2-partitions of digraphs

Jørgen Bang-Jensen ${ }^{1}$

University of Southern Denmark
Gregory celebration, Royal Holloway, January 7, 2017
${ }^{1}$ Based on joint works with Stephane Bessy, Tilde My Christiansen, Frederic Havet, Nathann Cohen and Anders Yeo

Let $\mathbb{P}_{1}, \mathbb{P}_{2}$ be two (di)graph properties
A $\left(\mathbb{P}_{1}, \mathbb{P}_{2}\right)$-partition of a (di)graph D is a 2-partition $\left(V_{1}, V_{2}\right)$ of $V(D)$ such that V_{1} induces a (di)graph with property \mathbb{P}_{1} and V_{2} a (di)graph with property \mathbb{P}_{2}.

For example a $\left(\delta^{+} \geq 1, \delta^{+} \geq 1\right)$-partition is a 2-partition of a digraph where each partition induces a subdigraph with minimum out-degree at least 1.

Similarly a (strong,acyclic)-partition is a 2-partition (V_{1}, V_{2}) such that $D\left\langle V_{1}\right\rangle$ is strongly connected and $D\left\langle V_{2}\right\rangle$ is an avyclic digraph.

Let $\mathbb{P}_{1}, \mathbb{P}_{2}$ be two (di)graph properties
$\mathrm{A}\left(\mathbb{P}_{1}, \mathbb{P}_{2}\right)$-partition of a (di)graph D is a 2-partition $\left(V_{1}, V_{2}\right)$ of $V(D)$ such that V_{1} induces a (di)graph with property \mathbb{P}_{1} and V_{2} a (di)graph with property \mathbb{P}_{2}.

For example a ($\delta^{+} \geq 1, \delta^{+} \geq 1$)-partition is a 2-partition of a digraph where each partition induces a subdigraph with minimum out-degree at least 1.

Similarly a (strong,acyclic)-partition is a 2-partition (V_{1}, V_{2}) such that $D\left\langle V_{1}\right\rangle$ is strongly connected and $D\left\langle V_{2}\right\rangle$ is an avyclic digraph.

Examples for undirected graphs:

- (independent,complete)-partition split graphs
- (independent, independent)-partition bipartite graphs
- (complete,complete)-partition complements of bipartite graphs

To avoid trivial partitions where one vertex on one side is enough, we consider [k_{1}, k_{2}]-partitions, that is, partitions $\left(V_{1}, V_{2}\right)$ of V such that $\left|V_{1}\right| \geq k_{1}$ and $\left|V_{2}\right| \geq k_{2}$.

When $k_{1}=k_{2}=1$ we usually just write $\left(\mathbb{P}_{1}, \mathbb{P}_{2}\right)$-partition.

To avoid trivial partitions where one vertex on one side is enough, we consider [k_{1}, k_{2}]-partitions, that is, partitions $\left(V_{1}, V_{2}\right)$ of V such that $\left|V_{1}\right| \geq k_{1}$ and $\left|V_{2}\right| \geq k_{2}$.

For given positive integers k_{1}, k_{2} the $\left(\mathbb{P}_{1}, \mathbb{P}_{2}\right)$ - $\left[k_{1}, k_{2}\right]$-partition problem consists in deciding whether a given digraph D has a $\left(\mathbb{P}_{1}, \mathbb{P}_{2}\right)$ - $\left[k_{1}, k_{2}\right]$-partition.
When $k_{1}=k_{2}=1$ we usually just write $\left(\mathbb{P}_{1}, \mathbb{P}_{2}\right)$-partition.

Let \mathcal{H} and \mathcal{E} denote the following two sets of natural properties of digraphs all of which can be checked in polynomial time: $\mathcal{H}=\{$ acyclic, complete, arcless, oriented (no 2-cycle), semicomplete, symmetric, tournament\}

These properties are all hereditary, that is, closed under induced subdigraphs

Let \mathcal{H} and \mathcal{E} denote the following two sets of natural properties of digraphs all of which can be checked in polynomial time:
$\mathcal{H}=\{$ acyclic, complete, arcless, oriented (no 2-cycle),
semicomplete, symmetric, tournament\}
These properties are all hereditary, that is, closed under induced subdigraphs
$\mathcal{E}=\{$ strongly connected, connected, minimum out-degree at least 1, minimum in-degree at least 1 , minimum semi-degree at least 1 , minimum degree at least 1 , having an out-branching, having an in-branching\}.

These properties are all enumerable, that is, one can enumerate in polynomial time all its inclusion-wise maximal subdigraphs having the property.

Complexity for arbitrary input digraphs

| $\mathbb{P}_{1} \backslash \mathbb{P}_{2}$ | strong | conn. | \mathbb{B}^{+} | \mathbb{B}^{-} | $\delta \geq 1$ | $\delta^{+} \geq 1$ | $\delta^{-} \geq 1$ | $\delta^{0} \geq 1$ | \mathbb{A} | \mathbb{C} | \mathbb{X} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| strong | NPc^{2} | NPc^{L} | NPc^{L} | NPc^{L} | NPc^{L} | NPc^{L} | NPc^{L} | NPc | P | P | P |
| conn. | NPc^{R} | P | P | P | P | NPc | NPc | NPc | P | P | P |
| \mathbb{B}^{+} | NPc^{R} | P | P | NPc | P | NPc | P | NPc | P | P | P |
| \mathbb{B}^{-} | NPc^{R} | P | NPc | P | P | P | NPc | NPc | P | P | P |
| $\delta \geq 1$ | NPc^{R} | P | P | P | P | NPc | NPc | NPc | P | P | P |
| $\delta^{+} \geq 1$ | NPc^{R} | NPc | NPc | P | NPc | P | NPc | NPc | P | P | P |
| $\delta^{-} \geq 1$ | NPc^{R} | NPc | P | NPc | NPc | NPc | P | NPc | P | P | P |
| $\delta^{0} \geq 1$ | NPc | P | P | P |
| \mathbb{A} | P | P | P | P | P | P | P | P | NPc | P | NPc |
| \mathbb{C} | P | P | P | P | P | P | P | P | P | P | P |
| \mathbb{X} | P | P | P | P | P | P | P | P | NPc | P | P |

Properties: conn. : connected; \mathbb{B}^{+}: out-branchable; \mathbb{B}^{-}: in-branchable; \mathbb{A} : acyclic; \mathbb{C} : complete; \mathbb{X} : any property in 'being independent', 'being oriented', 'being semi-complete', 'being a tournament' and 'being symmetric'.
Complexities: P: polynomial-time solvable; NPc : NP-complete for all values of k_{1}, k_{2};
$\mathrm{NPc}{ }^{L}$: NP-complete for $k_{1} \geq 2$, and polynomial-time solvable for $k_{1}=1$.
NPc^{R} : NP-complete for $k_{2} \geq 2$, and polynomial-time solvable for $k_{2}=1$.

Theorem

Let \mathbb{H} be a checkable hereditary property, \mathbb{E} be an enumerable property, and let k_{1} and k_{2} be two positive integers. One can decide in polynomial time whether a given digraph D has a $(\mathbb{H}, \mathbb{E})-\left[k_{1}, k_{2}\right]$-partition.

Proof: We shall describe a polynomial-time procedure that for any fixed set U_{1} of k_{1} vertices of D decides whether D has an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$

Then applying this algorithm to the $O\left(n^{k_{1}}\right) k_{1}$-subsets of $V(D)$, we obtain the desired algorithm.

Theorem

Let \mathbb{H} be a checkable hereditary property, \mathbb{E} be an enumerable property, and let k_{1} and k_{2} be two positive integers. One can decide in polynomial time whether a given digraph D has a $(\mathbb{H}, \mathbb{E})-\left[k_{1}, k_{2}\right]$-partition.

Proof: We shall describe a polynomial-time procedure that for any fixed set U_{1} of k_{1} vertices of D decides whether D has an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$.

Then applying this algorithm to the $O\left(n^{k_{1}}\right) k_{1}$-subsets of $V(D)$, we obtain the desired algorithm.

Theorem

Let \mathbb{H} be a checkable hereditary property, \mathbb{E} be an enumerable property, and let k_{1} and k_{2} be two positive integers. One can decide in polynomial time whether a given digraph D has a $(\mathbb{H}, \mathbb{E})-\left[k_{1}, k_{2}\right]$-partition.

Proof: We shall describe a polynomial-time procedure that for any fixed set U_{1} of k_{1} vertices of D decides whether D has an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$.
Then applying this algorithm to the $O\left(n^{k_{1}}\right) k_{1}$-subsets of $V(D)$, we obtain the desired algorithm.

- First, we enumerate the maximal subdigraphs of $D-U_{1}$ with property \mathbb{E}. This can be done in polynomial time because \mathbb{E} is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \geq k_{2}$ and if $D-F$ has property \mathbb{H}. This can be done in polynomial time because \mathbb{H} is checkable.
- If no more subdigraph remains, we return 'No

The above procedure clearly runs in polynomial time.

- First, we enumerate the maximal subdigraphs of $D-U_{1}$ with property \mathbb{E}. This can be done in polynomial time because \mathbb{E} is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \geq k_{2}$ and if $D-F$ has property \mathbb{H}. This can be done in polynomial time because \mathbb{H} is checkable.

The above procedure clearly runs in polynomial time.

- First, we enumerate the maximal subdigraphs of $D-U_{1}$ with property \mathbb{E}. This can be done in polynomial time because \mathbb{E} is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \geq k_{2}$ and if $D-F$ has property \mathbb{H}. This can be done in polynomial time because \mathbb{H} is checkable.
- In the affirmative, we return 'Yes', and in the negative we proceed to the next subdigraph.

The above procedure clearly runs in polynomial time.

- First, we enumerate the maximal subdigraphs of $D-U_{1}$ with property \mathbb{E}. This can be done in polynomial time because \mathbb{E} is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \geq k_{2}$ and if $D-F$ has property \mathbb{H}. This can be done in polynomial time because \mathbb{H} is checkable.
- In the affirmative, we return 'Yes', and in the negative we proceed to the next subdigraph.
- If no more subdigraph remains, we return 'No'.

The above procedure clearly runs in polynomial time.

- First, we enumerate the maximal subdigraphs of $D-U_{1}$ with property \mathbb{E}. This can be done in polynomial time because \mathbb{E} is enumerable.
- Now for each such subdigraph F, (there is a polynomial number of them), we check whether $|F| \geq k_{2}$ and if $D-F$ has property \mathbb{H}. This can be done in polynomial time because \mathbb{H} is checkable.
- In the affirmative, we return 'Yes', and in the negative we proceed to the next subdigraph.
- If no more subdigraph remains, we return 'No'.

The above procedure clearly runs in polynomial time.

We need to show that D has an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$ if and only if there is a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E} of order at least k_{2} such that $D-F$ has property \mathbb{H}.

We need to show that D has an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$ if and only if there is a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E} of order at least k_{2} such that $D-F$ has property \mathbb{H}.

- If there is a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E} of order at least k_{2} such that $D-F$ has property \mathbb{H}, then $(V(D-F), V(F))$ is clearly an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$.

We need to show that D has an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$ if and only if there is a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E} of order at least k_{2} such that $D-F$ has property \mathbb{H}.

- If there is a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E} of order at least k_{2} such that $D-F$ has property \mathbb{H}, then $(V(D-F), V(F))$ is clearly an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$.
- Conversely, assume there is an $(\mathbb{H}, \mathbb{E})-\left[k_{1}, k_{2}\right]$-partition (V_{1}, V_{2}) with $U_{1} \subseteq V_{1}$. Then $D\left\langle V_{2}\right\rangle$ has property \mathbb{E} and thus is contained in a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E}.

We need to show that D has an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$ if and only if there is a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E} of order at least k_{2} such that $D-F$ has property \mathbb{H}.

- If there is a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E} of order at least k_{2} such that $D-F$ has property \mathbb{H}, then $(V(D-F), V(F))$ is clearly an (\mathbb{H}, \mathbb{E}) - $\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$.
- Conversely, assume there is an $(\mathbb{H}, \mathbb{E})-\left[k_{1}, k_{2}\right]$-partition $\left(V_{1}, V_{2}\right)$ with $U_{1} \subseteq V_{1}$. Then $D\left\langle V_{2}\right\rangle$ has property \mathbb{E} and thus is contained in a maximal subdigraph F of $D-U_{1}$ with property \mathbb{E}. Since F is a superdigraph of $D\left\langle V_{2}\right\rangle$ it has order at least k_{2}. In addition, $U_{1} \subseteq V(D-F) \subseteq V_{1}$, so $D-F$ has the property \mathbb{H}, because this property is hereditary and V_{1} has it.

One can easily check that the algorithm described in the proof of Theorem 1 runs in time $O\left(n^{k_{1}+c}\right)$ for some constant c.

A natural question is then to ask whether the problem could be FPT with respect to $\left(k_{1}, k_{2}\right)$, that is, in time $f\left(k_{1}, k_{2}\right) n^{c}$ for some constant c and computable function f.

If not, one may ask if it can be solved in FPT time with respect to k_{1} or k_{2} only, that is, in time $g\left(k_{i}\right) n^{h\left(k_{3-i}\right)}$ for some computable functions g and h.

One can easily check that the algorithm described in the proof of Theorem 1 runs in time $O\left(n^{k_{1}+c}\right)$ for some constant c.

A natural question is then to ask whether the problem could be FPT with respect to $\left(k_{1}, k_{2}\right)$, that is, in time $f\left(k_{1}, k_{2}\right) n^{c}$ for some constant c and computable function f.

If not, one may ask if it can be solved in FPT time with respect to k_{1} or k_{2} only, that is, in time $g\left(k_{i}\right) n^{h\left(k_{3-i}\right)}$ for some computable functions g and h.

One can easily check that the algorithm described in the proof of Theorem 1 runs in time $O\left(n^{k_{1}+c}\right)$ for some constant c.

A natural question is then to ask whether the problem could be FPT with respect to $\left(k_{1}, k_{2}\right)$, that is, in time $f\left(k_{1}, k_{2}\right) n^{c}$ for some constant c and computable function f.

If not, one may ask if it can be solved in FPT time with respect to k_{1} or k_{2} only, that is, in time $g\left(k_{i}\right) n^{h\left(k_{3-i}\right)}$ for some computable functions g and h.

A base digraph for NP-completeness proofs

Figure: A ring digraph

For $1 \leq j \leq m$, we associate to the j th clause
$C_{j}=\left(\ell_{j, 1} \vee \ell_{j, 2} \vee \ell_{j, 3}\right)$ the set W_{j} consisting of three vertices of $R(\mathcal{F})$ representing the occurrences of the literals of C_{j} in \mathcal{F}.

For $1 \leq j \leq m$, we associate to the j th clause
$C_{j}=\left(\ell_{j, 1} \vee \ell_{j, 2} \vee \ell_{j, 3}\right)$ the set W_{j} consisting of three vertices of $R(\mathcal{F})$ representing the occurrences of the literals of C_{j} in \mathcal{F}.

Theorem

Let \mathcal{F} be a 3-SAT formula and let $R(\mathcal{F})$ be the corresponding ring digraph. Then the following holds:

- $R(\mathcal{F})$ contains a directed cycle which avoids at least one vertex from each of the sets W_{1}, \ldots, W_{m} if and only if \mathcal{F} is a 'Yes'-instance of 3-SAT.
- $R(\mathcal{F})$ contains two disjoint directed cycles R_{1}, R_{2}, each of which intersects all the sets W_{1}, \ldots, W_{m} if and only if \mathcal{F} is a 'Yes'-instance of NAE-3-SAT.

Completity for strongly connected input digraphs

$\mathbb{P}_{1} \backslash \mathbb{P}_{2}$	strong	conn.	\mathbb{B}^{+}	\mathbb{B}^{-}	$\delta \geq 1$	$\delta^{+} \geq 1$	$\delta^{-} \geq 1$	$\delta^{0} \geq 1$	\mathbb{A}	\mathbb{C}	\mathbb{H}
strong	NPc	P	NPc^{*}	NPc^{*}	P	NPc^{L}	NPc^{L}	NPc	P	P	P
conn.	P	P	P	P	P	P	P	P	P	P	P
\mathbb{B}^{+}	NPc^{*}	P	P	NPc^{*}	P	NPc^{L}	P	NPc^{L}	P	P	P
\mathbb{B}^{-}	NPc^{*}	P	NPc								
$\delta \geq 1$	P	P	P	P	P	P	NPc^{L}	NPc^{L}	P	P	P
$\delta^{+} \geq 1$	NPc^{R}	P	NPc^{R}	P	P	P	P	P	P	P	P
$\delta^{-} \geq 1$	NPc^{R}	P	P	NPc^{R}	P	P	NPc	P	NPc	P	P
$\delta^{0} \geq 1$	NPc	P	NPc	P	NPc^{R}	P	NPc	NPc	NPc	P	P
\mathbb{A}	P	P	P	P	P	P	P				
\mathbb{C}	P	P	P	P	P	P	P	P	P	P	P
\mathbb{H}	P	P	P	P	P	P	P				

The legend is the same as in the first table, but we have one more complexity type: NPc* : NP-complete for $k_{1}, k_{2} \geq 2$, and polynomial-time solvable for $k_{1}=1$ or $k_{2}=1$. We also emphasize with P , the problems that are polynomial-time solvable on strong digraphs and NP-complete in the general case.

2-partitions of Tournaments

A digraph D is called k-out-critical if $\delta^{+}(D)=k$ and no subset of it vertices can be removed without decreasing the minimum out-degree of the resulting digraph.

```
Let }X\subseteqV\mathrm{ be a set of vertices in a digraph D with minimum
out-degree at least }k\mathrm{ . A set }\mp@subsup{X}{}{\prime}\subseteqV\mathrm{ is called }X\mathrm{ -out-critical if
X\subseteq\mp@subsup{X}{}{\prime},\mp@subsup{\delta}{}{+}(D\langle\mp@subsup{X}{}{\prime}\rangle)\geqk and }\mp@subsup{\delta}{}{+}(D\langle\mp@subsup{X}{}{\prime}-Z\rangle)<k for ever
\emptyset\not=Z\subseteq\mp@subsup{X}{}{\prime}-X.
A vertex v }\inV(T)\mathrm{ is said to be k-out-dangerous if
d+}(v)<2k-
```


2-partitions of Tournaments

A digraph D is called k-out-critical if $\delta^{+}(D)=k$ and no subset of it vertices can be removed without decreasing the minimum out-degree of the resulting digraph.

Let $X \subseteq V$ be a set of vertices in a digraph D with minimum out-degree at least k. A set $X^{\prime} \subseteq V$ is called X-out-critical if $X \subseteq X^{\prime}, \delta^{+}\left(D\left\langle X^{\prime}\right\rangle\right) \geq k$ and $\delta^{+}\left(D\left\langle X^{\prime}-Z\right\rangle\right)<k$ for every $\emptyset \neq Z \subseteq X^{\prime}-X$.

2-partitions of Tournaments

A digraph D is called k-out-critical if $\delta^{+}(D)=k$ and no subset of it vertices can be removed without decreasing the minimum out-degree of the resulting digraph.

Let $X \subseteq V$ be a set of vertices in a digraph D with minimum out-degree at least k. A set $X^{\prime} \subseteq V$ is called X-out-critical if $X \subseteq X^{\prime}, \delta^{+}\left(D\left\langle X^{\prime}\right\rangle\right) \geq k$ and $\delta^{+}\left(D\left\langle X^{\prime}-Z\right\rangle\right)<k$ for every $\emptyset \neq Z \subseteq X^{\prime}-X$.
A vertex $v \in V(T)$ is said to be \mathbf{k}-out-dangerous if $d^{+}(v)<2 k-1$.

Lemma

Let k be a fixed integer and let D be a semicomplete digraph with minimum out-degree at least k. Then the number of k-out-dangerous vertices of D is at most $4 k-3$.

Lemma

Let D be a semicomplete digraph such that $\delta^{+}(D) \geq k$ and let $X \subseteq V(D)$. Then for every X-out-critical set X^{\prime} in D we have $\left|X^{\prime}\right| \leq \frac{k^{2}+3 k+2}{2}+|X|$. In particular every k-out-critical set in D has size at most

Lemma

Let k be a fixed integer and let D be a semicomplete digraph with minimum out-degree at least k. Then the number of k-out-dangerous vertices of D is at most $4 k-3$.

Lemma

Let D be a semicomplete digraph such that $\delta^{+}(D) \geq k$ and let $X \subseteq V(D)$. Then for every X-out-critical set X^{\prime} in D we have $\left|X^{\prime}\right| \leq \frac{k^{2}+3 k+2}{2}+|X|$. In particular every k-out-critical set in D has size at most $\frac{k^{2}+3 k+2}{2}$.

Theorem

For every fixed integer k there exists a polynomial algorithm that either constructs a ($\delta^{+} \geq k, \delta^{+} \geq k$)-partition of a given semicomplete digraph D or correctly outputs that none exists.

Proof:
It suffices to prove that we can test, for a given partition $\left(O_{1}, O_{2}\right)$ of the out-dangerous vertices, whether there is a solution with $O_{i} \subseteq V_{i}$.

Theorem

For every fixed integer k there exists a polynomial algorithm that either constructs a ($\delta^{+} \geq k, \delta^{+} \geq k$)-partition of a given semicomplete digraph D or correctly outputs that none exists.

Proof:

It suffices to prove that we can test, for a given partition $\left(O_{1}, O_{2}\right)$ of the out-dangerous vertices, whether there is a solution with $O_{i} \subseteq V_{i}$.

- Let X be an O_{1}-out-critical set such that $X \subseteq V-O_{2}$. If no such X exists, there is no solution with $O_{i} \subseteq V_{i}$.

- Let X be an O_{1}-out-critical set such that $X \subseteq V-O_{2}$. If no such X exists, there is no solution with $O_{i} \subseteq V_{i}$.
- Starting from the partition $\left(V_{1}, V_{2}\right)=(X, V-X)$, and moving one vertex at a time, move vertices of $V_{2}-O_{2}$ which have $d_{T\left\langle V_{2}\right\rangle}^{+}(v)<k$ to V_{1}.

```
- If, at any time, this results in a vertex v\in O2 having
d}\mp@subsup{d}{T\langle\mp@subsup{V}{2}{\prime}\rangle}{+}(v)<k\mathrm{ , or }\mp@subsup{V}{2}{}=\emptyset\mathrm{ , then there is no good partition
with }\mp@subsup{O}{i}{}\subseteq\mp@subsup{V}{i}{},=1,2\mathrm{ and the algorithm terminates.
```

- Let X be an O_{1}-out-critical set such that $X \subseteq V-O_{2}$. If no such X exists, there is no solution with $O_{i} \subseteq V_{i}$.
- Starting from the partition $\left(V_{1}, V_{2}\right)=(X, V-X)$, and moving one vertex at a time, move vertices of $V_{2}-O_{2}$ which have $d_{T}^{+}\left\langle V_{2}\right\rangle(v)<k$ to V_{1}.
- If, at any time, this results in a vertex $v \in O_{2}$ having $d_{T\left\langle V_{2}\right\rangle}^{+}(v)<k$, or $V_{2}=\emptyset$, then there is no good partition with $O_{i} \subseteq V_{i},=1,2$ and the algorithm terminates.
- Let X be an O_{1}-out-critical set such that $X \subseteq V-O_{2}$. If no such X exists, there is no solution with $O_{i} \subseteq V_{i}$.
- Starting from the partition $\left(V_{1}, V_{2}\right)=(X, V-X)$, and moving one vertex at a time, move vertices of $V_{2}-O_{2}$ which have $d_{T\left\langle V_{2}\right\rangle}^{+}(v)<k$ to V_{1}.
- If, at any time, this results in a vertex $v \in O_{2}$ having $d_{T\left\langle V_{2}\right\rangle}^{+}(v)<k$, or $V_{2}=\emptyset$, then there is no good partition with $O_{i} \subseteq V_{i},=1,2$ and the algorithm terminates.
- Otherwise the algorithm will terminate with $O_{2} \subseteq V_{2} \neq \emptyset$ and hence it has found an $\left(\delta^{+} \geq k, \delta^{+} \geq k\right)$-partition $\left(V_{1}, V_{2}\right)$ with $O_{i} \subseteq V_{i}, i=1,2$.

The correctness of \mathcal{B} follows from the fact that we only move vertices that are not dangerous and each such vertex has at least $2 k-1$ out-neighbours in D.

The correctness of \mathcal{B} follows from the fact that we only move vertices that are not dangerous and each such vertex has at least $2 k-1$ out-neighbours in D.

Hence, as the vertex that we move does not have k out-neighbours in V_{2}, it must have at least k out-neighbours in V_{1}, so $\delta^{+}\left(D\left\langle V_{1}\right\rangle\right) \geq k$ will hold throughout the execution of \mathcal{B}.

By Lemma 3, the number of out-dangerous vertices is at most $4 k-3$ and hence the number of $\left(O_{1}, O_{2}\right)$-partitions is at most $2^{4 k-3}$ which is a constant when k is fixed. Furthermore, by

The correctness of \mathcal{B} follows from the fact that we only move vertices that are not dangerous and each such vertex has at least $2 k-1$ out-neighbours in D.

Hence, as the vertex that we move does not have k out-neighbours in V_{2}, it must have at least k out-neighbours in V_{1}, so $\delta^{+}\left(D\left\langle V_{1}\right\rangle\right) \geq k$ will hold throughout the execution of \mathcal{B}.
By Lemma 3, the number of out-dangerous vertices is at most $4 k-3$ and hence the number of $\left(O_{1}, O_{2}\right)$-partitions is at most $2^{4 k-3}$ which is a constant when k is fixed.

The correctness of \mathcal{B} follows from the fact that we only move vertices that are not dangerous and each such vertex has at least $2 k-1$ out-neighbours in D.

Hence, as the vertex that we move does not have k out-neighbours in V_{2}, it must have at least k out-neighbours in V_{1}, so $\delta^{+}\left(D\left\langle V_{1}\right\rangle\right) \geq k$ will hold throughout the execution of \mathcal{B}.
By Lemma 3, the number of out-dangerous vertices is at most $4 k-3$ and hence the number of $\left(O_{1}, O_{2}\right)$-partitions is at most $2^{4 k-3}$ which is a constant when k is fixed. Furthermore, by Lemma 4, the size of every O_{1}-critical set is also bounded by a function of k and hence each $\left(O_{1}, O_{2}\right)$-partition induces only a polynomial number of O_{1}-critical sets.

The correctness of \mathcal{B} follows from the fact that we only move vertices that are not dangerous and each such vertex has at least $2 k-1$ out-neighbours in D.

Hence, as the vertex that we move does not have k out-neighbours in V_{2}, it must have at least k out-neighbours in V_{1}, so $\delta^{+}\left(D\left\langle V_{1}\right\rangle\right) \geq k$ will hold throughout the execution of \mathcal{B}.
By Lemma 3, the number of out-dangerous vertices is at most $4 k-3$ and hence the number of $\left(O_{1}, O_{2}\right)$-partitions is at most $2^{4 k-3}$ which is a constant when k is fixed. Furthermore, by Lemma 4, the size of every O_{1}-critical set is also bounded by a function of k and hence each $\left(O_{1}, O_{2}\right)$-partition induces only a polynomial number of O_{1}-critical sets.
Thus we obtain the desired polynomial time algorithm by running the subalgorithm \mathcal{B} for all possible partitions $\left(O_{1}, O_{2}\right)$ of the out-dangerous vertices and all possible O_{1}-critical sets.

Theorem

The following 2-partition problems are $\mathcal{N P}$-complete for the class of semicomplete digraphs and polynomial for tournaments.
(a) Partitioning into two strong tournaments.
(b) Partitioning into two tournaments both of which have minimum out-degree at least one.
(c) Partitioning into two tournaments so that one has minimum in-degree at least one and the other has minimum out-degree at least one.

Spanning bipartite digraphs

Let $D=(V, A)$ be a digraph. For a given 2-partition $\left(V_{1}, V_{2}\right)$ of V we denote by $B_{D}\left(V_{1}, V_{2}\right)$ the spanning bipartite subdigraph induces by the arcs with one end in V_{1} and the other in V_{2}.

Observation (Alon): For every k there exists a digraph D with minimum out-degree k such that for every 2-partition $\left(V_{1}, V_{2}\right)$ of $V(D)$ some vertex of $B_{D}\left(V_{1}, V_{2}\right)$ has out-degree zero.

This follows from a construction of Thomassen of k-out-regular
digraphs with no even cycle.

Spanning bipartite digraphs

Let $D=(V, A)$ be a digraph. For a given 2-partition $\left(V_{1}, V_{2}\right)$ of V we denote by $B_{D}\left(V_{1}, V_{2}\right)$ the spanning bipartite subdigraph induces by the arcs with one end in V_{1} and the other in V_{2}.
Observation (Alon): For every k there exists a digraph D with minimum out-degree k such that for every 2-partition $\left(V_{1}, V_{2}\right)$ of $V(D)$ some vertex of $B_{D}\left(V_{1}, V_{2}\right)$ has out-degree zero.

Spanning bipartite digraphs

Let $D=(V, A)$ be a digraph. For a given 2-partition $\left(V_{1}, V_{2}\right)$ of V we denote by $B_{D}\left(V_{1}, V_{2}\right)$ the spanning bipartite subdigraph induces by the arcs with one end in V_{1} and the other in V_{2}.
Observation (Alon): For every k there exists a digraph D with minimum out-degree k such that for every 2-partition $\left(V_{1}, V_{2}\right)$ of $V(D)$ some vertex of $B_{D}\left(V_{1}, V_{2}\right)$ has out-degree zero.
This follows from a construction of Thomassen of k-out-regular digraphs with no even cycle.

Spanning bipartite digraphs of minimum out-degree at least 1

Theorem

It is polynomial to decide whether a given digraph D has a 2-partition $\left(V_{1}, V_{2}\right)$ so that $B_{D}\left(V_{1}, V_{2}\right)$ has minimum out-degree at least one.

Such a partition exists if and only if every terminal strong component contains an even directed cycle.
\square

Spanning bipartite digraphs of minimum out-degree at least 1

Theorem

It is polynomial to decide whether a given digraph D has a 2-partition $\left(V_{1}, V_{2}\right)$ so that $B_{D}\left(V_{1}, V_{2}\right)$ has minimum out-degree at least one.

Such a partition exists if and only if every terminal strong component contains an even directed cycle.

Theorem

For fixed every choice of natural numbers k_{1}, k_{2} such that $k_{1}+k_{2} \geq 3$ it is NP-complete to decide whether a given digraph D has a 2-partition $\left(V_{1}, V_{2}\right)$ so that in $B_{D}\left(V_{1}, V_{2}\right)$ every vertex of V_{i} has minimum out-degree at least k_{i} for $i=1,2$.

Spanning strong bipartite digraphs

Theorem
 For every non-negative integer K there exists an eulerian K-strong digraph D such that for every 2-partition $\left(V_{1}, V_{2}\right)$ the bipartite digraph $B_{D}\left(V_{1}, V_{2}\right)$ is not strong.

Theorem
For every non-negative integer K it is NP-complete to decide whether a given K-strong eulerian digraph D has a 2-partition $\left(V_{1}, V_{2}\right)$ such that the bipartite digraph $B_{D}\left(V_{1}, V_{2}\right)$ is strong.

Spanning strong bipartite digraphs

Theorem

For every non-negative integer K there exists an eulerian K-strong digraph D such that for every 2-partition $\left(V_{1}, V_{2}\right)$ the bipartite digraph $B_{D}\left(V_{1}, V_{2}\right)$ is not strong.

Theorem

For every non-negative integer K it is NP-complete to decide whether a given K-strong eulerian digraph D has a 2-partition $\left(V_{1}, V_{2}\right)$ such that the bipartite digraph $B_{D}\left(V_{1}, V_{2}\right)$ is strong.

Out-colourings of bipartite tournaments

Let D be a digraph. A k-colouring of $V(D)$ is a k-out-colouring if no out-neighbourhood is monochromatic.

Proposition

For all possitive integers k, r there exists a bipartite tournament $B_{k, r}$ with $\delta^{+}\left(B_{k, r}\right)=k$ which has no r-out-colouring.

Theorem
It is NP-complete to decide whether a bipartite tournament
admits a 2-out-colouring

Out-colourings of bipartite tournaments

Let D be a digraph. A k-colouring of $V(D)$ is a k-out-colouring if no out-neighbourhood is monochromatic.

Proposition

For all possitive integers k, r there exists a bipartite tournament $B_{k, r}$ with $\delta^{+}\left(B_{k, r}\right)=k$ which has no r-out-colouring.

Theorem

It is NP-complete to decide whether a bipartite tournament admits a 2-out-colouring

Out-colourings of tournaments

Theorem
Every tournament T with $\delta^{+}(T) \geq 3$ different from the Paley tournament P_{7} admits a 2-out-colouring.

Problem

Does there exists a function $f(k)$ such that every tournament T with $\delta^{+}(T) \geq f(k)$ has a 2-partition $\left(V_{1}, V_{2}\right)$ such that $\delta^{+}\left(D\left\langle V_{i}\right\rangle\right) \geq k$ for $i=1,2$ and $\delta^{+}\left(B_{D}\left(V_{1}, V_{2}\right)\right) \geq k ?$ Update: YES the function exists (from discussion with Alon)

Out-colourings of tournaments

Theorem

Every tournament T with $\delta^{+}(T) \geq 3$ different from the Paley tournament P_{7} admits a 2-out-colouring.

Problem

Does there exists a function $f(k)$ such that every tournament T with $\delta^{+}(T) \geq f(k)$ has a 2-partition $\left(V_{1}, V_{2}\right)$ such that $\delta^{+}\left(D\left\langle V_{i}\right\rangle\right) \geq k$ for $i=1,2$ and $\delta^{+}\left(B_{D}\left(V_{1}, V_{2}\right)\right) \geq k$?
Update: YES the function exists (from discussion with Alon).

Thank you very much for your attention!

Jørgen Bang-Jensen . University of Southern Denmark, Odense
jbj@imada.sdu.dk

