Proof techniques

The End

Perfect Forests in Digraphs Gregory Gutin birthday conference

Anders Yeo

Royal Holloway

January 13, 2017

The End

This talk

First I would like to thank Gregory and the organizers for inviting me here.

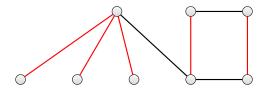
And wish Gregory a happy birthday!

I will in this talk discuss a result we obtained on one of my visits to Gregory.

Definitions

A spanning subgraph F of a graph G is called perfect if the following holds.

- *F* is a spanning forest.
- The degree $d_F(x)$ of each vertex x in F is odd.
- Each tree of F is an induced subgraph of G.



This generalizes matchings.

The End

Undirected graphs

Alex Scott (Graphs & Combin., 2001) proved the following for connected graphs *G*.

G contains a perfect forest

1

G has an even number of vertices.

Any graph has an even number of vertices of odd degree, so " \Downarrow " is easy.

"

"
"
is also not difficult to prove....

The End

Proof of Scott's result

We first note that if F is a forest where every degree is odd and contiains the minimum possible number of edges over all such forests, then F is a perfect forest.

Proof: If some tree, *T*, in *F* is not induced pick an edge uv not in *T* with $u, v \in V(T)$.

Add uv to T and delete all edges on the unique (u, v)-path in T.

This gives us a forest where all degrees are odd and with fewer edges than F, a contradiction. QED.

To find a perfect forest we just need to find a forest where all degrees are odd.

Proof of Scott's result

Let *G* be a connected graph of even order.

We will prove the theorem by induction on |E(G)|.

Clearly the theorem holds if |E(G)| = 1.

We may assume G is a tree (otherwise delete an edge on a cycle and use induction) rooted at some r.

If all vertices have odd degree we are done, so let *x* have even degree and maximum depth (clearly x + r).

Delete the edge from *x* to his parent and use induction on the two remaining connected components. QED.

This was the obligatory proof of the talk!

Alternative proof of Scott's result

As before let *G* be a connected graph of even order.

We will again prove the theorem by induction on |E(G)|, so can assume that *G* is a tree rooted at some *r*.

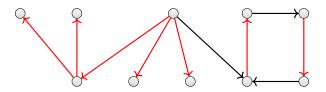
Let u be a leaf at maximum depth and let v be the parent of u.

If v is adjacent to another leaf w, then remove u and w and after using induction add u and w to the tree containing v.

If u is the only leaf adjacent to v then remove u and v and after using induction the edge uv becomes a tree in the forest. QED.

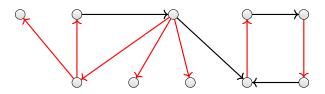
We first define a perfect out-forest, *F*, of a digraph *D*.

- F is a spanning out-forest of D.
- The degree of each vertex in the underlying graph of *F* is odd.
- Each out-tree of *F* is an induced subgraph of *D*.



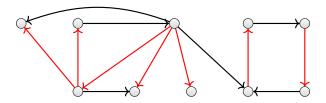
We define an almost perfect out-forest, *F*, of a digraph *D*.

- F is a spanning out-forest of D.
- The degree of each vertex in the underlying graph of *F* is odd.
- Every arc in *D* is either in *F*, goes between different out-trees in *F* or goes from a vertex to an ancestor of that vertex in an out-tree in *F*.



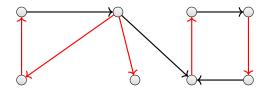
We define a weak perfect out-forest, *F*, of a digraph *D*.

- F is a spanning out-forest of D.
- The degree of each vertex in the underlying graph of *F* is odd.



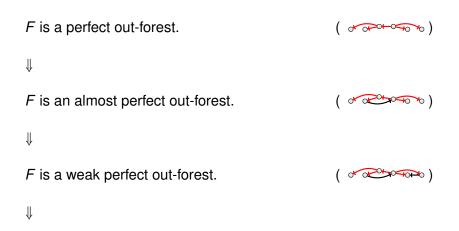
We define an even out-forest, F, of a digraph D.

- F is a spanning out-forest of D.
- Every out-tree in *F* has even order.



The End

Relation between definitions.



F is an even out-forest.

The End

Classes of digraphs

We furthermore consider 3 families of connected digraphs.

- \mathscr{D}^{st} : The class of all strongly connected digraphs of even order.
- D^u: The class of all connected digraphs of even order which contain only one initial strong component.

 \mathscr{D} : The class of all connected digraphs of even order.

Note that any digraph in \mathscr{D}^u contains some vertex, say u, such that for any vertex in the digraph it can be reached from u by a directed path.

Talk	
000000000000000000000000000000000000000	

The End

Summary of results

	\mathscr{D}^{st}	\mathscr{D}^{u}	D
perfect	NP-hard	NP-hard	NP-hard
out-forest	to decide	to decide	to decide
0 00-00-0000			
almost perfect	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 00 00 00 00			polynomial time
weak perfect	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 00 00 000000			polynomial time
even	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0-10-10-10			polynomial time

Quiz: Which part generalizes the undirected result?

Generalizing the undirected result

Let *G* be a connected undirected graph of even order.

D is obtained by replacing every edge by a directed 2-cycle.

D is strong.

A perfect forest in *G* is equivalent to an almost perfect out-forest in *D*.

So the answer is....

Generalizing the undirected result

	\mathscr{D}^{st}	\mathscr{D}^{u}	D
perfect	NP-hard	NP-hard	NP-hard
out-forest	to decide	to decide	to decide
0 00 00 00 00 00			
almost perfect	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 00 00 00 00			polynomial time
weak perfect	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 00000000000			polynomial time
even	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 -10-10-1 0			polynomial time

Finding an almost perfect-forest in \mathscr{D}^{st} generalizes Scott's result.

The End

Proof techniques

Theorem: Every $D \in \mathscr{D}$ either contains all three of the below or none of the below.

- Almost perfect out-forest.
- · Weak perfect out-forest.
- Even out-forest.
- F is an almost perfect out-forest.
- \downarrow (not too difficult to prove)
- F is a weak perfect out-forest.
- \downarrow \uparrow (similar to the undirected proof)
- F is an even out-forest.

Talk	
000000000000000000000000000000000000000	

The End

Proof techniques

- Almost perfect out-forest.
- Weak perfect out-forest.
- Even out-forest.



Clearly these all exist in \mathcal{D}^{st} and \mathcal{D}^{u} . Why?

```
But maybe not in D. Why?
```

It turns out that it is easiest to then show that there is a polynomial time algorithm to determine if a digraph has a weak perfect out-forest (not trivial).

The End

Summary

	\mathscr{D}^{st}	\mathscr{D}^{U}	D
perfect	NP-hard	NP-hard	NP-hard
out-forest	to decide	to decide	to decide
0 00-00-00-00			
almost perfect	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 00 00 00 00			polynomial time
weak perfect	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 0000000000			polynomial time
even	always	always	may not exist, but
out-forest	exists	exists	can be decided in
000			polynomial time

Considered so far.

The End

Perfect out-forest

We can reduce 3-Dimension Matching to finding a perfect out-forest in a strong digraph (of even order).

This implies that finding a perfect out-forest in \mathcal{D}^{st} is *NP*-hard.

This implies that finding a perfect out-forest in \mathcal{D}^{u} is *NP*-hard.

This implies that finding a perfect out-forest in \mathcal{D} is *NP*-hard.

The End

Summary

	\mathscr{D}^{st}	\mathscr{D}^{U}	D
perfect	NP-hard	NP-hard	NP-hard
out-forest	to decide	to decide	to decide
0 00 00 00 00 00			
almost perfect	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 00 00 00 00			polynomial time
weak perfect	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 00000000000			polynomial time
even	always	always	may not exist, but
out-forest	exists	exists	can be decided in
0 			polynomial time

Considered so far.

The end

This was just one of the many interesting problems Gregory thought of looking at.

And which gave a nice extension of an "undirected" result to digraphs.

Thanks Gregory! And happy birthday!!

Proof techniques

The End

The end

Thanks again to the organizers.

Happy birthday Gregory!

Any Questions?