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Different Problems ⊆ CSP

• Graph k-Coloring, k-SAT, k-Clique, Graph Homomorphism, 
Conjunctive Database Query, …. 

• All these problems (and many more) can be seen as special 
cases of a very general problem, the Constraint Satisfaction 
Problem

• Introduced by Montanari 1974, has been focus of intensive 
research (TCS, AI, Combinatorics, Algebra,…) 



The Constraint Satisfaction 
Problem (CSP)

• Instance: I=(V,D,C) where 

• V is a finite set of variables 

• domain D is a finite set of values 

• C is a finite set constraints

• f:V → D satisfies C=((x1,…,xr),Rr) 
if (f(x1),…,f(xr)) ∈ Rr
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Generalizes to: partial assignment f 
applied to CSP instance I yields a 

new CSP instance I[f]



Complexity of CSP
• CSP is NP-complete (even restricted to Boolean 

domain or binary constraints) 

• Tractable subproblems (islands of tractability) 

• language restrictions: how do the constraint 
relations look like, no matter how the variables and 
constraints interact 

• structural restrictions: how do variables and 
constraints interact, no matter how the constraint 
relations look like



Language Restrictions
• CSP(Γ) consists of all CSP instances whose constraints 

use relations from the set Γ (called the constraint 
language) 

• Schaefer’s Dichotomy Theorem (1978) (1800 citations)  
For every Boolean Γ , CSP(Γ)  is either tractable or NPc. 

• Feder-Vadi-Conjecture (1993) (2000 citations)  
For every Γ , CSP(Γ)  is either tractable or NPc  (there 
circulate rumours that the conjecture has been 
established) 



How to deal with instances that are 
close to an island of tractability?



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor
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Two phases-approach
• Phase 1 (backdoor detection): 

given a CSP instance and an upper 
bound k, find a backdoor of size ≤ k 
or decide that it doesn’t exist.

• Phase 2 (backdoor evaluation): 
given a CSP instance and a 
backdoor of size ≤ k,  solve the 
CSP instance.

solve |D|k many 
tractable instances 

challenging 
algorithmic 

problem

when FPT?

FPT if D is constant



backdoor can be a needle 
in the haystack!



Basic Result
• If domain size is unbounded, then backdoor evaluation is not FPT  

• If arity is unbounded, then backdoor detection is not FPT (unless 
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Branching

• If B is not a strong backdoor, then there is some 
f:B→D such that I[f] ∉ CSP(Γ1 )∪⋯∪ CSP(Γr ). 

• In particular, for each i there exists some ci ∈ I[f] such 
that ci ∉ Γi 

• Now branch into B ∪ {v} for each variable v that 
appears in ci  for some i.

∅

B
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Extensions: Scattered 
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Iterative compression, tight separator sequences, etc. 

Notation: CSP(Γ1) ⊕⋯⊕ CSP(Γr)
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Tractable CSP due to 
structural restrictions

• Constraint graph (aka primal graph) of a CSP instance 

• vertices: variables 

• edges: two variables are adjacent off they appear 
together in a constraint

• Freuder 1982: CSP is polynomial time tractable if the 
treewidth of the constraint graph is constant. (870 citations)

• Actually: FPT by treewidth if domain is bounded
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backdoor treewidth

x y z u v wtorso graph:

Γ Γ Γ

x y z u v w

the backdoor treewidth wrt Γ is the minimum treewidth over 
the torso graphs of all strong backdoor sets into CSP(Γ)

backdoor treewidth ≤ min{ treewidth, backdoor size into CSP(Γ) } 



Results

• Finding the backdoor that minimises the backdoor treewidth is FPT.  
 
Algorithm based on ideas related to “boundaried graphs”, 
“replacement framework”, and “recursive-understanding technique”.  
Ultimately it relies on a lemma stating a finite state property. 

• Once the backdoor is found, the instance can be compiled into a 
CSP of bounded treewidth, and then solved using Freuder’s 
algorithm in time Dk

THM: CSP is FPT parameterised by the backdoor 
treewidth wrt Γ for any finite, recognisable, and 
tractable Γ.



Future work

• Extend result on scattered base classes to infinite 
sequences of constraint languages Γ1, Γ2, Γ3, Γ4, … 

• Extend backdoor treewidth to other graph 
invariants of torso graph wrt specific constraint 
languages 

• Avoid detection and solve directly



Grisha, happy 
B-day!


