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Birthday Quote

You leave everyone in awe. At 60, you have
more going on in your life than most people
have in a whole lifetime. You’re an
inspiration to me and everyone who knows
you! You leave us all wondering...what’s
next for this fascinating person!?! You are
awesome!!

Happy 60th Birthday Gregory!
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My Articles with Gregory

Parameterized Algorithms for Directed Maximum Leaf
Problems.
Spanning Directed Trees with Many Leaves.
Algorithm for finding k-vertex out-trees and its application
to k-internal out-branching problem.
Parameterized Study of the Test Cover Problem.
Parameterized complexity of MaxSat Above Average.
Fixed-Parameter Tractability of Satisfying Beyond the
Number of Variables
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My Articles with Gregory and Trees
Parameterized Algorithms for Directed Maximum Leaf
Problems – finding directed out-tree/branching with at
least k leaves

Spanning Directed Trees with Many Leaves – finding
directed out-tree/branching with at least k leaves
Algorithm for finding k-vertex out-trees and its application
to k-internal out-branching problem. Do I need to say
anything here :)
Parameterized Study of the Test Cover Problem. We used
trees here also :)
Parameterized complexity of MaxSat Above Average. Oh
no trees here!
Fixed-Parameter Tractability of Satisfying Beyond the
Number of Variables Used the algorithm for Tree
Subgraph Isomorphism
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So I hope my connection with Gregory
and Trees is more clearer now!
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Problems

Finding spanning trees in a graph is polynomial time.

However, the moment we put certain restrictions such as
finding trees with at least k leaves
finding trees with at most k leaves
finding trees with at least k internal vertices
given a tree T on k vertices and a graph G, check whether
there exists a tree isomorphic to T .

the problems become NP-complete.
They remain NP-complete for both undirected and directed
graphs (digraphs).
They remain NP-complete even when restricted to planar
graphs or planar digraphs even tournaments some time.
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Out-Trees and Out-Branchings

We say that a subdigraph T of a digraph D is an out-tree if T is
an oriented tree with only one vertex s of in-degree zero (its
root).
The vertices of T of out-degree zero are leaves.
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Out-Trees and Out-Branchings

If T is a spanning out-tree, i.e. V pT q “ V pDq, then T is an
out-branching of D.
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Fixed Parameter Tractable (FPT)
Algorithms

For decision problems with input size n, and a parameter k,
(which typically is the solution size), the goal here is to design
an algorithm with running time fpkq ¨ nOp1q, where f is a
function of k alone.

Problems that have such an algorithm are said to be fixed
parameter tractable (FPT).
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Directed Maximum Leaf Out-Branching

Directed Maximum Leaf Out-Branching (DMLOB)
Input: A digraph D and a positive integer k.
Parameter: k
Question: Does there exist a an out-branching (i.e., a rooted
oriented spanning tree) in a given digraph with at least k
leaves?
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Our Results (2006–2007)

Spanning Directed Trees with Many Leaves
The problem was open for sometime then. In fact very few
parameterized algorithms were known for problems on
digraphs.

Structural Theorem/Win Win Theorem
Let D be a strongly connected digraph. Then in polynomial
time we can either (a) obtain an out-branching of D with at
least k leaves; or (b) obtain a path decomposition of width
pwpGq “ Opk log kq for the underlying undirected graph of D.

In the later case one can apply the algorithm running in
time 2OppwpGq logpwpGqqnOp1q = 2Opkplog kq

2qnOp1q.
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Follow up work and the current best

Bonsma and Dorn used our ideas and used tree-width and
showed that DMLOB can be solved in time 2Opk log kqnOp1q.

Using another approach, Kneis, Langer, and Rossmanith
obtained 4knOp1q time algorithm for DMLOB.
Daligault, Gutin, Kim, and Yeo improved this to 3.72knOp1q

time algorithm for DMLOB. This is the current best
algorithm on the problem.
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Kernelization

Informally: A kernelization algorithm is a polynomial-time
transformation that transforms any given parameterized
instance to an equivalent instance of the same problem, with
size and parameter bounded by a function of the parameter.
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Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for
a parameterized problem L Ď Σ˚ ˆ N is an algorithm that given
px, kq P Σ˚ ˆ N, outputs in pp|x| ` kq time a pair
px1, k1q P Σ˚ ˆ N such that

px, kq P L ðñ px1, k1q P L ,
|x1|, k1 ď fpkq,

where f is an arbitrary computable function, and p a
polynomial. Any function f as above is referred to as the size of
the kernel.

Polynomial kernel ùñ f is polynomial.
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Our Results and what has happened after
that

Kernel(s) for problems with no kernel: On out-trees with many
leaves

Showed that DMLOB does not have polynomial kernel

but
if we fix the root the problem has kernel.
Rooted DMLOB has n kernel of size Opk3q.
First such example in the literature. Currently, the size of
the kernel is Opk2q – not known whether this is optimal!
Daligault, Gutin, Kim, and Yeo showed that Rooted
DMLOB admits Opkq kernel on acyclic digraphs. Apart
from planar digraphs this is the only class which is known
to admit linear kernels.
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Tree/Out-Tree Subgraph Isomorphism

Tree Subgraph Isomorphism
Input: A tree T and an undirected graph G.
Parameter: k “ |V pT q|
Question: Does there exist a tree T ˚ in G that is isomorphic
to T?

Out-Tree Subgraph Isomorphism
Input: An out-tree T and a digraph D.
Parameter: k “ |V pT q|
Question: Does there exist an out-tree T ˚ in D that is iso-
morphic to T?
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Minimum Leaf Out-Branching

Minimum Leaf Out-Branching (k-MLOB)
Input: A digraph D and a positive integer k.
Parameter: k
Question: Does D has an out-branching with at least k in-
ternal vertices?

A graph admits an out-branching with at most one leaf if
and only if it has a Hamiltonian Path.
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k-MLOB

Gutin, Razgon, and Kim designed an algorithm for
k-MLOB running in time 2Opk log kqnOp1q and an Opk2q
sized kernel.

Algorithm for finding k-vertex out-trees and its application to
k-internal out-branching problem

Designed an algorithm for Out-Tree Subgraph
Isomorphism running in time 5.704k and an algorithm for
k-MLOB running in time 2OpkqnOp1q.
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Our Method – An outline of the
algorithms

We call a k-internal out-tree minimal if none of its proper
subtrees is a k-internal out-tree, or minimal k-tree in short.

Structural Theorem
Let T be a k-internal out-tree. Then T is minimal if and only if
number of internal nodes is exactly k and every leaf u is the
only child of its parent.

Forward Direction: Cannot have more than k internal vertices,
else by removing any of its leaves, we obtain a
subtree of T with at least k internal vertices (so
internal nodes “ k). If there are sibling leaves u
and w, then removing one of them provides a
subtree of T with same number of internal nodes.
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number of internal nodes is exactly k and every leaf u is the
only child of its parent.

So a witness that we have an out-tree with k internal nodes
is an out-tree with at most 2k nodes.

So we enumerate all non-isomorphic trees on 2k nodes and
use Out-Tree Subgraph Isomorphism algorithm to test
whether such a tree is present or not.
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Follow up work and the current best

The best deterministic algorithm uses our structural lemma
and runs in time 5.1knOp1q [Zehavi, ESA 2016]
Randomized runs in time 4knOp1q and uses reduction to
multilinear monomial testsing. [Zehavi, IPEC 2013]
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Kernel – An open question?

Is there linear sized vertex kernel for k-MLOB?
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Spend Rest of my time on Tree
Isomorphism
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Tree Isomorphism

Alon, Yuster and Zwick in their seminal paper that
introduced Color-Coding gave 2OpkqnOp1q time algorithm
(JACM, 1995).

Current best is 2knOp1q randomized [Koutis and Williams,
ICALP 2009] and 2.618knOp1q deterministic (Fomin et al,
JACM, 2016).
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Tree Isomorphism

Alon, Yuster and Zwick in their seminal paper that
introduced Color-Coding gave 2OpkqnOp1q time algorithm
(JACM, 1995).
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A Special Graph Class – Planar Graphs

Tree Subgraph Isomorphism, even finding a path of
length k is NP-complete on this graph class.
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Grid minors and treewidth

Grid Minor Theorem Robertson,
Seymour; GM V

There is a function f such that twpGq ě fpkq implies the
existence of a k ˆ k grid minor in G.

Upper bound: fpkq P Õpk19q (Chuzhoy ’15)
Lower bound: fpkq P Ωpk2 log kq
Minor-free: fpkq P Θpkq for graphs excluding a fixed
minor.

Planar: twpGq ą 4.5k ` 1 implies a k ˆ k grid minor.
H-minor-free: twpGq ą cH ¨ k implies a k ˆ k grid minor.
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minor.

Planar: twpGq ą 4.5k ` 1 implies a k ˆ k grid minor.
H-minor-free: twpGq ą cH ¨ k implies a k ˆ k grid minor.
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Bidimensionality

k-Path: Is there a simple path on k vertices in a graph?

Goal: 2Op
?
kq ¨ n algorithm for planar graphs.

Fact 1: k-Path can be solved in time 2Opwq ¨ n on a tree
decomposition of width w.
Fact 2: If there is

?
k ˆ

?
k grid minor, then there is a

k-path.
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Algorithm

Approximate treewidth.

If tw ě 100
?
k then there is a

?
k ˆ

?
k grid minor, so also

a k-path.
Otherwise we have a tree decomposition of width Op

?
kq.

Apply dynamic programming.

29



Algorithm

Approximate treewidth.
If tw ě 100

?
k then there is a

?
k ˆ

?
k grid minor, so also

a k-path.

Otherwise we have a tree decomposition of width Op
?
kq.

Apply dynamic programming.

29



Algorithm

Approximate treewidth.
If tw ě 100

?
k then there is a

?
k ˆ

?
k grid minor, so also

a k-path.
Otherwise we have a tree decomposition of width Op

?
kq.

Apply dynamic programming.

29



Bidimensionality: drawbacks
The argument is elegant, but very delicate.

Assumption “large grid minor ñ certain answer” is very
strong.

Directed k-Path: simple path on k vertices in a
directed graph.

A large grid minor in the underlying undirected graph tells
little about directed k-paths.
Similar problem for searching for k-path of maximum
weight, or a cycle of length exactly k, ...

Can such problems be solved in time 2Õp
?
kq ¨ nc on planar

graphs?

Until Recently, no better algorithms were known than
2Opkq ¨ nc inherited from the general setting.

General: Let a k-pattern be a vertex subset P such that
|P | ď k and GrP s is connected.

We are looking with k-patterns with some prescribed
property.
Idea: Find a small family of subgraphs of small treewidth
that cover every pattern.
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Pattern coverage

Main result
Suppose G is a planar graph on n vertices, and suppose k is a
positive integer. Then there exists a family F of subsets of
V pGq such that:

(a) |F | ď 2Õp
?
kq ¨ nc for some constant c;

(b) For each A P F , we have twpGrAsq ď Õp
?
kq;

(c) For every k-pattern P , there is some A P F such that
P Ď A.

Moreover, F can be constructed in randomized time 2Õp
?
kq ¨ nc.

Directed k-Path algorithm:

Construct F .
For each A P F , try to find a k-path in GrAs by DP.
Running time: p2Õp

?
kq ¨ ncq ¨ p2Õp

?
kq ¨ nq “ 2Õp

?
kq ¨ nc`1

31
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Applications

Applies to a range of pattern-searching problems:

(directed) k-path of largest weight;
cycle of length exactly k;
k-local search for Planar Vertex Cover.
Needed: 2Õpwq ¨ nc algorithm on graphs of treewidth w.

Subgraph Isomorphism:
Given G and H with |V pHq| ď k, is H a subgraph of G?

When H is connected and has maximum degree bounded by
a constant, we obtain an algorithm with running time
2Õp

?
kq ¨ nc.

Without the maxdeg bound, we get running time
2Opk{ log kq ¨ nc using (Bodlaender, Nederlof, van der Zanden;
ICALP’16).
This running time is tight under ETH! (Bodlaender et al.)
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Example: grid

Take a k ˆ k grid.

Baker: Guess an index modulo
?
k s.t. there are ď

?
k

vertices of the pattern in the corresponding rows.
Guess columns in which these vertices lie,

`

k?
k

˘

options.
Remove the rows apart from intersections with columns.
What remains has treewidth Op

?
kq.

In total,
?
k ¨

`

k?
k

˘

“ 2Op
?
k log kq possible guesses.
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Once More Trees

k-Distinct In- and Out-Branchings (finding an
out-branching and in-branching in a digraph D that do not
share at least k arcs in common). Bang-Jensen, SS and
Simonsen showed that the problem is FPT on strongly
connected digraphs.

Gutin, Reidl and Wahlström showed that k-Distinct In-
and Out-Branchings is FPT on digraphs.

34



Once More Trees

k-Distinct In- and Out-Branchings (finding an
out-branching and in-branching in a digraph D that do not
share at least k arcs in common). Bang-Jensen, SS and
Simonsen showed that the problem is FPT on strongly
connected digraphs.
Gutin, Reidl and Wahlström showed that k-Distinct In-
and Out-Branchings is FPT on digraphs.

34



Final Slide

Let me wish Gregory once again Happy
Birthday!

Thank You!
Any Questions?
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