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Let P1,P2 be two (di)graph properties

A (P1,P2)-partition of a (di)graph D is a 2-partition (V1,V2) of
V (D) such that V1 induces a (di)graph with property P1 and V2
a (di)graph with property P2.

For example a (δ+ ≥ 1, δ+ ≥ 1)-partition is a 2-partition of a
digraph where each partition induces a subdigraph with
minimum out-degree at least 1.

Similarly a (strong,acyclic)-partition is a 2-partition (V1,V2)
such that D〈V1〉 is strongly connected and D〈V2〉 is an avyclic
digraph.
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Examples for undirected graphs:

(independent,complete)-partition split graphs
(independent,independent)-partition bipartite graphs
(complete,complete)-partition complements of bipartite
graphs
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To avoid trivial partitions where one vertex on one side is
enough, we consider [k1, k2]-partitions, that is, partitions
(V1,V2) of V such that |V1| ≥ k1 and |V2| ≥ k2.

For given positive integers k1, k2 the (P1,P2)-[k1, k2]-partition
problem consists in deciding whether a given digraph D has a
(P1,P2)-[k1, k2]-partition.

When k1 = k2 = 1 we usually just write (P1,P2)-partition.
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Let H and E denote the following two sets of natural properties
of digraphs all of which can be checked in polynomial time:

H ={acyclic, complete, arcless, oriented (no 2-cycle),
semicomplete, symmetric, tournament}

These properties are all hereditary, that is, closed under
induced subdigraphs

E ={strongly connected, connected, minimum out-degree at
least 1, minimum in-degree at least 1, minimum semi-degree at
least 1, minimum degree at least 1, having an out-branching,
having an in-branching}.

These properties are all enumerable, that is, one can
enumerate in polynomial time all its inclusion-wise maximal
subdigraphs having the property.
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Complexity for arbitrary input digraphs

P1 \ P2 strong conn. B+ B− δ ≥ 1 δ+ ≥ 1 δ− ≥ 1 δ0 ≥ 1 A C X
strong NPc NPcL NPcL NPcL NPcL NPcL NPcL NPc P P P
conn. NPcR P P P P NPc NPc NPc P P P
B+ NPcR P P NPc P NPc P NPc P P P
B− NPcR P NPc P P P NPc NPc P P P
δ ≥ 1 NPcR P P P P NPc NPc NPc P P P
δ+ ≥ 1 NPcR NPc NPc P NPc P NPc NPc P P P
δ− ≥ 1 NPcR NPc P NPc NPc NPc P NPc P P P
δ0 ≥ 1 NPc NPc NPc NPc NPc NPc NPc NPc P P P
A P P P P P P P P NPc P NPc
C P P P P P P P P P P P
X P P P P P P P P NPc P P

Properties: conn. : connected; B+: out-branchable; B− : in-branchable; A: acyclic; C: complete; X: any property in
‘being independent’, ‘being oriented’, ‘being semi-complete’, ‘being a tournament’ and ‘being symmetric’.
Complexities: P: polynomial-time solvable; NPc : NP-complete for all values of k1, k2;
NPcL : NP-complete for k1 ≥ 2, and polynomial-time solvable for k1 = 1.

NPcR : NP-complete for k2 ≥ 2, and polynomial-time solvable for k2 = 1.
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Theorem

Let H be a checkable hereditary property, E be an enumerable
property, and let k1 and k2 be two positive integers. One can
decide in polynomial time whether a given digraph D has a
(H,E)-[k1, k2]-partition.

Proof: We shall describe a polynomial-time procedure that for
any fixed set U1 of k1 vertices of D decides whether D has an
(H,E)-[k1, k2]-partition (V1,V2) with U1 ⊆ V1.

Then applying this algorithm to the O(nk1) k1-subsets of V (D),
we obtain the desired algorithm.
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First, we enumerate the maximal subdigraphs of D − U1
with property E. This can be done in polynomial time
because E is enumerable.
Now for each such subdigraph F , (there is a polynomial
number of them), we check whether |F | ≥ k2 and if D − F
has property H. This can be done in polynomial time
because H is checkable.
In the affirmative, we return ‘Yes’, and in the negative we
proceed to the next subdigraph.
If no more subdigraph remains, we return ‘No’.

The above procedure clearly runs in polynomial time.
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We need to show that D has an (H,E)-[k1, k2]-partition (V1,V2)
with U1 ⊆ V1 if and only if there is a maximal subdigraph F of
D − U1 with property E of order at least k2 such that D − F has
property H.

If there is a maximal subdigraph F of D − U1 with property
E of order at least k2 such that D − F has property H, then
(V (D − F ),V (F )) is clearly an (H,E)-[k1, k2]-partition
(V1,V2) with U1 ⊆ V1.
Conversely, assume there is an (H,E)-[k1, k2]-partition
(V1,V2) with U1 ⊆ V1. Then D〈V2〉 has property E and
thus is contained in a maximal subdigraph F of D−U1 with
property E. Since F is a superdigraph of D〈V2〉 it has order
at least k2. In addition, U1 ⊆ V (D − F ) ⊆ V1, so D − F has
the property H, because this property is hereditary and V1
has it.
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One can easily check that the algorithm described in the proof
of Theorem 1 runs in time O(nk1+c) for some constant c.

A natural question is then to ask whether the problem could be
FPT with respect to (k1, k2), that is, in time f (k1, k2)nc for some
constant c and computable function f .

If not, one may ask if it can be solved in FPT time with respect
to k1 or k2 only, that is, in time g(ki)nh(k3−i ) for some
computable functions g and h.
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A base digraph for NP-completeness proofs
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Figure : A ring digraph
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For 1 ≤ j ≤ m, we associate to the j th clause
Cj = (`j,1 ∨ `j,2 ∨ `j,3) the set Wj consisting of three vertices of
R(F) representing the occurrences of the literals of Cj in F .

Theorem

Let F be a 3-SAT formula and let R(F) be the corresponding
ring digraph. Then the following holds:

R(F) contains a directed cycle which avoids at least one
vertex from each of the sets W1, . . . ,Wm if and only if F is
a ‘Yes’-instance of 3-SAT.
R(F) contains two disjoint directed cycles R1,R2, each of
which intersects all the sets W1, . . . ,Wm if and only if F is
a ‘Yes’-instance of NAE-3-SAT.
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Completity for strongly connected input digraphs

P1 \ P2 strong conn. B+ B− δ ≥ 1 δ+ ≥ 1 δ− ≥ 1 δ0 ≥ 1 A C H
strong NPc P NPc∗ NPc∗ P NPcL NPcL NPc P P P
conn. P P P P P P P P P P P
B+ NPc∗ P P NPc∗ P NPcL P NPcL P P P
B− NPc∗ P NPc∗ P P P NPcL NPcL P P P
δ ≥ 1 P P P P P P P P P P P
δ+ ≥ 1 NPcR P NPcR P P P NPc NPc P P P
δ− ≥ 1 NPcR P P NPcR P NPc P NPc P P P
δ0 ≥ 1 NPc P NPcR NPcR P NPc NPc NPc P P P
A P P P P P P P P NPc P NPc
C P P P P P P P P P P P
H P P P P P P P P NPc P P

The legend is the same as in the first table, but we have one more complexity type: NPc∗ : NP-complete for

k1, k2 ≥ 2, and polynomial-time solvable for k1 = 1 or k2 = 1. We also emphasize with P, the problems that are

polynomial-time solvable on strong digraphs and NP-complete in the general case.
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2-partitions of Tournaments

A digraph D is called k -out-critical if δ+(D) = k and no subset
of it vertices can be removed without decreasing the minimum
out-degree of the resulting digraph.

Let X ⊆ V be a set of vertices in a digraph D with minimum
out-degree at least k . A set X ′ ⊆ V is called X -out-critical if
X ⊆ X ′, δ+(D〈X ′〉) ≥ k and δ+(D〈X ′ − Z 〉) < k for every
∅ 6= Z ⊆ X ′ − X .
A vertex v ∈ V (T ) is said to be k-out-dangerous if
d+(v) < 2k − 1.
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Lemma

Let k be a fixed integer and let D be a semicomplete digraph
with minimum out-degree at least k. Then the number of
k-out-dangerous vertices of D is at most 4k − 3.

Lemma

Let D be a semicomplete digraph such that δ+(D) ≥ k and let
X ⊆ V (D). Then for every X-out-critical set X ′ in D we have
|X ′| ≤ k2+3k+2

2 + |X |. In particular every k-out-critical set in D
has size at most k2+3k+2

2 .
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Theorem

For every fixed integer k there exists a polynomial algorithm
that either constructs a (δ+ ≥ k , δ+ ≥ k)-partition of a given
semicomplete digraph D or correctly outputs that none exists.

Proof:
It suffices to prove that we can test, for a given partition
(O1,O2) of the out-dangerous vertices, whether there is a
solution with Oi ⊆ Vi .
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Let X be an O1-out-critical set such that X ⊆ V −O2. If no
such X exists, there is no solution with Oi ⊆ Vi .
Starting from the partition (V1,V2) = (X ,V − X ), and
moving one vertex at a time, move vertices of V2 −O2
which have d+

T 〈V2〉
(v) < k to V1.

If, at any time, this results in a vertex v ∈ O2 having
d+

T 〈V2〉
(v) < k , or V2 = ∅, then there is no good partition

with Oi ⊆ Vi , = 1,2 and the algorithm terminates.
Otherwise the algorithm will terminate with O2 ⊆ V2 6= ∅
and hence it has found an (δ+ ≥ k , δ+ ≥ k)-partition
(V1,V2) with Oi ⊆ Vi , i = 1,2.

Jørgen Bang-Jensen 2-partitions of digraphs



Let X be an O1-out-critical set such that X ⊆ V −O2. If no
such X exists, there is no solution with Oi ⊆ Vi .
Starting from the partition (V1,V2) = (X ,V − X ), and
moving one vertex at a time, move vertices of V2 −O2
which have d+

T 〈V2〉
(v) < k to V1.

If, at any time, this results in a vertex v ∈ O2 having
d+

T 〈V2〉
(v) < k , or V2 = ∅, then there is no good partition

with Oi ⊆ Vi , = 1,2 and the algorithm terminates.
Otherwise the algorithm will terminate with O2 ⊆ V2 6= ∅
and hence it has found an (δ+ ≥ k , δ+ ≥ k)-partition
(V1,V2) with Oi ⊆ Vi , i = 1,2.

Jørgen Bang-Jensen 2-partitions of digraphs



Let X be an O1-out-critical set such that X ⊆ V −O2. If no
such X exists, there is no solution with Oi ⊆ Vi .
Starting from the partition (V1,V2) = (X ,V − X ), and
moving one vertex at a time, move vertices of V2 −O2
which have d+

T 〈V2〉
(v) < k to V1.

If, at any time, this results in a vertex v ∈ O2 having
d+

T 〈V2〉
(v) < k , or V2 = ∅, then there is no good partition

with Oi ⊆ Vi , = 1,2 and the algorithm terminates.
Otherwise the algorithm will terminate with O2 ⊆ V2 6= ∅
and hence it has found an (δ+ ≥ k , δ+ ≥ k)-partition
(V1,V2) with Oi ⊆ Vi , i = 1,2.

Jørgen Bang-Jensen 2-partitions of digraphs



Let X be an O1-out-critical set such that X ⊆ V −O2. If no
such X exists, there is no solution with Oi ⊆ Vi .
Starting from the partition (V1,V2) = (X ,V − X ), and
moving one vertex at a time, move vertices of V2 −O2
which have d+

T 〈V2〉
(v) < k to V1.

If, at any time, this results in a vertex v ∈ O2 having
d+

T 〈V2〉
(v) < k , or V2 = ∅, then there is no good partition

with Oi ⊆ Vi , = 1,2 and the algorithm terminates.
Otherwise the algorithm will terminate with O2 ⊆ V2 6= ∅
and hence it has found an (δ+ ≥ k , δ+ ≥ k)-partition
(V1,V2) with Oi ⊆ Vi , i = 1,2.

Jørgen Bang-Jensen 2-partitions of digraphs



The correctness of B follows from the fact that we only move
vertices that are not dangerous and each such vertex has at
least 2k − 1 out-neighbours in D.

Hence, as the vertex that we move does not have k
out-neighbours in V2, it must have at least k out-neighbours in
V1, so δ+(D〈V1〉) ≥ k will hold throughout the execution of B.

By Lemma 3, the number of out-dangerous vertices is at most
4k − 3 and hence the number of (O1,O2)-partitions is at most
24k−3 which is a constant when k is fixed. Furthermore, by
Lemma 4, the size of every O1-critical set is also bounded by a
function of k and hence each (O1,O2)-partition induces only a
polynomial number of O1-critical sets.
Thus we obtain the desired polynomial time algorithm by
running the subalgorithm B for all possible partitions (O1,O2) of
the out-dangerous vertices and all possible O1-critical sets.
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Theorem

The following 2-partition problems are NP-complete for the
class of semicomplete digraphs and polynomial for
tournaments.
(a) Partitioning into two strong tournaments.
(b) Partitioning into two tournaments both of which have

minimum out-degree at least one.
(c) Partitioning into two tournaments so that one has minimum

in-degree at least one and the other has minimum
out-degree at least one.
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Spanning bipartite digraphs

Let D = (V ,A) be a digraph. For a given 2-partition (V1,V2) of
V we denote by BD(V1,V2) the spanning bipartite subdigraph
induces by the arcs with one end in V1 and the other in V2.

Observation (Alon): For every k there exists a digraph D with
minimum out-degree k such that for every 2-partition (V1,V2) of
V (D) some vertex of BD(V1,V2) has out-degree zero.

This follows from a construction of Thomassen of k -out-regular
digraphs with no even cycle.
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Spanning bipartite digraphs of minimum out-degree at
least 1

Theorem
It is polynomial to decide whether a given digraph D has a
2-partition (V1,V2) so that BD(V1,V2) has minimum out-degree
at least one.

Such a partition exists if and only if every terminal strong
component contains an even directed cycle.

Theorem
For fixed every choice of natural numbers k1, k2 such that
k1 + k2 ≥ 3 it is NP-complete to decide whether a given digraph
D has a 2-partition (V1,V2) so that in BD(V1,V2) every vertex of
Vi has minimum out-degree at least ki for i = 1,2.
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Spanning strong bipartite digraphs

Theorem
For every non-negative integer K there exists an eulerian
K -strong digraph D such that for every 2-partition (V1,V2) the
bipartite digraph BD(V1,V2) is not strong.

Theorem
For every non-negative integer K it is NP-complete to decide
whether a given K -strong eulerian digraph D has a 2-partition
(V1,V2) such that the bipartite digraph BD(V1,V2) is strong.
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Out-colourings of bipartite tournaments

Let D be a digraph. A k -colouring of V (D) is a k-out-colouring
if no out-neighbourhood is monochromatic.

Proposition
For all possitive integers k , r there exists a bipartite tournament
Bk ,r with δ+(Bk ,r ) = k which has no r-out-colouring.

Theorem
It is NP-complete to decide whether a bipartite tournament
admits a 2-out-colouring
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Out-colourings of tournaments

Theorem
Every tournament T with δ+(T ) ≥ 3 different from the Paley
tournament P7 admits a 2-out-colouring.

Problem
Does there exists a function f (k) such that every tournament T
with δ+(T ) ≥ f (k) has a 2-partition (V1,V2) such that
δ+(D〈Vi〉) ≥ k for i = 1,2 and δ+(BD(V1,V2)) ≥ k?

Update: YES the function exists (from
discussion with Alon).
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Thank you very much for your attention!

*

Jørgen Bang-Jensen · University of Southern Denmark,
Odense

jbj@imada.sdu.dk
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