
Backdoors for 
Constraint Satisfaction

Stefan Szeider 
TU Wien, Vienna, Austria

Gregory Gutin's 60th Birthday Conference 
January 7th & 8th 2017





…every stone  
a theorem



Gregory and Constraint 
Satisfaction

Gregory has published several 
papers on constraint satisfaction 

problems (Max-r-CSP, Max-
Permutation-CSP, Workflow-CSP)



Joint work with  
Robert Ganian, Serge Gaspers, Neeldhara Misra, 

Sebastian Ordyniak, M.S. Ramanujan, and Standa Živný

Backdoors for Constraint 
Satisfaction



Different Problems ⊆ CSP

• Graph k-Coloring, k-SAT, k-Clique, Graph Homomorphism, 
Conjunctive Database Query, …. 

• All these problems (and many more) can be seen as special 
cases of a very general problem, the Constraint Satisfaction 
Problem

• Introduced by Montanari 1974, has been focus of intensive 
research (TCS, AI, Combinatorics, Algebra,…) 



The Constraint Satisfaction 
Problem (CSP)

• Instance: I=(V,D,C) where 

• V is a finite set of variables 

• domain D is a finite set of values 

• C is a finite set constraints

• f:V → D satisfies C=((x1,…,xr),Rr) 
if (f(x1),…,f(xr)) ∈ Rr

u v

Red Blue

Red Green

Blue Red

Blue Green

Green Red

Green Blue

A constraint for  
3-coloring



instantiating variables
u v w

1 1 1

1 0 1

0 1 1

0 0 1

set u=1



instantiating variables
u v w

1 1 1

1 0 1

0 1 1

0 0 1

set u=1



instantiating variables
u v w

1 1 1

1 0 1

0 1 1

0 0 1

set u=1



instantiating variables
u v w

1 1 1

1 0 1

0 1 1

0 0 1

set u=1



instantiating variables
u v w

1 1 1

1 0 1

0 1 1

0 0 1

set u=1

v w

1 1

0 1



instantiating variables
u v w

1 1 1

1 0 1

0 1 1

0 0 1

set u=1

v w

1 1

0 1

Generalizes to: partial assignment f 
applied to CSP instance I yields a 

new CSP instance I[f]



Complexity of CSP
• CSP is NP-complete (even restricted to Boolean 

domain or binary constraints) 

• Tractable subproblems (islands of tractability) 

• language restrictions: how do the constraint 
relations look like, no matter how the variables and 
constraints interact 

• structural restrictions: how do variables and 
constraints interact, no matter how the constraint 
relations look like



Language Restrictions
• CSP(Γ) consists of all CSP instances whose constraints 

use relations from the set Γ (called the constraint 
language) 

• Schaefer’s Dichotomy Theorem (1978) (1800 citations)  
For every Boolean Γ , CSP(Γ)  is either tractable or NPc. 

• Feder-Vadi-Conjecture (1993) (2000 citations)  
For every Γ , CSP(Γ)  is either tractable or NPc  (there 
circulate rumours that the conjecture has been 
established) 



How to deal with instances that are 
close to an island of tractability?



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables

 x   

y    

z    



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables

x=0

y=0

z=1



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables

x=0

y=0

z=1

x=0

y=1

z=0



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables

x=0

y=0

z=1

x=0

y=1

z=0

x=0

y=1

z=1



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables

x=0

y=0

z=1

x=0

y=1

z=0

x=0

y=1

z=1

x=1

y=0

z=0



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables

x=0

y=0

z=1

x=0

y=1

z=0

x=0

y=1

z=1

x=1

y=0

z=0

x=1

y=0

z=1



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables

x=0

y=0

z=1

x=0

y=1

z=0

x=0

y=1

z=1

x=1

y=0

z=0

x=1

y=0

z=1

x=1

y=1

z=0



Backdoors

• A strong backdoor of a CSP instance into an island of tractability C is a set 
B of variables such that for each possible instantiation of the variables in 
B, the reduced instance belongs to C

• Call C the base class of the backdoor 

• Backdoors where introduced by [Williams, Gomes, Selman 2003] 

• Distance to island: size of smallest backdoor

Γ
x=0

y=0

z=0

Instance belongs to CSP(Γ) for 
all possible instantiations of 

backdoor variables

x=0

y=0

z=1

x=0

y=1

z=0

x=0

y=1

z=1

x=1

y=0

z=0

x=1

y=0

z=1

x=1

y=1

z=0

x=1

y=1

z=1



Two phases-approach



Two phases-approach
• Phase 1 (backdoor detection): 

given a CSP instance and an upper 
bound k, find a backdoor of size ≤ k 
or decide that it doesn’t exist.



Two phases-approach
• Phase 1 (backdoor detection): 

given a CSP instance and an upper 
bound k, find a backdoor of size ≤ k 
or decide that it doesn’t exist.

• Phase 2 (backdoor evaluation): 
given a CSP instance and a 
backdoor of size ≤ k,  solve the 
CSP instance.



Two phases-approach
• Phase 1 (backdoor detection): 

given a CSP instance and an upper 
bound k, find a backdoor of size ≤ k 
or decide that it doesn’t exist.

• Phase 2 (backdoor evaluation): 
given a CSP instance and a 
backdoor of size ≤ k,  solve the 
CSP instance.

solve |D|k many 
tractable instances 



Two phases-approach
• Phase 1 (backdoor detection): 

given a CSP instance and an upper 
bound k, find a backdoor of size ≤ k 
or decide that it doesn’t exist.

• Phase 2 (backdoor evaluation): 
given a CSP instance and a 
backdoor of size ≤ k,  solve the 
CSP instance.

solve |D|k many 
tractable instances 

FPT if D is constant



Two phases-approach
• Phase 1 (backdoor detection): 

given a CSP instance and an upper 
bound k, find a backdoor of size ≤ k 
or decide that it doesn’t exist.

• Phase 2 (backdoor evaluation): 
given a CSP instance and a 
backdoor of size ≤ k,  solve the 
CSP instance.

solve |D|k many 
tractable instances 

challenging 
algorithmic 

problem

FPT if D is constant



Two phases-approach
• Phase 1 (backdoor detection): 

given a CSP instance and an upper 
bound k, find a backdoor of size ≤ k 
or decide that it doesn’t exist.

• Phase 2 (backdoor evaluation): 
given a CSP instance and a 
backdoor of size ≤ k,  solve the 
CSP instance.

solve |D|k many 
tractable instances 

challenging 
algorithmic 

problem

when FPT?

FPT if D is constant



backdoor can be a needle 
in the haystack!



Basic Result
• If domain size is unbounded, then backdoor evaluation is not FPT  

• If arity is unbounded, then backdoor detection is not FPT (unless 
FPT=W[2])  by standard reduction from HS 

• Thus, for CSP(Γ) we must restrict ourselves to finite constraint 
languages Γ 

• CSP(Γ) recognisable in poly time (Γ is recognizable) 

• CSP(Γ) tractable in poly time (Γ is tractable)



Basic Result
• If domain size is unbounded, then backdoor evaluation is not FPT  

• If arity is unbounded, then backdoor detection is not FPT (unless 
FPT=W[2])  by standard reduction from HS 

• Thus, for CSP(Γ) we must restrict ourselves to finite constraint 
languages Γ 

• CSP(Γ) recognisable in poly time (Γ is recognizable) 

• CSP(Γ) tractable in poly time (Γ is tractable)

THM: CSP is FPT parameterised by the size of a 
smallest backdoor into CSP(Γ) for any finite, 
recognisable, and tractable Γ.



Basic Result
• If domain size is unbounded, then backdoor evaluation is not FPT  

• If arity is unbounded, then backdoor detection is not FPT (unless 
FPT=W[2])  by standard reduction from HS 

• Thus, for CSP(Γ) we must restrict ourselves to finite constraint 
languages Γ 

• CSP(Γ) recognisable in poly time (Γ is recognizable) 

• CSP(Γ) tractable in poly time (Γ is tractable)

THM: CSP is FPT parameterised by the size of a 
smallest backdoor into CSP(Γ) for any finite, 
recognisable, and tractable Γ.

bounded search tree



Extensions: Heterogeneous 
base classes

Γ1

x=1

y=0

z=1

Each assignment to backdoor 
can put the formula on a 

different island
Can yield arbitrarily smaller 

backdoors

notation: CSP(Γ1 )∪⋯∪ CSP(Γr )



Extensions: Heterogeneous 
base classes

Γ1

x=1

y=0

z=1

Γ2

x=0

y=1

z=1

Each assignment to backdoor 
can put the formula on a 

different island
Can yield arbitrarily smaller 

backdoors

notation: CSP(Γ1 )∪⋯∪ CSP(Γr )



Extensions: Heterogeneous 
base classes

Γ1

x=1

y=0

z=1

Each assignment to backdoor 
can put the formula on a 

different island
Can yield arbitrarily smaller 

backdoors

notation: CSP(Γ1 )∪⋯∪ CSP(Γr )



Extensions: Heterogeneous 
base classes

Γ1

x=1

y=0

z=1

Each assignment to backdoor 
can put the formula on a 

different island

THM: CSP is FPT parameterised by the size of a 
smallest backdoor into CSP(Γ1 )∪⋯∪ CSP(Γr )  
for Γi finite, recognizable, and tractable.

Can yield arbitrarily smaller 
backdoors

notation: CSP(Γ1 )∪⋯∪ CSP(Γr )



Extensions: Heterogeneous 
base classes

Γ1

x=1

y=0

z=1

Each assignment to backdoor 
can put the formula on a 

different island

THM: CSP is FPT parameterised by the size of a 
smallest backdoor into CSP(Γ1 )∪⋯∪ CSP(Γr )  
for Γi finite, recognizable, and tractable.

Can yield arbitrarily smaller 
backdoors

bounded search tree

notation: CSP(Γ1 )∪⋯∪ CSP(Γr )



Branching

• If B is not a strong backdoor, then there is some 
f:B→D such that I[f] ∉ CSP(Γ1 )∪⋯∪ CSP(Γr ). 

• In particular, for each i there exists some ci ∈ I[f] such 
that ci ∉ Γi 

• Now branch into B ∪ {v} for each variable v that 
appears in ci  for some i.

∅

B



Extensions: Scattered 
base classes

Γ2

Γ1

Γ3

x=1

y=0

z=1

u=1

Each connected component of 
reduced instance may belong to 

different island
Can yield arbitrarily smaller backdoors 

than heterogeneous islands

Notation: CSP(Γ1) ⊕⋯⊕ CSP(Γr)



Extensions: Scattered 
base classes

Γ2

Γ1

Γ3

x=1

y=0

z=1

u=1

Each connected component of 
reduced instance may belong to 

different island
Can yield arbitrarily smaller backdoors 

than heterogeneous islands

Γ1

Γ2

Γ3

x=0

y=1

z=0

u=0

Notation: CSP(Γ1) ⊕⋯⊕ CSP(Γr)



Extensions: Scattered 
base classes

Γ2

Γ1

Γ3

x=1

y=0

z=1

u=1

Each connected component of 
reduced instance may belong to 

different island
Can yield arbitrarily smaller backdoors 

than heterogeneous islands

THM: CSP is FPT parameterised by the size of a 
smallest backdoor into CSP(Γ1) ⊕⋯⊕ CSP(Γr)  
for Γi finite, recognizable, tractable, 

and closed under partial assignments.

Γ1

Γ2

Γ3

x=0

y=1

z=0

u=0

Notation: CSP(Γ1) ⊕⋯⊕ CSP(Γr)



Extensions: Scattered 
base classes

Γ2

Γ1

Γ3

x=1

y=0

z=1

u=1

Each connected component of 
reduced instance may belong to 

different island
Can yield arbitrarily smaller backdoors 

than heterogeneous islands

THM: CSP is FPT parameterised by the size of a 
smallest backdoor into CSP(Γ1) ⊕⋯⊕ CSP(Γr)  
for Γi finite, recognizable, tractable, 

and closed under partial assignments.

Γ1

Γ2

Γ3

x=0

y=1

z=0

u=0

Iterative compression, tight separator sequences, etc. 

Notation: CSP(Γ1) ⊕⋯⊕ CSP(Γr)



Tractable CSP due to 
structural restrictions



Tractable CSP due to 
structural restrictions

• Constraint graph (aka primal graph) of a CSP instance 

• vertices: variables 

• edges: two variables are adjacent off they appear 
together in a constraint



Tractable CSP due to 
structural restrictions

• Constraint graph (aka primal graph) of a CSP instance 

• vertices: variables 

• edges: two variables are adjacent off they appear 
together in a constraint

• Freuder 1982: CSP is polynomial time tractable if the 
treewidth of the constraint graph is constant. (870 citations)



Tractable CSP due to 
structural restrictions

• Constraint graph (aka primal graph) of a CSP instance 

• vertices: variables 

• edges: two variables are adjacent off they appear 
together in a constraint

• Freuder 1982: CSP is polynomial time tractable if the 
treewidth of the constraint graph is constant. (870 citations)

• Actually: FPT by treewidth if domain is bounded



Incomparable parameters

size of 
backdoor to 

CSP(Γ) 

treewidth of 
constraint 

graph



Incomparable parameters

size of 
backdoor to 

CSP(Γ) 

treewidth of 
constraint 

graph

backdoor treewidth wrt Γ



backdoor treewidth

Γ Γ Γ

x y z u v w



backdoor treewidth

x y z u v wtorso graph:

Γ Γ Γ

x y z u v w



backdoor treewidth

x y z u v wtorso graph:

Γ Γ Γ

x y z u v w

the backdoor treewidth wrt Γ is the minimum treewidth over 
the torso graphs of all strong backdoor sets into CSP(Γ)



backdoor treewidth

x y z u v wtorso graph:

Γ Γ Γ

x y z u v w

the backdoor treewidth wrt Γ is the minimum treewidth over 
the torso graphs of all strong backdoor sets into CSP(Γ)

backdoor treewidth ≤ min{ treewidth, backdoor size into CSP(Γ) } 



Results

• Finding the backdoor that minimises the backdoor treewidth is FPT.  
 
Algorithm based on ideas related to “boundaried graphs”, 
“replacement framework”, and “recursive-understanding technique”.  
Ultimately it relies on a lemma stating a finite state property. 

• Once the backdoor is found, the instance can be compiled into a 
CSP of bounded treewidth, and then solved using Freuder’s 
algorithm in time Dk

THM: CSP is FPT parameterised by the backdoor 
treewidth wrt Γ for any finite, recognisable, and 
tractable Γ.



Future work

• Extend result on scattered base classes to infinite 
sequences of constraint languages Γ1, Γ2, Γ3, Γ4, … 

• Extend backdoor treewidth to other graph 
invariants of torso graph wrt specific constraint 
languages 

• Avoid detection and solve directly



Grisha, happy 
B-day!


