2-partitions of digraphs

Jørgen Bang-Jensen¹

University of Southern Denmark

Gregory celebration, Royal Holloway, January 7, 2017

¹Based on joint works with Stephane Bessy, Tilde My Christiansen, Frederic Havet, Nathann Cohen and Anders Yeo

Let $\mathbb{P}_1, \mathbb{P}_2$ be two (di)graph properties

A $(\mathbb{P}_1, \mathbb{P}_2)$ -partition of a (di)graph D is a 2-partition (V_1, V_2) of V(D) such that V_1 induces a (di)graph with property \mathbb{P}_1 and V_2 a (di)graph with property \mathbb{P}_2 .

For example a $(\delta^+ \ge 1, \delta^+ \ge 1)$ -partition is a 2-partition of a digraph where each partition induces a subdigraph with minimum out-degree at least 1.

Similarly a (strong,acyclic)-partition is a 2-partition (V_1 , V_2) such that $D\langle V_1 \rangle$ is strongly connected and $D\langle V_2 \rangle$ is an avyclic digraph.

Let $\mathbb{P}_1, \mathbb{P}_2$ be two (di)graph properties

A $(\mathbb{P}_1, \mathbb{P}_2)$ -partition of a (di)graph D is a 2-partition (V_1, V_2) of V(D) such that V_1 induces a (di)graph with property \mathbb{P}_1 and V_2 a (di)graph with property \mathbb{P}_2 .

For example a $(\delta^+ \ge 1, \delta^+ \ge 1)$ -partition is a 2-partition of a digraph where each partition induces a subdigraph with minimum out-degree at least 1.

Similarly a (strong,acyclic)-partition is a 2-partition (V_1 , V_2) such that $D\langle V_1 \rangle$ is strongly connected and $D\langle V_2 \rangle$ is an avyclic digraph.

Examples for undirected graphs:

- (independent,complete)-partition split graphs
- (independent,independent)-partition bipartite graphs
- (complete,complete)-partition complements of bipartite graphs

To avoid trivial partitions where one vertex on one side is enough, we consider $[k_1, k_2]$ -partitions, that is, partitions (V_1, V_2) of V such that $|V_1| \ge k_1$ and $|V_2| \ge k_2$.

For given positive integers k_1 , k_2 the $(\mathbb{P}_1, \mathbb{P}_2)$ - $[k_1, k_2]$ -partition problem consists in deciding whether a given digraph D has a $(\mathbb{P}_1, \mathbb{P}_2)$ - $[k_1, k_2]$ -partition.

When $k_1 = k_2 = 1$ we usually just write $(\mathbb{P}_1, \mathbb{P}_2)$ -partition.

To avoid trivial partitions where one vertex on one side is enough, we consider $[k_1, k_2]$ -partitions, that is, partitions (V_1, V_2) of V such that $|V_1| \ge k_1$ and $|V_2| \ge k_2$.

For given positive integers k_1 , k_2 the $(\mathbb{P}_1, \mathbb{P}_2)$ - $[k_1, k_2]$ -partition problem consists in deciding whether a given digraph D has a $(\mathbb{P}_1, \mathbb{P}_2)$ - $[k_1, k_2]$ -partition.

When $k_1 = k_2 = 1$ we usually just write $(\mathbb{P}_1, \mathbb{P}_2)$ -partition.

Let $\mathcal H$ and $\mathcal E$ denote the following two sets of natural properties of digraphs all of which can be checked in polynomial time:

H ={acyclic, complete, arcless, oriented (no 2-cycle),
semicomplete, symmetric, tournament}

These properties are all **hereditary**, that is, closed under induced subdigraphs

 $\mathcal{E} = \{ \text{strongly connected, connected, minimum out-degree at least 1, minimum in-degree at least 1, minimum semi-degree at least 1, minimum degree at least 1, having an out-branching, having an in-branching<math>\}$.

These properties are all **enumerable**, that is, one can enumerate in polynomial time all its inclusion-wise maximal subdigraphs having the property.

Let \mathcal{H} and \mathcal{E} denote the following two sets of natural properties of digraphs all of which can be checked in polynomial time:

H ={acyclic, complete, arcless, oriented (no 2-cycle),
semicomplete, symmetric, tournament}

These properties are all **hereditary**, that is, closed under induced subdigraphs

 \mathcal{E} ={strongly connected, connected, minimum out-degree at least 1, minimum in-degree at least 1, minimum semi-degree at least 1, minimum degree at least 1, having an out-branching, having an in-branching}.

These properties are all **enumerable**, that is, one can enumerate in polynomial time all its inclusion-wise maximal subdigraphs having the property.

Complexity for arbitrary input digraphs

$\mathbb{P}_1 \setminus \mathbb{P}_2$	strong	conn.	\mathbb{B}^+	В−	$\delta \geq 1$	$\delta^+ \geq 1$	$\delta^- \geq 1$	$\delta^0 \geq 1$	A	C	X
strong	NPc	NPc ^L	NPc ^L	NPc	Р	Р	Р				
conn.	NPc ^R	Р	Р	Р	Р	NPc	NPc	NPc	Р	Р	Р
B ⁺	NPc ^R	Р	Р	NPc	Р	NPc	Р	NPc	Р	Р	Р
B-	NPc ^R	Р	NPc	Р	Р	Р	NPc	NPc	Р	Р	Р
$\delta \geq 1$	NPc ^R	Р	Р	Р	Р	NPc	NPc	NPc	Р	Р	Р
$\delta^+ \geq 1$	NPc ^R	NPc	NPc	Р	NPc	Р	NPc	NPc	Р	Р	Р
$\delta^- \geq 1$	NPc ^R	NPc	Р	NPc	NPc	NPc	Р	NPc	Р	Р	Р
$\delta^0 \geq 1$	NPc	NPc	NPc	NPc	NPc	NPc	NPc	NPc	Р	Р	Р
A	Р	Р	P	Р	Р	Р	Р	Р	NPc	Р	NPc
C	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
X	Р	Р	Р	Р	Р	Р	Р	Р	NPc	Р	Р

Properties: conn.: connected; B+: out-branchable; B-: in-branchable; A: acyclic; C: complete; X: any property in 'being independent', 'being oriented', 'being semi-complete', 'being a tournament' and 'being symmetric', **Complexities:** P: polynomial-time solvable; NPc: NP-complete for all values of k_1 , k_2 ;

 NPc^{L} : NP-complete for $k_1 > 2$, and polynomial-time solvable for $k_1 = 1$.

 NPc^R : NP-complete for $k_2 > 2$, and polynomial-time solvable for $k_2 = 1$.

Let \mathbb{H} be a checkable hereditary property, \mathbb{E} be an enumerable property, and let k_1 and k_2 be two positive integers. One can decide in polynomial time whether a given digraph D has a (\mathbb{H}, \mathbb{E}) - $[k_1, k_2]$ -partition.

Proof: We shall describe a polynomial-time procedure that for any fixed set U_1 of k_1 vertices of D decides whether D has an (\mathbb{H}, \mathbb{E}) - $[k_1, k_2]$ -partition (V_1, V_2) with $U_1 \subseteq V_1$.

Then applying this algorithm to the $O(n^{k_1})$ k_1 -subsets of V(D), we obtain the desired algorithm.

Let \mathbb{H} be a checkable hereditary property, \mathbb{E} be an enumerable property, and let k_1 and k_2 be two positive integers. One can decide in polynomial time whether a given digraph D has a (\mathbb{H}, \mathbb{E}) - $[k_1, k_2]$ -partition.

Proof: We shall describe a polynomial-time procedure that for any fixed set U_1 of k_1 vertices of D decides whether D has an (\mathbb{H}, \mathbb{E}) - $[k_1, k_2]$ -partition (V_1, V_2) with $U_1 \subseteq V_1$.

Then applying this algorithm to the $O(n^{k_1})$ k_1 -subsets of V(D), we obtain the desired algorithm.

Let \mathbb{H} be a checkable hereditary property, \mathbb{E} be an enumerable property, and let k_1 and k_2 be two positive integers. One can decide in polynomial time whether a given digraph D has a (\mathbb{H}, \mathbb{E}) - $[k_1, k_2]$ -partition.

Proof: We shall describe a polynomial-time procedure that for any fixed set U_1 of k_1 vertices of D decides whether D has an (\mathbb{H}, \mathbb{E}) - $[k_1, k_2]$ -partition (V_1, V_2) with $U_1 \subseteq V_1$.

Then applying this algorithm to the $O(n^{k_1})$ k_1 -subsets of V(D), we obtain the desired algorithm.

- First, we enumerate the maximal subdigraphs of $D-U_1$ with property $\mathbb E$. This can be done in polynomial time because $\mathbb E$ is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \ge k_2$ and if D F has property \mathbb{H} . This can be done in polynomial time because \mathbb{H} is checkable.
- In the affirmative, we return 'Yes', and in the negative we proceed to the next subdigraph.
- If no more subdigraph remains, we return 'No'.

- First, we enumerate the maximal subdigraphs of $D-U_1$ with property $\mathbb E$. This can be done in polynomial time because $\mathbb E$ is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \ge k_2$ and if D F has property \mathbb{H} . This can be done in polynomial time because \mathbb{H} is checkable.
- In the affirmative, we return 'Yes', and in the negative we proceed to the next subdigraph.
- If no more subdigraph remains, we return 'No'.

- First, we enumerate the maximal subdigraphs of $D-U_1$ with property \mathbb{E} . This can be done in polynomial time because \mathbb{E} is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \ge k_2$ and if D F has property \mathbb{H} . This can be done in polynomial time because \mathbb{H} is checkable.
- In the affirmative, we return 'Yes', and in the negative we proceed to the next subdigraph.
- If no more subdigraph remains, we return 'No'.

- First, we enumerate the maximal subdigraphs of $D-U_1$ with property \mathbb{E} . This can be done in polynomial time because \mathbb{E} is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \ge k_2$ and if D F has property \mathbb{H} . This can be done in polynomial time because \mathbb{H} is checkable.
- In the affirmative, we return 'Yes', and in the negative we proceed to the next subdigraph.
- If no more subdigraph remains, we return 'No'.

- First, we enumerate the maximal subdigraphs of $D-U_1$ with property \mathbb{E} . This can be done in polynomial time because \mathbb{E} is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \ge k_2$ and if D F has property \mathbb{H} . This can be done in polynomial time because \mathbb{H} is checkable.
- In the affirmative, we return 'Yes', and in the negative we proceed to the next subdigraph.
- If no more subdigraph remains, we return 'No'.

- If there is a maximal subdigraph F of $D-U_1$ with property \mathbb{E} of order at least k_2 such that D-F has property \mathbb{H} , then (V(D-F),V(F)) is clearly an (\mathbb{H},\mathbb{E}) - $[k_1,k_2]$ -partition (V_1,V_2) with $U_1\subseteq V_1$.
- Conversely, assume there is an (\mathbb{H}, \mathbb{E}) - $[k_1, k_2]$ -partition (V_1, V_2) with $U_1 \subseteq V_1$. Then $D\langle V_2 \rangle$ has property \mathbb{E} and thus is contained in a maximal subdigraph F of $D U_1$ with property \mathbb{E} . Since F is a superdigraph of $D\langle V_2 \rangle$ it has order at least k_2 . In addition, $U_1 \subseteq V(D F) \subseteq V_1$, so D F has the property \mathbb{H} , because this property is hereditary and V_1 has it.

- If there is a maximal subdigraph F of $D-U_1$ with property $\mathbb E$ of order at least k_2 such that D-F has property $\mathbb H$, then (V(D-F),V(F)) is clearly an $(\mathbb H,\mathbb E)$ - $[k_1,k_2]$ -partition (V_1,V_2) with $U_1\subseteq V_1$.
- Conversely, assume there is an (\mathbb{H}, \mathbb{E}) - $[k_1, k_2]$ -partition (V_1, V_2) with $U_1 \subseteq V_1$. Then $D\langle V_2 \rangle$ has property \mathbb{E} and thus is contained in a maximal subdigraph F of $D-U_1$ with property \mathbb{E} . Since F is a superdigraph of $D\langle V_2 \rangle$ it has order at least k_2 . In addition, $U_1 \subseteq V(D-F) \subseteq V_1$, so D-F has the property \mathbb{H} , because this property is hereditary and V_1 has it.

- If there is a maximal subdigraph F of $D-U_1$ with property $\mathbb E$ of order at least k_2 such that D-F has property $\mathbb H$, then (V(D-F),V(F)) is clearly an $(\mathbb H,\mathbb E)$ - $[k_1,k_2]$ -partition (V_1,V_2) with $U_1\subseteq V_1$.
- Conversely, assume there is an (ℍ, ℍ)-[k₁, k₂]-partition (V₁, V₂) with U₁ ⊆ V₁. Then D⟨V₂⟩ has property ℍ and thus is contained in a maximal subdigraph F of D − U₁ with property ℍ. Since F is a superdigraph of D⟨V₂⟩ it has order at least k₂. In addition, U₁ ⊆ V(D − F) ⊆ V₁, so D − F has the property ℍ, because this property is hereditary and V₁ has it.

- If there is a maximal subdigraph F of $D-U_1$ with property $\mathbb E$ of order at least k_2 such that D-F has property $\mathbb H$, then (V(D-F),V(F)) is clearly an $(\mathbb H,\mathbb E)$ - $[k_1,k_2]$ -partition (V_1,V_2) with $U_1\subseteq V_1$.
- Conversely, assume there is an (ℍ, ℍ)-[k₁, k₂]-partition (V₁, V₂) with U₁ ⊆ V₁. Then D⟨V₂⟩ has property ℍ and thus is contained in a maximal subdigraph F of D U₁ with property ℍ. Since F is a superdigraph of D⟨V₂⟩ it has order at least k₂. In addition, U₁ ⊆ V(D F) ⊆ V₁, so D F has the property ℍ, because this property is hereditary and V₁ has it.

One can easily check that the algorithm described in the proof of Theorem 1 runs in time $O(n^{k_1+c})$ for some constant c.

A natural question is then to ask whether the problem could be FPT with respect to (k_1, k_2) , that is, in time $f(k_1, k_2)n^c$ for some constant c and computable function f.

If not, one may ask if it can be solved in FPT time with respect to k_1 or k_2 only, that is, in time $g(k_i)n^{h(k_{3-i})}$ for some computable functions g and h.

One can easily check that the algorithm described in the proof of Theorem 1 runs in time $O(n^{k_1+c})$ for some constant c.

A natural question is then to ask whether the problem could be FPT with respect to (k_1, k_2) , that is, in time $f(k_1, k_2)n^c$ for some constant c and computable function f.

If not, one may ask if it can be solved in FPT time with respect to k_1 or k_2 only, that is, in time $g(k_i)n^{h(k_{3-i})}$ for some computable functions g and h.

One can easily check that the algorithm described in the proof of Theorem 1 runs in time $O(n^{k_1+c})$ for some constant c.

A natural question is then to ask whether the problem could be FPT with respect to (k_1, k_2) , that is, in time $f(k_1, k_2)n^c$ for some constant c and computable function f.

If not, one may ask if it can be solved in FPT time with respect to k_1 or k_2 only, that is, in time $g(k_i)n^{h(k_{3-i})}$ for some computable functions g and h.

A base digraph for NP-completeness proofs

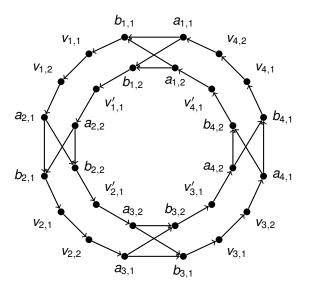


Figure: A ring digraph

For $1 \leq j \leq m$, we associate to the jth clause $C_j = (\ell_{j,1} \vee \ell_{j,2} \vee \ell_{j,3})$ the set W_j consisting of three vertices of $R(\mathcal{F})$ representing the occurrences of the literals of C_j in \mathcal{F} .

Theorem

Let $\mathcal F$ be a 3-SAT formula and let $R(\mathcal F)$ be the corresponding ring digraph. Then the following holds:

- $R(\mathcal{F})$ contains a directed cycle which avoids at least one vertex from each of the sets W_1, \ldots, W_m if and only if \mathcal{F} is a 'Yes'-instance of 3-SAT.
- R(F) contains two disjoint directed cycles R₁, R₂, each of which intersects all the sets W₁,..., W_m if and only if F is a 'Yes'-instance of NAE-3-SAT.

For $1 \le j \le m$, we associate to the jth clause $C_j = (\ell_{j,1} \lor \ell_{j,2} \lor \ell_{j,3})$ the set W_j consisting of three vertices of $R(\mathcal{F})$ representing the occurrences of the literals of C_j in \mathcal{F} .

Theorem

Let \mathcal{F} be a 3-SAT formula and let $R(\mathcal{F})$ be the corresponding ring digraph. Then the following holds:

- $R(\mathcal{F})$ contains a directed cycle which avoids at least one vertex from each of the sets W_1, \ldots, W_m if and only if \mathcal{F} is a 'Yes'-instance of 3-SAT.
- R(F) contains two disjoint directed cycles R₁, R₂, each of which intersects all the sets W₁,..., W_m if and only if F is a 'Yes'-instance of NAE-3-SAT.

Completity for strongly connected input digraphs

$\mathbb{P}_1 \setminus \mathbb{P}_2$	strong	conn.	B ⁺	B-	$\delta \geq 1$	$\delta^+ \geq 1$	$\delta^- \geq 1$	$\delta^0 \geq 1$	A	C	H
strong	NPc	Р	NPc*	NPc*	Р	NPc ^L	NPc ^L	NPc	Р	Р	Р
conn.	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
B ⁺	NPc*	Р	P	NPc*	Р	NPc ^L	Р	NPc ^L	Р	Р	Р
B-	NPc*	Р	NPc*	Р	Р	Р	NPc ^L	NPc ^L	Р	Р	Р
$\delta \geq 1$	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
$\delta^+ \geq 1$	NPc ^R	Р	NPc ^R	Р	Р	Р	NPc	NPc	Р	Р	Р
$\delta^- \geq 1$	NPc ^R	Р	Р	NPc ^R	Р	NPc	Р	NPc	Р	Р	Р
$\delta^0 \geq 1$	NPc	Р	NPc ^R	NPc ^R	Р	NPc	NPc	NPc	Р	Р	Р
A	Р	Р	Р	Р	Р	Р	Р	Р	NPc	Р	NPo
C	Р	Р	P	Р	Р	Р	Р	Р	Р	Р	Р
H	Р	Р	Р	Р	Р	Р	Р	Р	NPc	Р	Р

The legend is the same as in the first table, but we have one more complexity type: NPc*: NP-complete for k_1 , $k_2 \ge 2$, and polynomial-time solvable for $k_1 = 1$ or $k_2 = 1$. We also emphasize with \mathbf{P} , the problems that are polynomial-time solvable on strong digraphs and NP-complete in the general case.

2-partitions of Tournaments

A digraph D is called k-out-critical if $\delta^+(D) = k$ and no subset of it vertices can be removed without decreasing the minimum out-degree of the resulting digraph.

Let $X \subseteq V$ be a set of vertices in a digraph D with minimum out-degree at least k. A set $X' \subseteq V$ is called X-out-critical if $X \subseteq X'$, $\delta^+(D\langle X'\rangle) \ge k$ and $\delta^+(D\langle X'-Z\rangle) < k$ for every $\emptyset \ne Z \subseteq X'-X$.

A vertex $v \in V(T)$ is said to be **k-out-dangerous** if $d^+(v) < 2k - 1$.

2-partitions of Tournaments

A digraph D is called k-out-critical if $\delta^+(D) = k$ and no subset of it vertices can be removed without decreasing the minimum out-degree of the resulting digraph.

Let $X \subseteq V$ be a set of vertices in a digraph D with minimum out-degree at least k. A set $X' \subseteq V$ is called X-out-critical if $X \subseteq X'$, $\delta^+(D\langle X'\rangle) \ge k$ and $\delta^+(D\langle X'-Z\rangle) < k$ for every $\emptyset \ne Z \subseteq X'-X$.

A vertex $v \in V(T)$ is said to be **k-out-dangerous** if $d^+(v) < 2k - 1$.

2-partitions of Tournaments

A digraph D is called k-out-critical if $\delta^+(D) = k$ and no subset of it vertices can be removed without decreasing the minimum out-degree of the resulting digraph.

Let $X \subseteq V$ be a set of vertices in a digraph D with minimum out-degree at least k. A set $X' \subseteq V$ is called X-out-critical if $X \subseteq X'$, $\delta^+(D\langle X'\rangle) \ge k$ and $\delta^+(D\langle X'-Z\rangle) < k$ for every $\emptyset \ne Z \subseteq X'-X$.

A vertex $v \in V(T)$ is said to be **k-out-dangerous** if $d^+(v) < 2k - 1$.

Lemma

Let k be a fixed integer and let D be a semicomplete digraph with minimum out-degree at least k. Then the number of k-out-dangerous vertices of D is at most 4k-3.

Lemma

Let D be a semicomplete digraph such that $\delta^+(D) \ge k$ and let $X \subseteq V(D)$. Then for every X-out-critical set X' in D we have $|X'| \le \frac{k^2 + 3k + 2}{2} + |X|$. In particular every k-out-critical set in D has size at most $\frac{k^2 + 3k + 2}{2}$.

Lemma

Let k be a fixed integer and let D be a semicomplete digraph with minimum out-degree at least k. Then the number of k-out-dangerous vertices of D is at most 4k-3.

Lemma

Let D be a semicomplete digraph such that $\delta^+(D) \ge k$ and let $X \subseteq V(D)$. Then for every X-out-critical set X' in D we have $|X'| \le \frac{k^2 + 3k + 2}{2} + |X|$. In particular every k-out-critical set in D has size at most $\frac{k^2 + 3k + 2}{2}$.

For every fixed integer k there exists a polynomial algorithm that either constructs a $(\delta^+ \geq k, \delta^+ \geq k)$ -partition of a given semicomplete digraph D or correctly outputs that none exists.

Proof:

It suffices to prove that we can test, for a given partition (O_1, O_2) of the out-dangerous vertices, whether there is a solution with $O_i \subseteq V_i$.

For every fixed integer k there exists a polynomial algorithm that either constructs a $(\delta^+ \ge k, \delta^+ \ge k)$ -partition of a given semicomplete digraph D or correctly outputs that none exists.

Proof:

It suffices to prove that we can test, for a given partition (O_1, O_2) of the out-dangerous vertices, whether there is a solution with $O_i \subseteq V_i$.

- Let X be an O_1 -out-critical set such that $X \subseteq V O_2$. If no such X exists, there is no solution with $O_i \subseteq V_i$.
- Starting from the partition $(V_1, V_2) = (X, V X)$, and moving one vertex at a time, move vertices of $V_2 O_2$ which have $d_{T\langle V_2 \rangle}^+(v) < k$ to V_1 .
- If, at any time, this results in a vertex $v \in O_2$ having $d_{T\langle V_2\rangle}^+(v) < k$, or $V_2 = \emptyset$, then there is no good partition with $O_i \subseteq V_i$, = 1,2 and the algorithm terminates.
- Otherwise the algorithm will terminate with $O_2 \subseteq V_2 \neq \emptyset$ and hence it has found an $(\delta^+ \geq k, \delta^+ \geq k)$ -partition (V_1, V_2) with $O_i \subseteq V_i$, i = 1, 2.

- Let X be an O_1 -out-critical set such that $X \subseteq V O_2$. If no such X exists, there is no solution with $O_i \subseteq V_i$.
- Starting from the partition $(V_1, V_2) = (X, V X)$, and moving one vertex at a time, move vertices of $V_2 O_2$ which have $d_{T\langle V_2 \rangle}^+(v) < k$ to V_1 .
- If, at any time, this results in a vertex $v \in O_2$ having $d_{T\langle V_2\rangle}^+(v) < k$, or $V_2 = \emptyset$, then there is no good partition with $O_i \subseteq V_i$, = 1,2 and the algorithm terminates.
- Otherwise the algorithm will terminate with $O_2 \subseteq V_2 \neq \emptyset$ and hence it has found an $(\delta^+ \geq k, \delta^+ \geq k)$ -partition (V_1, V_2) with $O_i \subseteq V_i$, i = 1, 2.

- Let X be an O_1 -out-critical set such that $X \subseteq V O_2$. If no such X exists, there is no solution with $O_i \subseteq V_i$.
- Starting from the partition $(V_1, V_2) = (X, V X)$, and moving one vertex at a time, move vertices of $V_2 O_2$ which have $d_{T\langle V_2 \rangle}^+(v) < k$ to V_1 .
- If, at any time, this results in a vertex $v \in O_2$ having $d_{T\langle V_2\rangle}^+(v) < k$, or $V_2 = \emptyset$, then there is no good partition with $O_i \subseteq V_i$, = 1,2 and the algorithm terminates.
- Otherwise the algorithm will terminate with O₂ ⊆ V₂ ≠ ∅ and hence it has found an (δ⁺ ≥ k, δ⁺ ≥ k)-partition (V₁, V₂) with O_i ⊆ V_i, i = 1, 2.

- Let X be an O_1 -out-critical set such that $X \subseteq V O_2$. If no such X exists, there is no solution with $O_i \subseteq V_i$.
- Starting from the partition $(V_1, V_2) = (X, V X)$, and moving one vertex at a time, move vertices of $V_2 O_2$ which have $d_{T\langle V_2 \rangle}^+(v) < k$ to V_1 .
- If, at any time, this results in a vertex $v \in O_2$ having $d_{T\langle V_2\rangle}^+(v) < k$, or $V_2 = \emptyset$, then there is no good partition with $O_i \subseteq V_i$, = 1,2 and the algorithm terminates.
- Otherwise the algorithm will terminate with $O_2 \subseteq V_2 \neq \emptyset$ and hence it has found an $(\delta^+ \geq k, \delta^+ \geq k)$ -partition (V_1, V_2) with $O_i \subseteq V_i$, i = 1, 2.

Hence, as the vertex that we move does not have k out-neighbours in V_2 , it must have at least k out-neighbours in V_1 , so $\delta^+(D\langle V_1\rangle) \geq k$ will hold throughout the execution of \mathcal{B} .

By Lemma 3, the number of out-dangerous vertices is at most 4k-3 and hence the number of (O_1, O_2) -partitions is at most 2^{4k-3} which is a constant when k is fixed. Furthermore, by Lemma 4, the size of every O_1 -critical set is also bounded by a function of k and hence each (O_1, O_2) -partition induces only a polynomial number of O_1 -critical sets.

Hence, as the vertex that we move does not have k out-neighbours in V_2 , it must have at least k out-neighbours in V_1 , so $\delta^+(D\langle V_1\rangle) \geq k$ will hold throughout the execution of \mathcal{B} .

By Lemma 3, the number of out-dangerous vertices is at most 4k-3 and hence the number of (O_1,O_2) -partitions is at most 2^{4k-3} which is a constant when k is fixed. Furthermore, by Lemma 4, the size of every O_1 -critical set is also bounded by a function of k and hence each (O_1,O_2) -partition induces only a polynomial number of O_1 -critical sets.

Hence, as the vertex that we move does not have k out-neighbours in V_2 , it must have at least k out-neighbours in V_1 , so $\delta^+(D\langle V_1\rangle) \geq k$ will hold throughout the execution of \mathcal{B} .

By Lemma 3, the number of out-dangerous vertices is at most 4k-3 and hence the number of (O_1,O_2) -partitions is at most 2^{4k-3} which is a constant when k is fixed. Furthermore, by Lemma 4, the size of every O_1 -critical set is also bounded by a function of k and hence each (O_1,O_2) -partition induces only a polynomial number of O_1 -critical sets.

Hence, as the vertex that we move does not have k out-neighbours in V_2 , it must have at least k out-neighbours in V_1 , so $\delta^+(D\langle V_1\rangle) \geq k$ will hold throughout the execution of \mathcal{B} .

By Lemma 3, the number of out-dangerous vertices is at most 4k-3 and hence the number of (O_1, O_2) -partitions is at most 2^{4k-3} which is a constant when k is fixed. Furthermore, by Lemma 4, the size of every O_1 -critical set is also bounded by a function of k and hence each (O_1, O_2) -partition induces only a polynomial number of O_1 -critical sets.

Hence, as the vertex that we move does not have k out-neighbours in V_2 , it must have at least k out-neighbours in V_1 , so $\delta^+(D\langle V_1\rangle) \geq k$ will hold throughout the execution of \mathcal{B} .

By Lemma 3, the number of out-dangerous vertices is at most 4k-3 and hence the number of (O_1,O_2) -partitions is at most 2^{4k-3} which is a constant when k is fixed. Furthermore, by Lemma 4, the size of every O_1 -critical set is also bounded by a function of k and hence each (O_1,O_2) -partition induces only a polynomial number of O_1 -critical sets.

Theorem

The following 2-partition problems are \mathcal{NP} -complete for the class of semicomplete digraphs and polynomial for tournaments.

- (a) Partitioning into two strong tournaments.
- (b) Partitioning into two tournaments both of which have minimum out-degree at least one.
- (c) Partitioning into two tournaments so that one has minimum in-degree at least one and the other has minimum out-degree at least one.

Spanning bipartite digraphs

Let D = (V, A) be a digraph. For a given 2-partition (V_1, V_2) of V we denote by $B_D(V_1, V_2)$ the spanning bipartite subdigraph induces by the arcs with one end in V_1 and the other in V_2 .

Observation (Alon): For every k there exists a digraph D with minimum out-degree k such that for every 2-partition (V_1, V_2) of V(D) some vertex of $B_D(V_1, V_2)$ has out-degree zero.

This follows from a construction of Thomassen of k-out-regular digraphs with no even cycle.

Spanning bipartite digraphs

Let D = (V, A) be a digraph. For a given 2-partition (V_1, V_2) of V we denote by $B_D(V_1, V_2)$ the spanning bipartite subdigraph induces by the arcs with one end in V_1 and the other in V_2 .

Observation (Alon): For every k there exists a digraph D with minimum out-degree k such that for every 2-partition (V_1, V_2) of V(D) some vertex of $B_D(V_1, V_2)$ has out-degree zero.

This follows from a construction of Thomassen of k-out-regular digraphs with no even cycle.

Spanning bipartite digraphs

Let D = (V, A) be a digraph. For a given 2-partition (V_1, V_2) of V we denote by $B_D(V_1, V_2)$ the spanning bipartite subdigraph induces by the arcs with one end in V_1 and the other in V_2 .

Observation (Alon): For every k there exists a digraph D with minimum out-degree k such that for every 2-partition (V_1, V_2) of V(D) some vertex of $B_D(V_1, V_2)$ has out-degree zero.

This follows from a construction of Thomassen of k-out-regular digraphs with no even cycle.

Spanning bipartite digraphs of minimum out-degree at least 1

Theorem

It is polynomial to decide whether a given digraph D has a 2-partition (V_1, V_2) so that $B_D(V_1, V_2)$ has minimum out-degree at least one.

Such a partition exists if and only if every terminal strong component contains an even directed cycle.

Theorem

For fixed every choice of natural numbers k_1 , k_2 such that $k_1 + k_2 \ge 3$ it is NP-complete to decide whether a given digraph D has a 2-partition (V_1, V_2) so that in $B_D(V_1, V_2)$ every vertex of V_i has minimum out-degree at least k_i for i = 1, 2.

Spanning bipartite digraphs of minimum out-degree at least 1

Theorem

It is polynomial to decide whether a given digraph D has a 2-partition (V_1, V_2) so that $B_D(V_1, V_2)$ has minimum out-degree at least one.

Such a partition exists if and only if every terminal strong component contains an even directed cycle.

Theorem

For fixed every choice of natural numbers k_1 , k_2 such that $k_1 + k_2 \ge 3$ it is NP-complete to decide whether a given digraph D has a 2-partition (V_1, V_2) so that in $B_D(V_1, V_2)$ every vertex of V_i has minimum out-degree at least k_i for i = 1, 2.

Spanning strong bipartite digraphs

Theorem

For every non-negative integer K there exists an eulerian K-strong digraph D such that for every 2-partition (V_1, V_2) the bipartite digraph $B_D(V_1, V_2)$ is not strong.

Theorem

For every non-negative integer K it is NP-complete to decide whether a given K-strong eulerian digraph D has a 2-partition (V_1, V_2) such that the bipartite digraph $B_D(V_1, V_2)$ is strong.

Spanning strong bipartite digraphs

Theorem

For every non-negative integer K there exists an eulerian K-strong digraph D such that for every 2-partition (V_1, V_2) the bipartite digraph $B_D(V_1, V_2)$ is not strong.

Theorem

For every non-negative integer K it is NP-complete to decide whether a given K-strong eulerian digraph D has a 2-partition (V_1, V_2) such that the bipartite digraph $B_D(V_1, V_2)$ is strong.

Out-colourings of bipartite tournaments

Let D be a digraph. A k-colouring of V(D) is a **k-out-colouring** if no out-neighbourhood is monochromatic.

Proposition

For all possitive integers k, r there exists a bipartite tournament $B_{k,r}$ with $\delta^+(B_{k,r}) = k$ which has no r-out-colouring.

Theorem

It is NP-complete to decide whether a bipartite tournament admits a 2-out-colouring

Out-colourings of bipartite tournaments

Let D be a digraph. A k-colouring of V(D) is a **k-out-colouring** if no out-neighbourhood is monochromatic.

Proposition

For all possitive integers k, r there exists a bipartite tournament $B_{k,r}$ with $\delta^+(B_{k,r}) = k$ which has no r-out-colouring.

Theorem

It is NP-complete to decide whether a bipartite tournament admits a 2-out-colouring

Out-colourings of tournaments

Theorem

Every tournament T with $\delta^+(T) \ge 3$ different from the Paley tournament P_7 admits a 2-out-colouring.

Problem

Does there exists a function f(k) such that every tournament T with $\delta^+(T) \ge f(k)$ has a 2-partition (V_1, V_2) such that $\delta^+(D\langle V_i \rangle) \ge k$ for i = 1, 2 and $\delta^+(B_D(V_1, V_2)) \ge k$?

Update: YES the function exists (from discussion with Alon).

Out-colourings of tournaments

Theorem

Every tournament T with $\delta^+(T) \ge 3$ different from the Paley tournament P_7 admits a 2-out-colouring.

Problem

Does there exists a function f(k) such that every tournament T with $\delta^+(T) \ge f(k)$ has a 2-partition (V_1, V_2) such that $\delta^+(D\langle V_i \rangle) \ge k$ for i = 1, 2 and $\delta^+(B_D(V_1, V_2)) \ge k$?

Update: YES the function exists (from discussion with Alon).

Thank you very much for your attention!

*

Jørgen Bang-Jensen · University of Southern Denmark, Odense

jbj@imada.sdu.dk