k
- o Is the problem in P for fixed k?
- o Is the problem FPT parameterized by k?
- THEOREM: Longest Detour is solvable in time 20(k)n0(1)


Chuzhoy (2015): If the treewidth of
 G is more than k¹⁹ poly(log k), then
 G contains kxk-grid as a minor


o We can assume that G is 2connected

- o We can assume that G is 2connected
- o If the treewidth of G is less than k¹⁹ use DP (time 20(tw(G))n)

- We can assume that G is 2connected
- a If the treewidth of G is less than k¹⁹ use DP (time 20(tw(G))n)
- o Otherwise use kxk-grid for rerouting

This gives an algorithm solving Longest Detour in time $\exp(k^{19})$ $n^{0(1)}$

e Can we exclude something simpler than a grid?

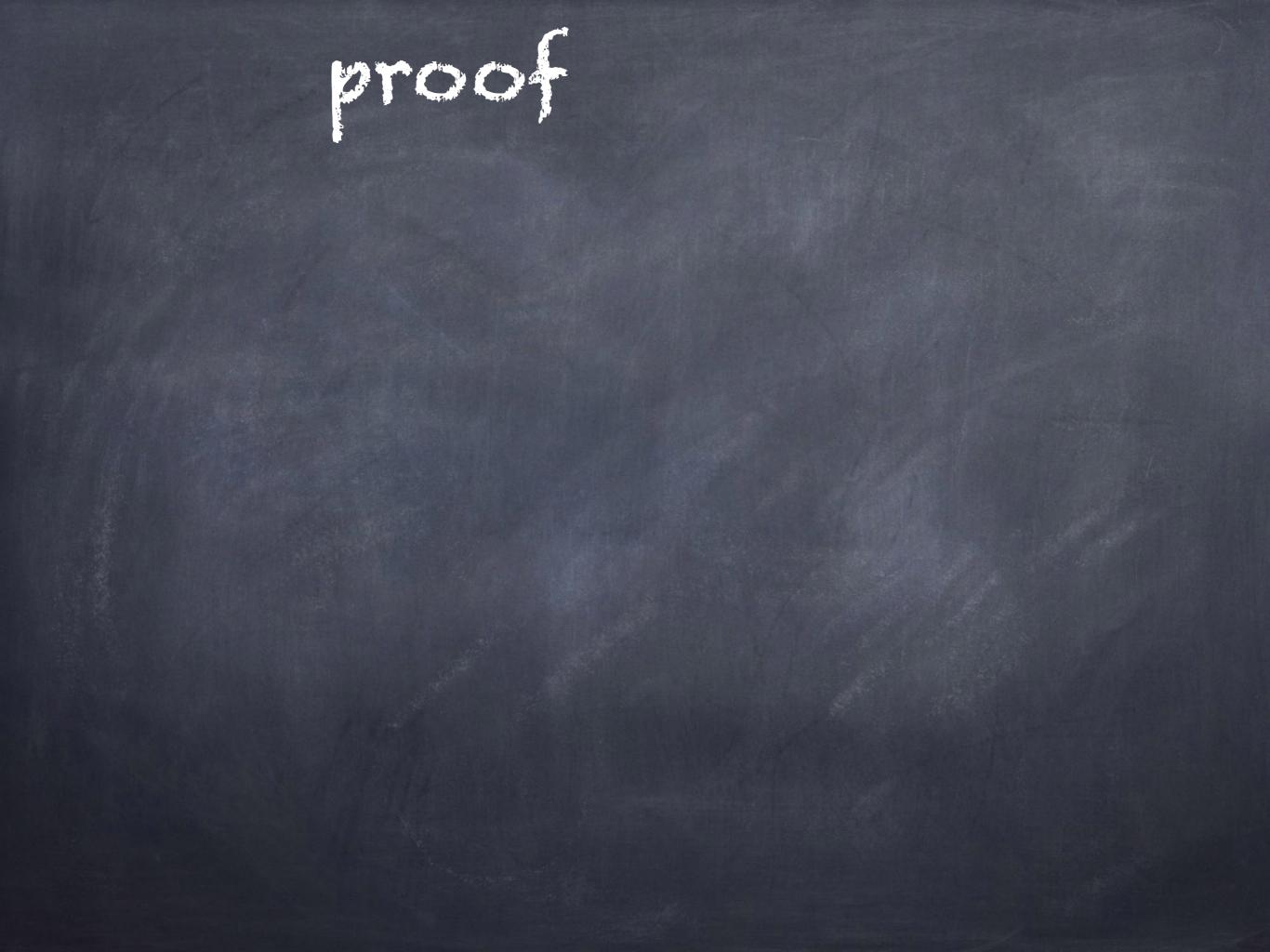
Win/Win?

- © Can we exclude something simpler than a grid?
- o For example, if we exclude a k-cycle, the treewidth is O(k).

Win/Win?

- « Can we exclude something simpler than a grid?
- o For example, if we exclude a k-cycle, the treewidth is O(k).
- But k-cycle is not enough complicated for rerouting...

What graph


- o Can be used for k-detour
- When excluded as a minor guarantees linear (in k) treewidth?

Graph F: Take K4 and subdivide every edge
 k times

- Graph F: Take K4 and subdivide every edge
 k times
- ø F is the right graph!!!

- Graph F: Take K4 and subdivide every edge
 k times
- o F is the right graph!!!
 - e Every F-minor-free graph has treewidth at most 32k

- Graph F: Take K4 and subdivide every edge
 k times
- o F is the right graph!!!
 - e Every F-minor-free graph has treewidth at most 32k
 - Every (s,t)-shortest path in a graph containing F as a minor has a kdetour.

proof

treewidth at least k is
(approximately) equivalent of
having a k-linked set

proof

treewidth at least k is
(approximately) equivalent of
having a k-linked set

Leaf and Seymour (2015): structure of k-linked sets

proof

treewidth at least k is
(approximately) equivalent of
having a k-linked set

Leaf and Seymour (2015): structure of k-linked sets

Raymond and Thilikos (2016): Wheel excluding

What can be other "above guarantee" variants of Longest Path?

- Girth (FF, Lokshtanov, Saurabh,
 Zehavi)
- o Degeneracy (FF, Golovach)

What about another passion of Gregory?

What about another passion of Gregory?

Longest Directed Detour: Given a digraph G, vertices s and t, and integer k. Is there an (s,t)- path in G of length at least dist(s,t)+k?

What about another passion of Gregory?

- Longest Directed Detour: Given a digraph G, vertices s and t, and integer k. Is there an (s,t)- path in G of length at least dist(s,t)+k?
- e We do not know even if poly(n,k) algorithm exist.

Remark

Remark

Exact Directed Detour: Given a digraph G, vertices s and t, and integer k. Is there an (s,t)- path in G of length exactly dist(s,t)+k?

- Exact Directed Detour: Given a digraph G, vertices s and t, and integer k. Is there an (s,t)- path in G of length exactly dist(s,t)+k?
- @ Exact Directed Detour is FPT.

Happy Birthday, Gregory!!!

