Finding Detours is Fixedparameler Trackable

Ivona Bezáková, Radu Curkicapean, Holger Dell, Fedor V. Fomin

Gregorybo

- Longest Path: Given a graph G and integer k, decide whether G contains a path of length at least k?

Longest Path: Fixed-parameter tractabiliky

Longest Path: Fixed-parameter tractability

- Win/win: If the treewidth is Large, there is a long path

Longest Path: Fixed-parameter tractability

- Win/win: If the treewidth is large, there is a long path
- Otherwise do DP

Longest pach history

Longese pach hiscory

- Monien [1982], Bodlaender [1984]: $k^{k} \cdot n^{0(1)}$

Longest pach history

- Monien [1982], Bodlaender [1984]: $k^{k} \cdot n^{(1)}$
- Papadimitriou and Yannakakis [1996]: Is in P for $k=\log n$?

Longest path history

- Monien [1982], Bodlaender [1984]: $k^{k} \cdot n^{0(1)}$
- Papadimikriou and Yannakakis [1996]: Is in P for $k=\log n$?
- Alon, Yuster, and Zwick $[1996]: 0\left(2^{0(k)} \cdot n\right)$

Longest path history

- Monien [1982], Bodlaender [1984]: k $k^{k} \cdot n^{0(1)}$
- Papadimikriou and Yannakakis [1996]: Is in P for $k=\log n$?
- Alon, Yusler, and Zwick [1996]: $O\left(2^{0(k)} \cdot n\right)$
- ...

Longest path history

- Monien [1982], Bodlaender $[1984]: k^{k} \cdot n^{0(1)}$
- Papadimikriou and Yannakakis [1996]: Is in P for $k=\log n$?
- Alon, Yuster, and Zwick [1996]: O(2 $\left.2^{0(k)} \cdot n\right)$
- ...
- Randomized: $1.667^{k} \cdot n^{0(1)}$ BjörkLund, Husfeldl, Kaski, and Koivisto [2010]

Longest pach history

- Monien [1982], Bodlaender [1984]: $k^{k} \cdot n^{0(1)}$
- Papadimikriou and Yannakakis [1996]: Is in P for $k=\log n$?
- Alon, Yuster, and Zwick $[1996]: 0\left(2^{0(k)} \cdot n\right)$
- ...
- Randomized: $1.667^{k} \cdot n^{0(1)}$ BjörkLund, Husfeldl, Kaski, and Koivisto [2010]
- Dekermenislic: $2.697^{k} \cdot n^{0(1)}$ Zehavi [2013]

Longest Path of Gregory: 33 years

Longest Path of Gregory: 33 years

MathSciNet
Matiematical Reviews
Previons Up $^{2} \mid$ Next
Citations
From References: 12
From Reviews: 0
MR738059 (85m:05048) 05C45 05C20
Gutin, G. M. [Gutin, Gregory] (2-GOME)
Criterion for complete bipartite digraphs to be Hamiltonian. (Russian. English summary)
Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navむk 1984, no. 1, 109-110.
From the text (translated from the Russian): "A complete bipartite digraph $B=$ $(V, W ; A)$ has a set of vertices $X=V \cup W$, where V and W form a partition of the points of B and A is the set of arcs. By B^{d} we denote a digraph obtained from B after redirection oi all its arcs. With every complete bipartite digraph $B=(V, W ; A)$ we associate a bipartite nondirected graph GR($B) . V$ and W form a partition of the points of $\operatorname{GR}(B)$ and the edge $\{v, w\}$ enters into $\mathrm{GR}(B)$ if and only if the are $(v, w) \in A$ and $v \in V, w \in W$. Theorem: A necessary and sufficient condition for a complete bipartite $v \in V, w \in W$. Theorem: A necessary and sufficient condition for a complete bipartite
digraph $B=(V, W ; A)$ to have a Hamiltonian cycie is that B be strong and the graphs $\mathrm{GR}(B)$ and $\mathrm{GR}\left(B^{d}\right)$ have 1-factors."
(c) Copyright American Mathematical Society 1985, 2017

Longest Path of Gregory: 33 years

$\underset{\text { Mathernatical Reviews }}{\text { Math }}$
Mathematical Reviews
Previons Up $^{2} \mid$ Next
CitationsMR738059 (85m:05048) 05C45 05C20
Gutin, G. M. [Gutin, Gregory] (2-GOME
Gutin, G. M. |Gutin, Gregory] (2-(oME)Criterion for complete bipartite digraphs to be Hamiltonian. (Russian. Englishsummary)
Vestst Akad. Naurk BSSR Ser. Fiz.-Mat. Navik 1984, no. 1, 109-110.
From the text (translated from the Russian): "A complete bipartite digraph $B=$ $(V, W ; A)$ has a set of vertices $X=V \cup W$, where V and W form a partition of the points of B and A is the set of arcs. By B^{d} we denote a digrapin obtained from B after redirection oi all its arcs. With every complete bipartite digraph $B=(V, W ; A)$ we associate a bipartite nondirected graph $\mathrm{GR}(B) . V$ and W form a partition of the points of $\operatorname{GR}(B)$ and the edge $\{v, w\}$ enters into $\mathrm{GR}(B)$ if and only if the are $(v, w) \in A$ and $v \in V, w \in W$. Theorem: A necessary and sufficient condition for a complete bipartite $v \in V, w \in W$. Theorem: A necessary and sulficient condition or a complete bipartie
digraph $B=(V, W ; A)$ to have a Hamiltonian cycle is that B be strong and the graphs $\mathrm{GR}(B)$ and GR($\left.B^{d}\right)$ have 1-factors."
(C) Copyright American Mathematical Society 1985, 2017
MathSciNet Matiemstical Reviems
Ctations
Fom Referencess 5
form Revizane !
MR769101 (86bo5035) ©5C20 mcse
Gutin, G. M. [Gutin, Gregory] (2-GOME)
Cycles in strong n-partite tournaments. (Russian. English summary)
Vostri Akad. Navik BSSR Ser. Fiz-Mat. Norzk 1984, no. 5, 105.106.

$$
\begin{aligned}
& \text { Cycles in strong n-partite tournaments. (Russian. English summ } \\
& \text { Veste Akad. Nevuk BSSR Ser. Fiz-Mat. Novisk 1984, no. S, } 105 \text { 106. }
\end{aligned}
$$

It is proved that every stroag n-partite coumamens (L.e. a stroagly directed complete n-
It is proved that every stroag n-partite tournamens (L.e. a strongly directed compiete n-
partite graph) with $n \geq 4$, al of whose parts have at Jeast two vertices, contains a eycle partite graph) with $n \geq 4$, all of whose parts have at least two vertices, contains a cyele of length $n+1$ of $n+2$. However, for every truteger $n \geq 2$ there extsts a strong n-partike ournam +1 or $n+2$. Iharver probiem posed by d. A. Boody (J. Losdon Mata. Soc (2) 1.1 (1976), 70. 2. 277 -252.
MPD450115) is solved. There are misprlats on page 106.

Longest Pach of Gregory: 33 years

MathSciNet
 Matlematical Reviews
 Previols $\left|\mathrm{U}_{\mathrm{p}}\right|$ Next

MR738059 (85m:05048)) $05 \mathrm{C} 45 \quad 05 \mathrm{C} 20$
Gutin, G. M. [Gutin, Gregory] (2-GOME)
Criterion for complete bipartite digraphs to be Hamiltonian. (Russian. English summary)
Vestst Akad. Navuk BSSR Ser. Fiz.-Mat. Navtk 1984, no. 1, 109-110.
From the text (translated from the Russian): "A complete bipartite digraph $B=$ $(V, W ; A)$ has a set of vertices $X=V \cup W$, where V and W form a partition of the points of B and A is the set of arcs. By B^{d} we denote a digraph obtained from B after redirection oi all its ares. With every complete bipartite digraph $B=(V, W ; A)$ we associate a bipartite nondirected graph GR($B) . V$ and W form a partition of the points of $\mathrm{GR}(B)$ and the edge $\{v, w\}$ enters into $\mathrm{GR}(B)$ if and only if the arc $(v, w) \in A$ and $v \in V, w \in W$. Theorem: A necessary and sufficient condition for a complete bipartite digraph $B=(V, W ; A)$ to have a Hamiltonian cycle is that B be strong and the graphs $\mathrm{GR}(B)$ and GR($\left.B^{d}\right)$ have 1-iactors."
(C) Copyright American Mathematical Society 1985, 2017

Longest Path of Gregory: 33 years
 MR: Publications results for "Author=(gutin, g**) AND Anywhe.
 httpd/wwwams.org/mathscinet/search/publications.html?pg4...

Click here to activate Remote Access

University I Bergen

MathSciNet

Mathematicel Reviews
Matches: 33
Show all results
Publications results for "Author=(gutin, g*) AND Anywhere=(path)"
MR3466628 Pending Barbero, Florian; Gutin, Gregory; Jones, Mark; Sheng, Bin; Yeo, Anders Linear-vertex kernel for the problem of packing r-stars into a graph without long induced paths. Inform. Process, Lett, 116 (2016), no. 6, 433-436. 94C15 (05C85 68025 68R10)
Qubb
MR2787937 Reviewed Gutin, Gregory; Mansour, Toufik; Severini, Simone A characterization of horizontal visibility graphs and combinatorics on words. Phys, A 390 (2011), no. 12, 2421-2428. 05 C 75 (05A05 05C30 05C45 05E15 68R10)

OUBB
MR2721735 Indexed Gutin, Gregory; Kim, Eun Jung Properly coloured cycles and paths: results and open problems. Graph theory, computational intelligence and thought, 200-208, Lecture Notes in Comput. Sci, 5420, Springer, Berlin, 2009. 05C15 (05C38) QUBB

MR2559006 Reviewed Balister, P.; Gerke, S.; Gutin, G.; Johnstone, A.; Reddington, ل; Scott, E.; Soleimanfallah, A.; Yeo, A. Algorithms for generating convex sets in acyclic digraphs. L. Discrete Algorithms Z (2009), no. 4, 509-518. $05 C 85$ (05C10 05C20) ©ubB

MR2569708 Reviewed Gutin, Gregory; Razgon, Igor; Kim, Eun Jung Minimum leaf out-branching and related problems. Theoret. Comput. Sci 410 (2009), no. 45, 4571-4579. 68Q25 (05C20 05C85 68Q17)
OUBB
MR2537504 Reviewed Dankelmann, Peter; Gutin, Gregory; Kim, Eun Jung On complexity of minimum leaf out-branching problem. Discrete Apol. Math. 157 (2009), no. 13.
3000-3004. 05C85 (05C20)
9UBB
MR2510249 Reviewed Gutin, Gregory; Yeo, Anders On the number of connected convex subgraphs of a connected acyclic digraph. Discrete Appl. Math. 157 (2009), no. 7 . $1660-1662.05 \mathrm{C} 30(05 \mathrm{C} 2005 \mathrm{C} 40)$
OUBB

Another Longest Path of Gregory: Parameterization above guarantee

MathSciNet
 Mathenraticed Reviews

Matches: 25

Show all results
Publications results for "Author=(gutin, g^{*}) AND Anywhere=(above)"
MR3439249 Reviewed Crowston, R.; Gutin, G.; Jones, M.; Muciaccia, G.; Yeo, A. Parameterizations of test cover with bounded test sizes. Algorithmica 74 (2016), no. 1, 367-384. 05C85 (05C65 68Q25)
GUBB
MR3107105 Reviewed Crowston, Robert; Gutin, Gregory; Jones, Mark; Muciaccia, Gabriele Maximum balanced subgraph problem parameterized above lower bound. Computing and combinatorics, 434-445, Lecture Notes in Comput. Sci., 7936, Springer, Heidelberg, 2013. 68Q25 (05C78)
GUBB
MR3128945 Reviewed Crowston, R.; Gutin, G.; Jones, M.; Muciaccia, G. Maximum balanced subgraph problem parameterized above lower bound. Theoret. Comput. Sci. 513 (2013),53-64. (Reviewer: Vladimír Lacko) 05C85 (05C22 05C60 68Q25) GUBB
MR3126919 Reviewed Crowston, Robert; Gutin, Gregory; Jones, Mark; Raman, Venkatesh; Saurabh, Saket Parameterized complexity of MaxSat Above Average. Theoret. Comput. Sci. 511 (2013), 77-84. 68Q25
GUBB
MR3084359 Reviewed Gutin, Gregory; Rafiey, Arash; Szeider, Stefan; Yeo, Anders Corrigendum. The linear arrangement problem parameterized above guaranteed value [MR2352546]. Theory Comput. Syst. 53 (2013), no. 4, 690-691. 68Q25 (05C78 05C85 68Q15) GUBB

MR2979045 Reviewed Crowston, Robert; Gutin, Gregory; Jones, Mark; Raman, Venkatesh; Saurabh, Saket Parameterized complexity of MaxSat above average. LATIN 2012: theoretical informatics, 184-194, Lecture Notes in Comput. Sci., 7256, Springer, Heidelberg, 2012. 68Q25
GUBB
MR3019008 Reviewed Crowston, Robert; Gutin, Gregory; Jones, Mark Directed acyclic subgraph problem parameterized above the Poljak-Turzík bound. 32nd International Conference on Foundations of Software Technology and Theoretical Computer Science,

This Ealk

Longest Path + Above guarantee parameterization

- Longest Detour: Given graph G, vertices s and t, and integer k. Is there an (s, t)- path in G of length at least dist(s, k) $+k$
- Longest Detour: Given graph G, vertices s and t, and integer k. Is there an (s, t)- path in G of length at least dist(s, k) $+k$
- Is the problem in P for fixed k ?
- Longest Detour: Given graph G, vertices s and ξ, and integer k. Is there an (s, t) - path in G of length at least dist(s, k) $+k$
- Is the problem in P for fixed k ?
- Is the problem FPT parameterized by k?
- Longest Detour: Given graph G, vertices s and ξ, and integer k. Is there an (s, t) - path in G of length at least dist $(s, t)+k$
- Is the problem in p for fixed k ?
- Is the problem FPT parameterized by k?
- THEOREM: Longest Detour is solvable in lime $2^{0(k) n^{O(1)}}$

Win/Win?

- Chuzhoy (2015): If the treewidth of G is more than k^{19} poly $(\log k)$, then G conkains kxk-grid as a minor

Win/Win?

Win/Win?

Win/Win?

- We can assume that G is 2connected

Win/Win?

- We can assume that G is 2connecked
- If the treewidth of G is less than k^{19} use DP (Eime $2^{0(\tan (G))} n$)

Win/Win?

- We can assume that G is 2connected
- If the treewidth of G is less than k^{19} use DP (Lime $2^{0(\tan (G))} n$)
- Otherwise use kxk-grid for rerouting

Win/Win?

- This gives an algorithm solving Longest Detour in time $\exp \left(k^{19}\right) n^{0(1)}$

Win/Win?

Win/Win?

- Can we exclude somelhing simpler Chan a grid?

Win/Win?

- Can we exclude something simpler chan a grid?
- For example, if we exclude a k cycle, the treewidth is $O(k)$.

Win/Win?

- Can we exclude something simpler chan a grid?
- For example, if we exclude a k cycle, the treewidth is $O(k)$.
- But k-cycle is not enough complicated for rerouting...

What graph

- Can be used for k-detour
- When excluded as a minor guarantees linear (in k) treewidth?

Combinatorial result

Combinatorial result

- Graph F: Take K_{4} and subdivide every edge K times

Combinatorial result

- Graph F: Take K_{4} and subdivide every edge k limes
- F is the right graph!!!

Combinatorial result

- Graph F: Take K_{4} and subdivide every edge k times
- F is the right graph!!!
- Every F-minor-free graph has treewidth at most 32 k

Combinatorial result

- Graph F: Take K_{4} and subdivide every edge K times
- F is the right graph!!!
- Every F-minor-free graph has treewidth at most 32 k
- Every (s, t)-shortest path in a graph containing F as a minor has a k detour.
proof
treewidth at least k is
(approximately) equivalent of having a k-linked set
proof
treewidth at least k is (approximately) equivalent of having a k-Linked set

Leaf and seymour (2016): structure of k-linked sets
proof
treewidth at least k is (approximately) equivalent of having a k-linked set

Leaf and seymour (2015): structure of k-linked sets

Raymond and Thilikos (2016): Wheel excluding

What can be other "above guarantee" variants of Longest Path?

- Cirth (FF, Lokshtanov, Saurabh, Zehavi)
- Degeneracy (FF, Golovach)

What about another passion of Gregory?

What about another passion of Gregory?

- Longest Directed Detour: Given a digraph G, vertices s and t, and integer k. Is there an ($s, t)$ - path in G of length at least dist $(s, t)+k$?

What about another passion of Gregory?

- Longest Directed Detour: Given a digraph G, vertices s and t, and integer k. Is there an (s, t) - path in G of length at least dist($s, t)+k$?
- We do not know even if poly (n,k) algorithm exist.

Remark

Remark

- Exact Directed Detour: Given a digraph G, vertices s and ξ, and integer k. Is there an (s, t) - path in G of length exactly disk($s, t)+k$?

Remark

- Exact Directed Detour: Given a digraph G, vertices s and ξ, and integer k. Is there an (s, k) - path in G of length exactly dist $(s, t)+k$?
- Exact Directed Detour is FPT.

Happy Birthday, Gregory!!!

